
CSEE W4840 Project: Shoot bubble

video game

Team Name: Bubble Tea

Team Members:

Jun Dai jd2968

Shuo-Shu Tsai st2786

Weichia Chen wgc2111

Michael Shone yh2567

1. Introduction

 Shoot bubble Demo Figure

Our plan is to implement the video game called “shoot bubble”. The basic idea shows on the

figure. Once the player starts the game, on the upside of the screen, there are some bubbles with

different colors holding together. In order to pass the game, player will choose the angle of the

next bubble, and press a button to shoot it. If three or more bubbles are connected together, then

they will disappear. At the time that there is no bubble in the screen, player wins the game.

2. Design Block

In order to realize our design, six major components are included: SRAM, JTAG/UART, PS2

keyboard, VGA, timer, and Audio chip. Following figure shows the connections between each

other.

3. Software and Hardware Implementation

Whole Design split into two parts: software programming and hardware setup. Software program

controls the game logic: path of the bubble, logic to remove the bubbles and decision of whether

pass the game. Hardware generates the game background figure and deal with audio synthesize.

3.1 . Software

In the game, player uses arrow keys on PS2 keyboard to control the shooting direction of the

bubble. Once the decision is made, player can press P button to shoot the bubble. Then program

calculates the related shooting path of that bubble, and sends back the bubble position to VGA

controller in order to display it on the monitor. There are two situations where the bubble stops:

reach the boundary or touch the other bubble. After that, program logic makes the decision

whether the bubble satisfies the condition to cancel out or just hold there. In addition, the

program logic also required to judge whether the player win or lose the game. In the case that

there is no bubble left in the screen, player wins the game. Another situation, the lowest bubble

reaches the button line of the screen, player loses the game.

Since we include two players mode in the project, program should be fully optimized to

accomplish the purpose of heavy data processing duty.

3.2 . Hardware

Hardware is responsible for game background figure and audio synthesize. Sprites’ rendering is the

essential approach in our design. All the bubbles are stored as sprite arrays in the hardware. In order to

make the design easy to process, each sprite is 32x32 pixels. Therefore we only have maximum

20x15=300 bubbles in the 640x480 screen. An array can be defined to store these bubbles. Our game

also generates sound effects, like shooting sound, disappear sound, game starting music, and game ending

music, etc.

4. Keyboard

The keyboard in this project is where we get the input from the player to control the game. The

keys and their functions shows in the following figure:

KEYS FUNCTIONs

← , →
Player 1 control:

Control the arrowhead which determine the

direction for shooting

P Player 1 Shoot!!

A,D

Player 2 control:

Control the arrowhead which determine the

direction for shooting

SPACE Player 2 Shoot!!

↑, ↓ Using in menu for choosing mode

ESC Returning to menu while playing

We have different functions for each shooting direction. While pressing right or left, logic

change function from the original function to the specific one. In this way, controlling direction

can be realized in the game.

5. Audio:

In our project, we would like to produce sound effect and background music when player is

playing the game. We will use the high-quality 24-bit audio via the Wolfson WM8731 audio

CODEC. The WM8731 is controlled by a serial I2C bus interface on the Cyclone II FPGA board

we are using. It is designed with digital audio input word lengths ranging from 16-32 bits and

sampling rates from 8kHz to 96kHz.

Sound effect will be composed of different frequency sin wave that is similar with the FM sound

synthesizer of the lab3. We will make 4 kinds of the background music in the VHDL part for the

software to use in the video game: “Shoot”, “Move Arrow”, “Hit Bubble”, and “Completed

Bubble”. Just change the modulating frequency and the modulation depth to make the musical

notes we wanted.

Background music will be preloaded in the individual ROMs, and being played when the CPU

gives the audio controller commands. We will record 3 kinds of sound from the original game

as .wav file: “game start music”, “game playing music”, and “game over music”.

6. VGA

For the playing window region, we can divide it to 168 squares, each column contains 14 blocks

and row contains 12 blocks as indicated below. We have six colors of balls for the most difficult

level and three special bullets (shooting bubble). The sizes of bullets, balls and exploding images

are 32x32 pixels. We can use a rotate function to generate the shot arrow in different angles so

only need to store one image.

 12 squares

 14 squares

Image sample:

 Green Ball Blue Ball shot arrow exploding image

Image processing:

Due to the memory constrain, we don’t store sprites in 24-bitmap type. We use Matlab to covert

images we search from websites to 8-bitmap; therefore, we can save sprites in SRAM.

 Bitmap of 12x20 pixels shot arrow

7. Conclusion

For this project, setting up all the figure element configurations is the very first step in our

creation. For the reason that our interface is simple, the space of SRAM is enough. After that, we

decide to write most of the game logic in software part because it is easy to debug when

hardware is good to go.

8. Milestones

Milestone 1:

1. Keyboard Interface

2. VGA Interface

3. Basic logic of the game

Milestone 2:

1. Score of the game

2. Multiple levels of the game

3. Special bubble(bomb bubble, rainbow bubble)

Milestone 3:

1. Two players mode

2. Sound effect

3. Background music

Extra function (if time permits)

1. Two players mode through Ethernet

2. Save game data

