Kanto Audio Player - Design
David Benedetto - djp2167, Kavita Jain-Cocks - kj2264, Amrita Mazumdar - am3210
Zhehao Mao - zm2169, Darien Nurse - don2102, Jonathan Yu - jy2432

Project Overview:

Our project will be an audio player with an interesting visualization of the audio. The user will be
able to play .wav audio files from an SD card. We will use a hardware-accelerated algorithm to
play the audio on the FPGA'’s audio output and simultaneously display a visualization of the audio
being played using a custom audio encoding. The user interface will be very minimal and allow
the user to start and stop playback only.

High-Level Block Diagram:

NIOS II SDRAM

I H

Avalon

I 1l Al i

VGA External Audio Speaker

N
«—— | Visualizer FFT Storage Buffer | ¥ Output

r i i '

SRAM

Display

Clock
Frequency
Divider

Memory Requirements

e FFT will be computed using a radix-16 Cooley-Tukey FFT algorithm, using on-chip block
RAM for storing coefficients. A radix-16 FFT requires 4*((n/16)"2 + 4n) bytes, as each
coefficient is 4 bytes (2 bytes each for real and imaginary part), and if we use n = 256,
our FFT will fitin 5.38 KB of block RAM.

e We will need to store the result of the FFT in SRAM so that the visualizer can access it.
This will take 256 * 2 = 512 bytes.

e We are taking 44100 samples/sec, and we hope to keep 1 second of samples in the

audio buffer at any given cycle, or 88.2 KB of audio data in the audio buffer. This will be
stored in the SRAM.

e The visualizer will use on-chip block RAM for computation. We are going to have a
rudimentary FFT bar graph visualization, which will show the amplitude of each
frequency as the song plays. We intend to show 256 frequency slots with amplitude
levels ranging from 0-15, so we will use 4*256/8 = 128 bytes for the visualizer. We will
also need some overhead for VGA configuration storage, which is trivial enough to also
be included in on-chip block RAM.

e The clock frequency divider will need to store an internal count, up to 1134, (50 MHz /
44 1 kHz = 1134) so we will need 11 bits of on-chip block RAM to maintain this counter.

e We will use SDRAM for the NIOS Il data and instruction memory so as to free up the
SRAM for use by the hardware peripherals

Critical Path:

The most computationally-intensive operation we do in one clock cycle would be a combinational
multiplication in the FFT unit. This would thus be our critical path.

As for the overall latency of our system, the longest path would be processing samples from the
SD Card to display on the VGA display, as this would require the data to pass through the
storage controller, the FFT unit, and the visualization unit.

Peripherals:

FFT Unit
o Block Diagram
165 DFT] 168 [] B]
16 | I_l_6_ 3|
"Cor 1B g e
— 3
1651 DFT |-16>1g 32 o
3
— - 3 —128
165 DFT |-16s]3 3 o
o 3
> ii>| DFT Ii@> adl 8 64
= 15 o 164 [3
2 __DFT__ | g [
e [B| PP CBEL] 0 R L .
>
- v e ~ I R T
g g _3_2_>
% _lfL>| DFT I_l_6_> =1 g s
o 165 3
® j.fL>| DET I > g i> o
16 164 [— 3 %
| DFT | g T o
165 | DFT | 16> [& 9 64y
= 3
_li>| DFT I_l_6_> 8 _32_> o
JEL>I DF_-l- I 4li> g_ || | ||

This is a radix-16 DFT, so we split the inputs into 16 different parts and perform a DFT on

each group according to the equation
N—-1
—q - L
Xp=Y xe ™% k=0,...,N-1.
n=>0
We then recombine the individual DFT outputs into the final outputs in 4 stages, using the
following equation for each stage

2w g,]
E. +e ~FO, if & < N/2
XF.: =
Ira . v .
Ey_njpp—e ¥ EN2O, o if k> NJ2.
The numbers on each of the arrows indicate the number of samples being transferred,

not the number of bits. In the first stage (direct from input), the samples are 16 bit (audio
samples). In the next few stages, samples are 32 bits (16 bits each for real and

imaginary parts).

o 1/O Locations

e NIOS Il Signals
o read address (where in SRAM)
o begin computation (control)
o computation complete (status)

e External Signals
o SRAM signals (read time domain, write frequency domain)

Visualizer

o Block Diagram

SRAM

Run/
Stop

Clock ———————~::>

This portion is similar in implementation to the bouncing ball of lab 3. We will
refresh this with the frequency-divided clock signal so it is synchronous with the
music. The horizontal direction is divided into 256 sections for the frequency
blocks, each of these blocks will get a bar whose height will be decided by the
amplitude. The frequency and amplitude will be found in the SRAM and portrayed
on the screen.

VGA

o 1/O Locations
e NIOS Il Signals
o Run/Stop
e External Signals
o SRAM signals (read frequency domain)
o Clock
Audio Buffer
o Block Diagram - data is 16 bit

SRAM

Data is 16 bits wide [299 datz_out
D al—=— to
count . '
Counter 0=
(wraparound DFF

@ 88,200)

EM

clk_divd
play

o 1/O Locations
e NIOS Il Signals

o Pause/Play

e External Signals

o SRAM signals (read audio samples)

o Clock

SD Controller
o Block Diagram

SPl UL :
...Command > [l b Q _)SDCLK :
Controller 3 : i E : :
- B —> :
. L8
.. i A‘
—D Q ———> SD MOSI
~ IE : :
..................... — .. >
Write — -
.. Ch|p“‘5e!ect—‘—
Clock

DAC

SPI Command Controller sends the appropriate initialization commands to the SD card
from Nios II.

gD MISO 1'SDto SRAM: ‘|- SRAM -
) T))
: : Cuntrpller :

SD_MISO comes from the SD Card. Normally this goes into the SPI interface however
in this case we are writing it straight to SRAM instead.
o 1/O Locations
o Nios Il Signals
e read address (where in storage device)
e counter (number of bytes to read)
e write address (where in sram)
e begin read
o External Signals
e SD Card SPI signals
e SRAM signals (writing bytes read)

Milestones:
e Milestone 1
o RTL level design of all peripherals
e Milestone 2
o Have all individual peripherals finished (written in VHDL)
e Milestone 3
o Build interfaces between all peripherals and finish synchronization software

