
Git Tutorial

Jae Woo Lee and Stephen A. Edwards
Columbia University

March 2013

Git is a source code version control system. Such a system is most useful when you work in a
team, but even when you’re working alone, it’s a very useful tool to keep track of the changes
you have made to your code.

Con�gure your git environment

Tell git your name and email:

git config --global user.name "Your Full Name"

git config --global user.email you@somewhere.com

Git stores this information in the ~/.gitconfig �le.
You may also want to set the EDITOR environment variable to vim or emacs; this controls
which editor you use to enter log messages.

Creating a project

Let’s create a new directory, ~/tmp/test1, for our �rst git project.

cd

mkdir tmp

cd tmp

mkdir test1

cd test1

Put the directory under git revision control:

git init

If you type ll (I’ll assume that ll is an alias for ls -alF), you will see that there is a .git
directory. �e git repository for the current directory is stashed in the .git directory.
Let’s start our programming project. Write hello.c with your editor:

1



#include <stdio.h>

int main()

{

printf("%s\n", "hello world");

return 0;

}

Compile and run it:

gcc hello.c

./a.out

Let’s see what git thinks about what we’re doing:

git status

�e git status command reports that hello.c and a.out are “Untracked.” We can have git
track hello.c by adding it to the “staging” area (more on this later):

git add hello.c

Run git status again. It now reports that hello.c is “a new �le to be committed.” Let’s
commit it:

git commit

Git opens up your editor for you to type a commit message. A commit message should
succinctly describe what you’re committing in the �rst line. If you have more to say, follow
the �rst line with a blank line, and then with a more through multi-line description.
For now, type in the following one-line commit message, save, and exit the editor.

Added hello-world program.

Run git status again. It now reports that only a.out is untracked. It has no mention of
hello.c. When git says nothing about a �le, it means that it is being tracked, and that it has
not changed since it has been last committed.
We have successfully put our �rst coding project under git revision control.

Modifying �les

Modify hello.c to print “bye world” instead, and run git status. It reports that the �le is
“Changed but not updated.” �is means that the �le has been modi�ed since the last commit,
but it is still not ready to be committed because it has not been moved into the staging area.
In git, a �le must �rst go to the staging area before it can be committed.
Before we move it to the staging area, let’s see what we changed in the �le:



git diff

Or, if your terminal supports color,

git diff --color

�e output should tell you that you took out the “hello world” line, and added a “bye world”
line, like this:

-printf("%s\n", "hello world");

+printf("%s\n", "bye world");

Wemove the �le to the staging area with git add command:

git add hello.c

In git, “add” means this: move the change you made to the staging area. �e change could be
a modi�cation to a tracked �le, or it could be a creation of a brand new �le. �is is a point
of confusion for those of you who are familiar with other version control systems such as
Subversion.
At this point, git diff will report no change. Our change—from hello to bye—has been
moved into staging already. So this means that git diff reports the di�erence between the
staging area and the working copy of the �le.
To see the di�erence between the last commit and the staging area, add --cached option:

git diff --cached

Let’s commit our change. If your commit message is a one-liner, you can skip the editor by
giving the message directly as part of the git commit command:

git commit -m "changed hello to bye"

To see your commit history:

git log

You can add a brief summary of what was done at each commit:

git log --stat --summary

Or you can see the full di� at each commit:

git log -p

And in color:

git log -p --color



�e tracked, the modi�ed, and the staged

A �le in a directory under git revision control is either tracked or untracked. A tracked �le
can be unmodi�ed, modi�ed but unstaged, or modi�ed and staged. Confused? Let’s try again.
�ere are four possibilities for a �le in a git-controlled directory:

1. Untracked

Object �les and executable �les that can be rebuilt are usually not tracked.

2. Tracked, unmodi�ed

�e �le is in the git repository, and it has not been modi�ed since the last commit.
git status says nothing about the �le.

3. Tracked, modi�ed, but unstaged

You modi�ed the �le, but didn’t git add the �le. �e change has not been staged, so it’s
not ready for commit yet.

4. Tracked, modi�ed, and staged

You modi�ed the �le, and did git add the �le. �e change has been moved to the
staging area. It is ready for commit.

�e staging area is also called the “index.”

Other useful git commands

Here are some more git commands that you will �nd useful.
To rename a tracked �le:

git mv old-filename new-filename

To remove a tracked �le from the repository:

git rm filename

�e mv or rm actions are automatically staged for you, but you still need to git commit your
actions.
Sometimes you make some changes to a �le, but regret it, and want to go back to the version
last committed. If the �le has not been staged yet, you can do:

git checkout -- filename

If the �le has been staged, you must �rst unstage it:

git reset HEAD filename



�ere are two ways to display a manual page for a git command. For example, for the
git status command, you can type one of the following two commands:

git help status

man git-status

Lastly, git grep searches for speci�ed patterns in all �les in the repository. To see all places
you called printf():

git grep printf

Cloning a project

You created a brand new project in the test1 directory, added a �le, and modi�ed the �le.
But more o�en than not, a programmer starts with an existing code base. When the code
base is under git version control, you can clone the whole repository.
Let’s move up one directory, clone test1 into test2, and cd into the test2 directory:

cd ..

git clone test1 test2

cd test2

Type ll to see that your hello.c �le is cloned here. Moreover, if you run git log, you will
see that the whole commit history is replicated here. git clone not only copies the latest
version of the �les, but also copies the entire repository, including the entire commit history.
A�er cloning, the two repositories are indistinguishable.
Let’s make some changes—and let’s be bad. Edit hello.c to replace printf with printf%^&,
save and commit:

vim hello.c

git add hello.c

git commit -m "hello world modification - work in progress"

Now run git log to see your recent commit carrying on the commit history that was cloned.
If you want to see only the commits a�er cloning:

git log origin..

Of course you can add -p and --color to see the full di� in color:

git log -p --color origin..

Let’s make one more modi�cation. Fix the printf, and perhaps change the “bye world” to
“rock my world” while we’re there.



vim hello.c

git add hello.c

git commit -m "fixed typo & now prints rock my world"

Run git log -p --color origin.. again to see the two commits you have made a�er cloning.

Adding a directory into your repository

Enter the original test1 directory, create the solution subdirectory, and add two �les to it:

cd ../test1

mkdir solution

cd solution

cp ../hello.c .

echo ’hello:’ > Makefile

Type ll to see that two �les—Makefile and hello.c—have been created in the solutions
directory. (hello.c was copied from the parent directory, and Make�le was created directly
on the command line using the echo command.
Now, move out of the solution directory, and git add & git commit the solution directory:

cd ..

git add solution

git commit -m "added solution"

Note that git add solution stages all �les in the directory.

Pulling changes from a remote repository

When others are working on the same project, you will o�en want to get updated �les from a
remote repository. You do that by “pulling” the changes in my repository into your repository.
Let’s pull the changes we just made in test1 into test2:

cd ../test2/

git pull

�e git pull command looks at the original repository that you cloned from, fetches all the
changes made since the cloning, and merges the changes into the current repository. You
now have the solution right in your repository.

Learning more about git

man gittutorial

�e documentation page of the Git web site, http://git-scm.com/documentation, also has
many links.

http://git-scm.com/documentation

