
Altera’s Avalon Communication Fabric

Stephen A. Edwards

Columbia University

Spring 2012



Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address,
etc. E.g., the Nios II processor

Slaves: Respond to requests from masters, can
generate return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral

Avalon-MM

 Interface

(Avalon-MM

 Slave Port)

Application-

Specific

Interface

writedata[15..0]

write

chipselect

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”



Naming Conventions

Used by the SOPC Builder’s New Component Wizard to
match up VHDL entity ports with Avalon bus signals.

type_interface_signal

type is is typically avs for Avalon-MM Slave

interface is the user-selected name of the interface,
e.g., s1.

signal is chipselect, address, etc.

Thus, avs_s1_chipselect is the chip select signal for a
slave port called “s1.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] →
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g.,
flow-control and burst transfers.



Bytes, Bits, and Words

The Nios II and Avalon bus are little-endian:

31 is the most significant bit, 0 is the least

Bytes and halfwords are right-justified:

msb lsb
Byte 3 2 1 0
Bit 31 24 23 16 15 8 7 0

Word 31 0
Halfword 15 0
Byte 7 0



In VHDL

entity avalon_slave is
port (

avs_s1_clk : in std_logic;
avs_s1_reset_n : in std_logic;
avs_s1_read : in std_logic;
avs_s1_write : in std_logic;
avs_s1_chipselect : in std_logic;
avs_s1_address : in std_logic_vector(4 downto 0);
avs_s1_readdata : out std_logic_vector(15 downto 0);
avs_s1_writedata : in std_logic_vector(15 downto 0);

);
end avalon_slave;



Basic Async. Slave Read Transfer

Clk

Address

read

chipselect

readdata

Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.



Slave Read Transfer w/ 1 Wait State

Clk

Address

read

chipselect

readdata

Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.



Basic Async. Slave Write Transfer

Clk

Address

read

chipselect

writedata

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.



Basic Async. Slave Write w/ 1 Wait State

Clk

Address

read

chipselect

writedata

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.



The LED Flasher Peripheral

32 16-bit word interface

First 16 halfwords are data to be displayed on the LEDS.

Halfwords 16–31 all write to a “linger” register that
controls cycling rate.

Red LEDs cycle through displaying memory contents.



Entity and Architecture Declaration
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_led_flasher is
port (

clk : in std_logic;
reset_n : in std_logic;
read : in std_logic;
write : in std_logic;
chipselect : in std_logic;
address : in unsigned(4 downto 0);
readdata : out unsigned(15 downto 0);
writedata : in unsigned(15 downto 0);
leds : out unsigned(15 downto 0)
);

end de2_led_flasher;

architecture rtl of de2_led_flasher is
type ram_type is array(15 downto 0) of unsigned(15 downto 0);
signal RAM : ram_type;
signal ram_address, display_address : unsigned(3 downto 0);
signal counter_delay : unsigned(15 downto 0);
signal counter : unsigned(31 downto 0);

begin
ram_address <= address(3 downto 0);



Architecture (2)
process (clk) begin

if rising_edge(clk) then
if reset_n = ’0’ then

readdata <= (others=>’0’); display_address <= (others=>’0’);
counter <= (others => ’0’); counter_delay <= (others=>’1’);

else
if chipselect = ’1’ then
if address(4) = ’0’ then -- read or write RAM

if read = ’1’ then
readdata <= RAM(to_integer(ram_address));

elsif write = ’1’ then
RAM(to_integer(ram_address)) <= writedata;

end if;
else

if write = ’1’ then -- Change delay
counter_delay <= writedata;

end if; end if;
else -- No access to us: update display
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then

counter <= counter_delay & x"0000";
display_address <= display_address + 1;

else
counter <= counter - 1;

end if; end if; end if; end if; end process; end rtl;


