Altera’s Avalon Communication Fabric

Stephen A. Edwards

Columbia University

Spring 2012

Altera’s Avalon Bus

Something like “PCl on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).

Intended System Architecture

Ethernet
PHY
Chip

Avalon-MM System

A
Processor Ethernet MAC Custom Logic
32-hit 32-hit 64-hit
Avalon-MM Avalon-MM Avalon-MM
Master Port Master Port Master Port

System Interconnect Fabric

32-hit 16-hit 64-hit
Avalon-MM Avalon-MM Avalon-MM
Slave Port Slave Port Slave Part

SDRAM
Controller

8-bit 16-hit RS-232
Avalon-MM Avalon-MM
Tristale Tristate
Slave Port Slave Port
Flash SRAM
Memory Memory
Chip Chip

Source: Altera

Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address,
etc. E.g., the Nios Il processor

Slaves: Respond to requests from masters, can
generate return data. E.g., a video controller

Most peripherals are slaves.
Masters speak a more complex protocol

Bus arbiter decides which master gains control

The Simplest Slave Peripheral

Avalon-MM
Interface

(Avalon-MM

Slave Port)

Basically,

Avalon-MM Peripheral

writedata[15..0]

write

Y
w)

chipselect

clk

'— CLK_EN

pio_out[15..0]

Application-
Specific
Interface

“latch when I'm selected and written to.”

Naming Conventions

Used by the SOPC Builder’s New Component Wizard to
match up VHDL entity ports with Avalon bus signals.

type _interface _signal
type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the interface,
e.g., sl.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal for a
slave port called “s1.”

Slave Signals

For a 16-bit connection that spans 32 halfwords,

clk

reset

chipselect
address[4:0]
read

write
byteenable[1:0]
writedata[15:0]
readdata[15:0] -
irq —

Slave Avalon

teTTRHTT

Avalon Slave Signals

clk Master clock

reset Reset signal to peripheral

chipselect Asserted when bus accesses peripheral
address|..] Word address (data-width specific)

read Asserted during peripheral—bus transfer
write Asserted during bus—peripheral transfer
writedatal..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdatal..] Data from peripheral to bus

irq peripheral—processor interrupt request

All are optional, as are many others for, e.qg.,
flow-control and burst transfers.

Bytes, Bits, and Words

The Nios Il and Avalon bus are little-endian:
31 is the most significant bit, 0 is the least
Bytes and halfwords are right-justified:

msb Isb
Byte 3 2 1 0
Bit 31 24 | 23 16 | 15 8|7 0

Word | 31
Halfword 15
Byte 7

O O| O

In VHDL

entity avalon_slave is

port (
avs_sl_clk : in std_logic;
avs_sl_reset_n : in std_logic;
avs_sl_read : in std_logic;
avs_sl_write : in std_logic;
avs_sl_chipselect : in std_logic;
avs_sl_address : in std_logic_vector(4 downto 0);
avs_sl_readdata : out std_logic_vector(1l5 downto 0);
avs_sl_writedata : in std_logic_vector(1l5 downto 0);
).

;
end avalon_slave;

Basic Async. Slave Read Transfer
Clk : #__
[
/
\

Address
_

read

\

chipselect

readdata

Bus cycle starts on rising clock edge.
Data latched at next rising edge.
Such a peripheral must be purely combinational.

Slave Read Transfer w/ 1 Wait State

Clk ; —_FT
Address / .
read _V _
chipselect _\‘I _
readdata

Bus cycle starts on rising clock edge.
Data latched two cycles later.
Approach used for synchronous peripherals.

Basic Async. Slave Write Transfer

Clk] T_—

Address / _

_\J \
]

chipselect \

writedata O I —

Bus cycle starts on rising clock edge.

read

Data available by next rising edge.
Peripheral may be synchronous, but must be fast.

Basic Async. Slave Write w/ 1 Wait Sta

Clk g I

te

>

Address / .
read _V _
chipselect _\" _
=

writedata _

Bus cycle starts on rising clock edge.
Peripheral latches data two cycles later.
For slower peripherals.

The LED Flasher Peripheral

32 16-bit word interface
First 16 halfwords are data to be displayed on the LEDS.

Halfwords 16-31 all write to a “linger” register that
controls cycling rate.

Red LEDs cycle through displaying memory contents.

Entity and Architecture Declaration

library ieee;

use ieee.std_logic_1164.all;
use jeee.numeric_std.all;

entity de2_led_flasher is

port (

clk : in
reset_n : in
read : in
write : in
chipselect : in
address : in
readdata : out
writedata : in
leds : out
);

end de2_led_flasher;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
unsigned(4 downto 0);
unsigned(15 downto 0);
unsigned(15 downto 0);
unsigned(15 downto 0)

architecture rtl of de2_led_flasher is
type ram_type is array(15 downto 0) of unsigned(15 downto 0);
signal RAM : ram_type;

signal ram_address,

display_address : unsigned(3 downto 0);

signal counter_delay : unsigned(1l5 downto 0);
signal counter : unsigned(31 downto 0);

begin

ram_address <= address(3 downto 0);

Architecture (2)

process (clk) begin
if rising_edge(clk) then
if reset_n = ’0’ then
readdata <= (others=>’0’); display_address <= (others=>’0’);
counter <= (others => ’0’); counter_delay <= (others=>’1’);
else
if chipselect = ’1’ then
if address(4) = ’0’ then -- read or write RAM
if read = ’1’ then
readdata <= RAM(to_integer(ram_address));

elsif write = 1’ then
RAM(to_integer(ram_address)) <= writedata;
end if;
else

if write = '1’ then -- Change delay
counter_delay <= writedata;
end if; end if;
else -- No access to us: update display
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then
counter <= counter_delay & x"0000";
display_address <= display_address + 1;
else
counter <= counter - 1;
end if; end if; end if; end if; end process; end rtl;

