
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Phillip Godzin, Joseph Thompson, Ashley Kling

December 2012

Abstract

This lab report is on our assignment of reprogramming a HP-20b calcula-
tor. The code was written in C programming language on a Mac Pro and
uploaded to the device. The operating system was wiped and only had some
lower level programming before we started working on it.

The calculator now can turn on, display digits, and implements the basic
operations of multiplication, division, subtraction, addition and negation.

The calculator uses Reverse Polish Notation for its computations, which
was also utilized on the original calculator software. Reverse Polish Notation
is slightly more e�cient for computations than our standard system. Our
calculator displays numbers justi�ed to the right.

The keyboard of the HP-20b is organized into rows and columns. When a
key is pressed, the program stores the associated operation or number. Many
of the more complex operations on the calculator were rendered useless for
our project. The calculator can hold up to 4 separate numbers in its stack.
If over�owed, it will return the max value for int. Under�ow will simply
cause nothing to be returned. Following is a more in depth look at how we
designed the software for the calculator.

1



1 Introduction

The calculator we reprogrammed is a HP-20b calculator. It is a fairly
recent product from the long line of HP business calculators, and like its
ancestors uses Reverse Polish Notation. You can �nd one of these calcula-
tors for around 30-40 dollars on Amazon.com.[1] Unfortunately, many of the
reviewers were not terribly enthusiastic about the HP-20b, in particular they
did not like the build quality of the hardware. A more in depth look at the
hardware aspect of the calculator will be in section 3.

The calculator has some of the basic features we can expect from a digital
calculator. It can add, subtract, divide, multiply, and negate. Division,
however, works the way integer division works in C. The more complicated
functions that the calculator had before it was wiped have been neglected.
A look at the software side will continue in sections 4 and 5.

Many interesting lessons can be gleaned from this project. An example
of this is the idea of coding something so you can understand and utilize
it practically later. Section 6 will have more on what we learned. We also
have to talk about our assessments at some point, so section 7 will have our
criticism of the course.

2 User Guide

The calculator as mentioned before use Reverse Polish Notation. Reverse
Polish Notation is named such because it is roughly the reverse of Polish No-
tation. Polish Notation was invented by the mathematician Jan Lukasiewicz.
[2] Polish Notation separates the operations form the operands and places
them on the left. Reverse Polish Notation does just the opposite by placing
�rst the operands, then the operations to their right. This system allows
for us to eliminate parentheses and the problem of them wrongly grouping
operations together if inputted slightly wrong. For instance, the operation
1+2*(3+4) turns to 1,2,3,4+*+ with `,' signifying the input key.

The reprogrammed calculator is capable of displaying up to 12 digit num-
bers (although a 12 digit number would be over the maximum integer) with
a stack size of 4. Here is a nice diagram of how the stack system works:[3]

2



Figure 1: Stack use in RPN

In our calculator, in order to move the pointer for the stack, the input
button must be pressed. For instance, to do the operation 3+4, the user
must do 3 input 4 +. Note that before the operations the input button does
not need to be pressed. The calculator does not support a backspace function,
so the user must be careful. Negative and positive integers are supported on
this calculator. In order to negate the input, one simply presses the +/-
button.

3 The Platform

3.1 The Processor

The calculator use an Atmel AT91SAM7L128. The chip has a 32 bit
processor and can operate a 36 MHz. It has 128KB of �ash memory. A 40
segment LCD controller is also part of the chip.[4]

The processor has three basic functions: It can add, subtract, multiply,
and divide; it can write and move memory; and it can use logic to make
decisions and act on them. [5] With these basic tools, it can perform far
more advanced calculations and commands using the assembly language.
The large amount of data that is �owing through the system are coordinated
by the peripheral data controller. There are also controllers for the LCD and
the voltage supply. [6]

3



3.2 The LCD Display

The LCD display uses crystals in a semi liquid state that reacts when a
voltage passes through them. The material when activated creates a darker
area that light cannot pass through. This is how we create numbers and
letters. This LCD uses a seven segment system to display numbers, which
means there are 7 lines in the most complicated number (8) and two in the
least (1).[LCD ]

The LCD system has some dedicated functions for its use. We use lcd-init
to turn on and clear the screen. Lcd-print7 tells the LCD to print whatever
is in the brackets. Lcd-put-char displays a character on the screen.

3.3 The Keyboard

The keyboard has to grids, one of rows and one of columns. They are
separated by a non-conductive material so the two aren't accidentally shorted
together. With these two we can understand exactly which key is being
pressed. When a button is pressed, conductive contacts from the two layers
touch and create a short, putting a uniform voltage across both.The on/o�
button is hard wired into the calculator, while the other button's functions
must be coded in.

4 Software Architecture

The goal of this project was to create several individual pieces of code that
at the end would come together to form a properly functioning basic RPN
calculator.

In the �rst lab, we design a method to display the numbers entered by
the user. We use the lcd-put-char7 method throughout our code to display
user input as it is received. In the second lab, we designed a method that
determines what key on the calculator has been pressed using the grid-like
design of the keypad.

We then stored the numbers and operations entered by the user in the
third lab in a struct. This struct was used in the fourth and �nal lab to

4



populate a stack of numbers and perform operations on the stack, eventually
displaying the proper result.

5 Software Details

Below is the code and explanation for the labs done this semester.

5.1 Lab 1- Displaying

We �rst began our code to display numbers on the screen by clearing the
screen of any preexisting values. To do so, we loop through every index on
the display and place an space character.

void clearScreen(){

int i;

for(i = 0; i < 12; i++){

lcd_put_char7(' ', i); // places a space (' ') at the index

}

}

Since calculators generally display values right-justi�ed, we decided to do
that for our calculator as well. The screen on the HP-20b can display 12
digits, so numbers are displayed from end to front beginning at the 11th
index. To do so, we display the remainder of the number when divided by
10, which will return the last digit, divide the number by 10, and repeat until
the single digit case is dealt with, at which point the number divided by 10
will be 0.

The numbers are converted into chars before being displayed by having 48
added to them (the ASCII value of the character 0). If the original number
is negative, a negative sign is placed at the next index immediately to the
left of the �rst digit in the number.

5



void display(int num)

{

clearScreen(); //gets rid of any current values on the screen

int temp = num;

const int ASCII = 48; // the ASCII value of 0 to be able to use

numbers as chars

int i = 0; // used for index

int remainder = 0; // holds a single digit

// If the number is 0, print it out and exit

if (temp == 0){

lcd_put_char7('0', 11);

return;

}

// Turns a negative number into a positive number

if (num < 0)

num = -num;

while(num!=0)

{

remainder = num % 10; // the last digit of num

lcd_put_char7(remainder + ASCII, 11-i); // places digit in

rightmost available index

num = num/10; // Divides number by 10 for the next

iteration

i++;

}

// If the original number is negative, place a minus sign at the

index immediately to the left of the first digit

if (temp < 0)

lcd_put_char7('-', 11-i);

}

6



5.2 Lab 2: Scanning the Keyboard

Since the keyboard is laid out in a convenient grid-like way, we represented
it with a 2D-array of ints. Operations are de�ned as integer constants.

#define X 99 // Nothing important is pressed

#define EQUALS 11

#define INPUT 16

#define NEGATE 19

#define RETURN 20

#define DIVIDE 15

#define MULTIPLY 14

#define SUBTRACT 13

#define PLUS 12

#define NOTHING 98

//2D matrix representing the rows and columns of the keyboard

int const key[7][6] = {

{X,X,X,X,X,X},

{X,X,X,X,X,X},

{INPUT, X, X, NEGATE, RETURN, X},

{X, 7, 8, 9, DIVIDE, X},

{X, 4, 5, 6, MULTIPLY, X},

{X, 1, 2, 3, SUBTRACT, X},

{X, 0, X, EQUALS, PLUS, X}

};

To determine what is currently being pressed, we �rst set all of the columns
to high, and then the column we want to test to low. We continue by looping
through all the rows, and if it is pressed, the button at the intersection of
the row and column is being pressed, and it is returned.

7



int keyboard_key()

{

int c = 0;

int r = 0;

for(c; c<7; c++)

{

r = 0;

keyboard_column_low(c);

for(r; r<6; r++)

{

if(!keyboard_row_read(r))

{

return key[c][r];

}

}

keyboard_column_high(c);

}

return NOTHING; // Nothing pressed

}

To test our code, a button had to be held when the program when run, and
the pressed number or number associated with the operation was displayed
on the screen. If nothing was pressed the number 98 was displayed.

8



Figure 2: Schematic of the keyboard

5.3 Lab 3: Entering and Displaying Numbers and Op-

erations

For data storage, we used a struct that holds a character for an operation
and an integer to hold the number entered by the user. Just a number can
be entered and stored (number + INPUT pressed), a number and operation
(number and operation pressed without INPUT), or just an operation (op-
eration). If just one is pressed, either the maximum value that can be stored
in ints goes into the struct, or the input operation goes into the struct. Upon
display, �MAX� will be shown on the screen rather than the actual max int
value.

Numbers are displayed onto the screen as the user enters them, but the
user is not allowed to enter a number that is greater than the max value for
int. The +/- key can be pressed as many times as the user wants, and it will
simply toggle the sign of the number.

9



void keyboard_get_entry(struct entry *result)

{

int num_pressed = 0;

int pos = 1; //1 if number is positive, -1 if neg

result->operation = ' ';

result->number = 0;

int keyPressed; //Stores the current key being pressed

while(((*result).operation == ' '))

{

keyPressed = keyboard_key();

if(keyPressed == NEGATE) //toggle sign of the number

pos *= -1;

if(keyPressed >= 0 && keyPressed < 10 && (*result).number

< INT_MAX / 10) //valid number is being entered

{

result->number = (*result).number * 10 + keyPressed;

num_pressed = 1; // a number has been pressed

}

else if (keyPressed >= INPUT && keyPressed <= DIVIDE)

//operation

{

result->operation = keyPressed;

if(num_pressed == 0) //no number has been pressed

result->number = INT_MAX;

else

result->number = (*result).number * pos;

}

if((*result).number != INT_MAX && num_pressed==1)

lcd_print_int((*result).number);

else if ((*result).number == INT_MAX){

lcd_put_char7('M',9);

lcd_put_char7('A',10);

lcd_put_char7('X',11);

}

}

}

10



5.4 Lab 4: An RPN Calculator

paragraphThe previous code we wrote to determine what has been pressed
and storing it �nally came together in this lab. To make our calculator
actually work properly, we keep storing user input into an array that emulates
what a stack does. Our calculator will handle a maximum of four operations.
Our keyboard-get-entry method allows the user to simply press a number and
input, so the array is populated by these entered numbers.

In main.c:

int stack[6];

int stack_size = 0;

while(stack_size < 6){

keyboard_get_entry(&entry);

if(entry.number != INT_MAX)

{

stack[stack_size] = entry.number;

stack_size++;

}

if(entry.operation != INPUT)

executeOp(entry.operation, stack,

stack_size);

}

Once an operation is pressed, it is executed on the two most recent numbers
in the stack and the result replaces the last number. The result of each
operation is displayed on the screen.

void executeOp(int op, int stack[], int stack_size)

{

int num1 = stack[stack_size-2];

int num2 = stack[stack_size-1];

int result = 0;

if (op == PLUS)

result = num1+num2;

else if (op == SUBTRACT)

result = num1-num2;

11



else if (op == MULTIPLY)

result = num1*num2;

else if (op == DIVIDE)

result = num1/num2;

stack_size--;

stack[stack_size] = result;

lcd_print_int(result);

}

6 Lessons Learned

Probably the most obvious outcome of this lab was that we learned about
the C programming language. It had similarities to Java but had more lower
level parts to it. Some of the syntax we thought existed in C because we
knew Java turned out to be wrong. For example, C does not have booleans,
and array declarations are slightly di�erent. Dealing with structs and point-
ers was also new. C seemed to be fairly �exible, which allowed for more
creative solutions but also could allow for us to create a really ine�cient and
ine�ective code.

Teamwork is clearly an essential part of any group project, especially this
one. In order for us to be able to get anything done, we all had to be on the
same page. We also had a di�erence in skill levels in programming, so time
had to be spent to make sure everybody understood what was happening.
We learned what group member was best at doing the task at hand and
letting them taking point in that section.

Another lesson we learned was how to work in a limited time frame. We
had to make sure we were completing the main objective �rst and to not get
caught up on minor features. There were many things we could have done
for the calculator, but the most important thing was to make sure it could
actually calculate. The time we could have spent on a backspace feature we
instead spent on making sure the input button worked correctly.

12



Working with actual hardware was also a bit of a learning experience.
Although most of the problems we had were because of coding bugs, we
also had times where it was the calculator itself that was malfunctioning.
Understanding where the problems came from allowed us to �nd a solution
quickly. In more complex hardware/software interfaces this skill would be
crucial.

7 Criticism of the Course

The course was a brief interesting look into programming an embedded
system. Overall, it was good. During the �rst lab we had to �gure out
how parts of C work through trial and error, which at the time was kind of
frustrating. Although it wasn't a huge issue, a more thorough introduction
to C could help.

The labs were clear enough for us to understand what was happening, but
were open enough for us to complete the tasks the way we wanted to. I think
the way all the labs would work together at the end would be helpful, as we
didn't always understand how what we wrote would be used later on. For
example, we didn't really know what we would do with the struct in the next
lab, which caused us to have to rewrite some of our code.

The code reviews were helpful and de�nitely helped us create a better
program. Learning how to comment e�ectively and structuring a program so
it made sense was useful and interesting. Probably the most important thing
that came from this class is the ability to create something that is intelligent
enough to be used as a foundation for later work. It was nice that we learned
more than syntax in a computer science class.

References

[1] "HP 20b Business Consultant Financial Calculator (F2219AA)."
http://www.amazon.com/HP-Consultant-Financial-Calculator-F2219AA/

dp/B001D4XAMM : Electronics. N.p., n.d. Web. 19 Dec. 2012.
[2] Smith, John, and Anthony Morris, and Wilfredo Lopez.

"What is RPN?" http://www.hpmuseum.org/rpn.htm. N.p., n.d. Web.
19 Dec. 2012.

13

http://www.amazon.com/HP-Consultant-Financial-Calculator-F2219AA/dp/B001D4XAMM
http://www.amazon.com/HP-Consultant-Financial-Calculator-F2219AA/dp/B001D4XAMM
http://www.hpmuseum.org/rpn.htm


[3] "Converting Polish and In�x." http://www.theteacher.info/

websites/ocr/WebPages/F453_Advanced/ConvertPolish/ConvertPolish.

html. N.p., n.d. Web. 19 Dec. 2012.
[4] "AT91SAM7L128." - Atmel Corporation.http://www.atmel.

com/devices/sam7l128.aspx N.p., n.d. Web. 21 Dec. 2012.
[5] Brain, Marshall. "How Microprocessors Work." Marshall,

Brian. http://computer.howstuffworks.com/microprocessor.htmN.p.,
n.d. Web. 21 Dec. 2012.

[6] "System Controller." Altera News.http://www.altera.com/
products/ip/iup/powerpc/m-eur-system-cont.html N.p., n.d. Web.
21 Dec. 2012.

[7] "How LCDs Work." Tyson, Je�. HowStu�Works. http:

//www.howstuffworks.com/lcd.htm N.p., n.d. Web. 21 Dec. 2012.

14

 http://www.theteacher.info/websites/ocr/WebPages/F453_Advanced/ConvertPolish/ConvertPolish.html
 http://www.theteacher.info/websites/ocr/WebPages/F453_Advanced/ConvertPolish/ConvertPolish.html
 http://www.theteacher.info/websites/ocr/WebPages/F453_Advanced/ConvertPolish/ConvertPolish.html
http://www.atmel.com/devices/sam7l128.aspx
http://www.atmel.com/devices/sam7l128.aspx
http://computer.howstuffworks.com/microprocessor.htm
http://www.altera.com/products/ip/iup/powerpc/m-eur-system-cont.html
http://www.altera.com/products/ip/iup/powerpc/m-eur-system-cont.html
http://www.howstuffworks.com/lcd.htm
http://www.howstuffworks.com/lcd.htm

	Introduction
	User Guide
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1- Displaying
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers and Operations
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the Course

