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Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address,
etc. E.g., the Nios II processor

Slaves: Respond to requests from masters, can
generate return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral
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Basically, “latch when I’m selected and written to.”



Naming Conventions

Used by the SOPC Builder’s New Component Wizard to
match up VHDL entity ports with Avalon bus signals.

type_interface_signal

type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the interface,
e.g., s1.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal for a
slave port called “s1.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] →
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g.,
flow-control and burst transfers.



Bytes, Bits, and Words

The Nios II and Avalon bus are little-endian:

31 is the most significant bit, 0 is the least

Bytes and halfwords are right-justified:

msb lsb
Byte 3 2 1 0
Bit 31 24 23 16 15 8 7 0

Word 31 0
Halfword 15 0
Byte 7 0



In VHDL

entity avalon_slave is
port (

avs_s1_clk : in std_logic;
avs_s1_reset_n : in std_logic;
avs_s1_read : in std_logic;
avs_s1_write : in std_logic;
avs_s1_chipselect : in std_logic;
avs_s1_address : in std_logic_vector(4 downto 0);
avs_s1_readdata : out std_logic_vector(15 downto 0);
avs_s1_writedata : in std_logic_vector(15 downto 0);

);
end avalon_slave;



Basic Async. Slave Read Transfer

Clk
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read
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Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.



Slave Read Transfer w/ 1 Wait State

Clk
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read

chipselect
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Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.



Basic Async. Slave Write Transfer

Clk
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read
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writedata

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.



Basic Async. Slave Write w/ 1 Wait State

Clk
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read
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writedata

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.



The LED Flasher Peripheral

32 16-bit word interface

First 16 halfwords are data to be displayed on the LEDS.

Halfwords 16–31 all write to a “linger” register that
controls cycling rate.

Red LEDs cycle through displaying memory contents.



Entity and Architecture Declaration
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_led_flasher is
port (

clk : in std_logic;
reset_n : in std_logic;
read : in std_logic;
write : in std_logic;
chipselect : in std_logic;
address : in unsigned(4 downto 0);
readdata : out unsigned(15 downto 0);
writedata : in unsigned(15 downto 0);
leds : out unsigned(15 downto 0)
);

end de2_led_flasher;

architecture rtl of de2_led_flasher is
type ram_type is array(15 downto 0) of unsigned(15 downto 0);
signal RAM : ram_type;
signal ram_address, display_address : unsigned(3 downto 0);
signal counter_delay : unsigned(15 downto 0);
signal counter : unsigned(31 downto 0);

begin
ram_address <= address(3 downto 0);



Architecture (2)
process (clk) begin

if rising_edge(clk) then
if reset_n = ’0’ then

readdata <= (others=>’0’); display_address <= (others=>’0’);
counter <= (others => ’0’); counter_delay <= (others=>’1’);

else
if chipselect = ’1’ then
if address(4) = ’0’ then -- read or write RAM

if read = ’1’ then
readdata <= RAM(to_integer(ram_address));

elsif write = ’1’ then
RAM(to_integer(ram_address)) <= writedata;

end if;
else

if write = ’1’ then -- Change delay
counter_delay <= writedata;

end if; end if;
else -- No access to us: update display
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then

counter <= counter_delay & x"0000";
display_address <= display_address + 1;

else
counter <= counter - 1;

end if; end if; end if; end if; end process; end rtl;


