

OVERVIEW
•  Wrote firmware for an HP 20b calculator, allowing it to display

user input and process information

•  Worked with and understood the C programming language

•  Went from modifying a simple method (lcd_put_char7) to
working with control structures, structs, and pointers

•  Instead of simply learning the syntax of C in a traditional
classroom setting, we learned how to use Computer Science
to affect society (i.e. alter what a widely-used device does)

•  Took our first step in building applications

•  Series of three lab experiments that took us from
understanding display, to understanding how a keyboard
works, to modifying the behavior of the calculator

PROCESSOR
TDI

TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC
PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

HOW RPN CALCULATORS WORK
•  The calculator is an RPN calculator, which stands for Reverse

Polish Notation.

•  You can represent anything mathematically with- out using
parentheses and by saving keystrokes. The style of an RPN
calculator, however, is not conventional.

•  When entering computations, you must put in the first numerical
value and then press INPUT. Then you enter a second value and
an operation. The result is you get an evaluated mathematical
expression. Thus, putting in a 5, INPUT, 6, + will return a value of
11. This is counter-intuitive to us because we want to do 5, +, 6,
=. However, this is actually more efficient.

•  For complex situations like evaluating (3 + 5)/(7 + 6), you would
divide them into sub-expressions and then divide the two sub-
expressions at the very end. So you would enter a sequence of
commands identical to 3, INPUT, 5, +, 7, INPUT, 6, +, /. Notice
that the division operator is at the end. Running this in your
calculator will actually return the correct value of 0.6153846.

A LITTLE BIT OF BACKGROUND
•  The software used for the HP 20b

calculator is based on entry- system
logic, which contains RPN and Algebraic
and Chain Algebraic software. There are
over 220 built-in functions and menus
and prompts are included.

•  Atmel AT91SAM7L128 processor

•  The lcd_put_char7 function is the
essential tool to display output on the
calculator. The function takes in two
parameters, the first one a character
and the second one a number. The
function then returns the character at
the given index numerical value.

LAB 1 CODE
#include "AT91SAM7L128.h"
#include "lcd.h"

void clearScreen() {
 int i;
 for(i=0; i<11; i++){
 lcd_put_char7(' ',i);}
}

void printOutput(int number) {
 clearScreen();

 int counter, remain; char character;
 int position = 11;
 int absArg = abs(number);

 for(counter = absArg; counter >= 1; counter /= 10) {
 remain = counter % 10;
 character = '0' + remain;
 lcd_put_char7(character, position);
 position--;
 }

 if(number < 0) {
 lcd_put_char7('-', 0);
 }

 if(number == 0) {
 lcd_put_char7('0', 11);
 }
}

int main()
{
 lcd_init();

 printOutput(23444);
 printOutput(-0);

 return 0;
}!

LAB 1 EXPLANATION
•  Goal: display a numerical argument in the calculator

•  Clear screen assigns empty spaces in every position in the screen. So it makes the screen
ready to accept the number.

•  After cleaning up the screen the variable takes the absolute value of input number. In the for
loop, the number is kept divided by 10 and the remainder is stored in the right most position
until the computer gets the one digit value of the highest digit number. For example, when you
enter 205, the first result from for loop is 5 and it is shown in the right most position 11. And
the remaining number 20 goes through the same process and 0 in position 10 and 2 in
position 9. In case when the input number is negative, the number goes through the same
process because the code takes the absolute value of the number prior to the for loop.

•  To deal with the negative sign, lcd_put_char7('-', 0) displays '-' in the left most position. Also, if
input is zero, the screen shows 0 in the rightmost position by lcd_put_char7('0', 11)

LAB 2 CODE
char keyboard_key()
{
 int i;

 char keyboard[7][6] = {{'X', 'X', 'X', 'X', 'X', 'X'},
 {'X', 'X', 'X', 'X', 'X', 'X'},
 {'I', '(', ')', 'O', '<'},
 {'^', '7', '8', '9', '%'},
 {'v', '4', '5', '6', 'x'},
 {'s', '1', '2', '3', '-'},
 {' ', '0', '.', '=', '+'}};

 for (i = 0; i < 7; i++)
 {
 keyboard_column_high(i);
 }

 int j, k;
 for (j = 0; j < 7; j++)
 {
 keyboard_column_low(j);
 for (k = 0; k < 6; k++)
 {
 if (!keyboard_row_read(k))
 {
 return keyboard[j][k];
 }
 }
 keyboard_column_high(j);
 }

 return ' ';

}!

LAB 2 EXPLANATION
•  Keyboard_key() works as follows: you first loop through all of the columns and you set

them all to high. Initially you assume the worst (i.e. that the value you are trying to
access is not in the calculator’s keyboard). Thus, the rowPosition is set to two and the
colPosition is set to five. You then loop through all of the rows for each column. If the
row is also low, then you have to return both the value of the row and the value of the
column.

•  We then created a three-dimensional array of all of the possible input values on a
calculator and we return the element in that three-dimensional array that has a row
position and a column position equal to that of the two low values.

•  This function shown is invoked by main.c and is located inside of the keyboard.c file.

•  We tested it with a wide range of values. We saw what would happen if you kept
pushing down the button (it would keep displaying) and we saw what would happen if
you tried to hit two values (only one would be displayed). Thus, we accounted for error.

LAB 3 CODE/EXPLANATION
void keyboard_get_entry(struct entry *result)

{

 int entry=0;

 int negative = 0;

 for (;;) {

//make some loop that calls keyboard_key() to check if it is true so as to see if whether a key is being pressed. While a key
is pressed keep looping through and calling keyboard_key() until it is no longer being pressed, so once keyboard_key()
is no longer true and then take that value. Every instance of keyboard_key() should be replaced by a variable initialized
within the loop

 if (keyboard_key() >= 0 && keyboard_key() <= 9)
 {
 entry= entry * 10 + (keyboard_key() – ‘0’);

 result->number = negative ? -entry : entry;

 }

//check the cases that can be pushed

 else if (keyboard_key() == ‘~’) //if the plus minus sign is pushed, make negative true.

{

 negative = 1;

 }

LAB 3 CODE/EXPLANATION PART TWO

 else if (keyboard_key() == '\r' || keyboard_key() == '+' || keyboard_key() == '-' || keyboard_key() == '*' ||

keyboard_key() == '/') // if one of these are pressed exit and return what is in the pointer
 {

 result->operation = keyboard_key();
 return;

 }
lcd_print_int_neg(negative, entry);

}

The user is going to enter a string of numbers which create one large number by looping through some sort of
display modification where the numbers stay on the screen and allow for the addition of other numbers

When you have finished typing the number that you desire, you enter an operation. the program recognizes
this operation and it returns the function, storing the operation and the number in struct

These are passed to the main function where you can test that this works correctly by displaying the number
and the operation

LESSONS LEARNED
•  Make sure that everyone in the team knows their role in the group. If someone has extensive

experience with C, have them explain to the other group members what they have learned so
they are caught up-to-speed. Leave no group member behind. Have no group member do all of
the work.

•  The code reviews were really helpful. The feedback was very good and we learned a lot about
minimizing code and making code more readable while maintaining overall function.

•  Also learned about the balance of commenting a program thanks to feedback

THE TEAM
Ga Young Lee (gl2429)

Noah Stebbins (nes2137)

Nicholas Sun (ns2874)

Bert Ramirez (lar2195)

