Networked American Pool Video Game

Group Name: Pool-Maniac

CSEE 4840 Embedded System Design

Jiawan Zhang 122492
Xunchi Wu xw2256
Yichen Liu y12904
Yuhan Zhang yz2500
Zeshi Wang zw2221

1. Project Introduction

Pool, also more formally known as pocket billiards or pool billiards, is the family
of cue sports and games played on a pool table having six receptacles called pockets
along the rails, into which balls are deposited as the main goal of play.

In this project, we plans to design a 2D American Pool Video Game for two
players following the basic American pool rules. Each player will play the game in
difference machine (e.g. one plays in the FPGA and the other plays in the laptop) and
communicate with the other through network. Our Pool-maniac is a video game
played with a cue ball and fifteen object balls, numbered 1 through 15. One player
must pocket balls of the group numbered 1 through 7 (solid colors), while the other
player has 9 thru 15 (stripes).

This game will be implemented with VHDL and C language and shown on the
VGA screen. Besides, a sound will be produced when the collision happens. The
player who shoots in the black ball after finishing all his balls wins the game.

1.1. Rules

At the beginning of the game, the players could choose each group of ball to
shoot. The one pocketed the first ball, he should pocket else in the group of that ball.
And the other player should pocket the other ball group. The player who pocketed
one ball can continue to shoot other balls. A player is entitled to continue shooting
until he fails to legally pocket a ball of his group. After a player has legally pocketed
all of his group of balls, he shoots to pocket the 8-ball and win the game.

1.2 The fouls

1) A shooter directly hits NO.8 ball with the cue ball, without finishing pocketing
all his balls, is a foul.

2) When the cue ball is pocketed, it should be place back to the origin point, and
the shooting turn switches.

3) Once the ball case is set, a shooter cannot directly shoot opponent’s balls.
Otherwise it’s a foul.

4) Any balls pocketed on a foul remain pocketed, regardless of whether they
belong to the shooter or the opponent. The penalty is the switch of shooting turn.

5) If a player jumps an object ball off the table on the break shot, it is a foul and
the incoming player has the option of a. accepting the table in position and shooting,
or b. taking cue ball in hand behind the head string and shooting.

2. Block Diagram

The top-level block diagram of our project is shown below. We use the Avalon
bus with SOPC builder in the Quartus for the communication of each block. The
whole block diagram includes SRAM, Nios2 CPU, VGA control, Audio control, PS2
control and Enthernet control. The real hardware devices include VGA, Audio chip,
keyboard and Enternet. The details of the implementation and the memory needed
for each block and will be provided later.

—

Avalon Bus
2.1 VGA block
The VGA block displays the interface of the game. The interface has 5 parts: pool

table, balls, pool cue, score board and strength bar. It has 4 levels (Level 0 to Level
3). The data for Level 1 to Level 3 is stored in a ROM in FPGA. The data is stored in 3

separate ROMs, one for each level. The data will be stored in MIF files and loaded
into memory bits instead of storing it in logic cells.

Level 0 contains the background (a single color rectangle), the frame of pool
table (table without the six pockets), and the strength bar. Since all of them are
made with single rectangles, each of which can be determined by 4 points and 1
color signals, so just give the singles as CONSTANT in VGA control vhdl file.

Level 1 contains the frame of score board and the pockets of the pool table. The
frame of score board needs 30*150 pixels. The 4 pockets on the corners need 35*35
pixels. The other 2 pockets need 24*24 pixels.

Level 2 contains balls. There are 16 balls, and each ball needs 14*14 pixels.

Level 3 contains the pool cue. The pool cue needs a 300*300 matrix to store the
pattern of the pool cue for different angles in the first quadrant. The patterns for the
rest quadrants will be given by mirror.

For Level 1 and Level 2, each pixel needs 5 bits, which represent 31 colors and
the transparent color. For Level 3, each element in the matrix needs 6 bits to
represent the angles of the pool cue.

Therefore, the total ROM memory needed for VGA part is as following table.

Score pockets balls Pool cue Total size

board for VGA
Num of data 30*150 =|35*35*4 +|14*14*16 =|300*300 =

4500 24*24*2 =13136 90k

6052

Num of bits for | 5 5 5 6
data
Total size (bit) | 21.98k 39.56k 15.32k 527.35k 604.21k
(k=1024)

Followings are the pattern for pool table and balls for this game (generated with
Matlab).

AL I |

2468024 2468024 2468024 2468024 2468024 2468024 2463024

1%

2468024 2468024 2468024 2468024 2468024 2468024 2468024

=]

2468024 2468024

2.2 Audio block

For the audio block, the player can choose if the sound will be turned on or
turned off, which is implemented by the CPU to choose whether the sound mode is
on. Besides, it plays the corresponding sound when the pool cue or the table hits the
ball, the collision happens between different balls and the ball hits the bag.

To implement the audio module, the music will be generated through the FM
synthesis using the DE2 on board WM8731 audio CODEC based on lab 3. The basic
FM equation is: x(t)=sin(w t+Isin(w,t), where x(¢) is the amplitude at time 7, w. is the
carrier frequency (the fundamental tone we hear), wm is the modulating frequency,
and I is the modulation depth. When the audio controller receives the CPU command,
it will make the sound box play a corresponding sound.

The audio control block has a ROM to store the sampling sound and it can be
accessed at different rates decided by w.. Additionally, each sound will last about
half second and we will use a counter to control this time. The clock frequency is

50MHz, so the counter needs to count 25M so that the sound will last half second.
We plan to use a 5000Hz sample frequency of the 16-bit data. Since the sound need
to last for half second at a 50MHz clock frequency, the size of the data for each
sound is about 2500 x 16 bits.

2.3 Keyboard

The game uses PS/2 keyboard to get the operation signals from the players. The
keyboard in our project is used to let the player control the state of the pool cue.

Left and right arrow key of the keyboard will be used to rotate the pool cue
around the cue ball to set hitting direction. The left arrow key will make the pool cue
rotate anticlockwise around the cue ball, while the right arrow key will realize the
clockwise rotation. Besides, we will try to hold the space key to adjust strength, and
release it to hit the ball. There will be a bar to show the current strength. While
holding the space key and the bar will increase gradually and if the bar reaches the
maximum strength, it will fall back to zero and increase again if keep pressing. The
basic PS2 driver in lab2 can still be utilized here and the keyboard interface for our
game will be implemented in C program.

2.4 Enthernet block
The network design will be similar to that of the lab 2, while the main difference

is that we will only use one DE2 board with two players operating on two seperate
computers meanwhile. Everytime one player kicks a ball using the space key, the
communication between two computers and DE2 board will take place to send one
packet containing two data fields: the angle of the pool cue, the strength of the hit.
The current X & Y pixel location of every 16 balls thus can be caculated using the
designed algorithms by two computers after receiving the packet, by which means
the data fields of the packet to send will be greatly simpilified.

The device will utilize standard UDP packets with IP headers specifically designed
and the ad hoc network that exists in the lab.

Concerning the communication process involved, four different network layers
will be accessed programmatically by the user: Link Layer, Network Layer,
Transport Layer, and Application Layer.

Reliable Transfer

Since UDP protocol only transfers packets with best effort, without assurance of
the arrival of every packet, it is possible that the packet loss and packet corruption
will take place during the transmission.

In order to avoid packet loss in transmission, we will adopt the SEND-ACK
protocol between the sender and receiver. That is to say, when a packet is sent, the
sender will await an ACK from the receiver to acknowledge the receipt of the packet
during a specified amount of time (for example 500 ms). If the expected ACK is not
received by the sender within that period of time, it indicates that a packet loss has
taken place in the transmission and the last packet will be sent again. Multiple
failures to transmit the packet will lead to termination of the game. Upon receipt of
this acknowledgment from the receiver, the sender and receiver can then compute
the detailed X & Y pixel location of every 16 balls.

If a packet is received but is corrupted (based on an inconsistent checksum value),
the receiver will not send an ACK and wait for the sender to resend the packet. If
corruption of a given packet occurs multiple times, the game will terminate.

Application Layer

The Application Layer will be accessed to transmit data fields between two
networked computers.

The two data fields to be transmitted between two clients are: angle of the pool
cue and strength of the hit, both of which will be used later by the algorithms to
compute the current X & Y pixel location of every 16 balls after each hitting.

Protocol of Application Layer
The protocols of the Application Layer used is shown below. Note that additional
fields may be added during implementation.

31130 (29| 28|27 |26 (25|24 |2/ 22211 1] 111 1|11 1|98 7 654 3 210
312/ 1/0[/ 98 7/ 6/ 5 43210

Data Type ID Player ID Angle of The Strength of The Options or
Pool Cue Hit Filled

3. Software Description

Basically we use C language to 1. read the input that the players made using the
keyboard, specifically, shoot strength and the angle; 2. program the movement of
the balls and 3.send back the coordinates of the balls to hardware and use VHDL to
do the screen display.

While connecting with network, we send the parameter of hitting strength and
angle via UDP to another hardware and the two devices compute the movement of
the ball individually, but based on the same parameters.

The core algorithm mainly including two parts: 1. Detect ball collision and 2. give
the reasonable movement trajectory of the ball. To detect ball collision, we first need
to work out an algorithm to detect if ball collision happens. If not, which is the
majority case, go directly to the next cycle, updating positions for the balls.
Otherwise, based on the different collision mechanism to calculate moving
directions and velocities of the balls. There are two types of collision: 1. the collision
between the ball and the table edge and 2. the collision between two or more balls.
In the first type of collision, we could use the simple mirror reflection to decide the
bouncing angle with no energy loss. For the second case, we need to consider the
different collision angles of the balls actually collide. The constant friction coefficient
is introduced into the speed calculation. It helps to simulate the gradually
decreasing speed of the moving balls.

4 .Critical Path

For an American Pool game, the appropriate functionality of the algorithm is of
great significance. Different strength and angle when hitting the cue ball will direct
different result. The collide will also happen between different balls with different
speed as well as between balls and table, and this is also important for the game. We
need to design the algorithm of the collision carefully.

Besides, the movement of the ball should be design carefully. We should make
the movement as real as possible, especially the move direction of the ball after
collision and the speed of the ball. If the movements of the balls generate many
unexpected actions, the joy of the game will be greatly decreased.

In addition, since there are two players will be in the game simultaneously and
UDP is a connectionless transfer, which cannot assume that all packets will arrive
without error across the network. We need to solve the problems when the packet
lost during transmission and when a corrupted packet is received. If the
synchronization problem of the packet occurs multiple times, the game will hard to
continue. Thus, a robust mechanism is need to make sure this synchronous
requirement.

5. Conclusion

In our project, a networked American Pool video game is designed. We store most
of data in the DE2 board. The memory for the hardware needed is discussed above
and the part of software will not occupy lots of memory. Thus, with carefully design
for each block, like VGA, audio, PS/2 keyboard and Enternet, for a 512K SRAM our
pool-manic game should work.

