Loom Report (Draft)

Johnathan Jenkins

August 18, 2011

Abstract

LooM is a domain-specific language for general-purpose graphics processing units
(‘cparus’) designed to support millions of parallel execution threads. It is designed
to interface with code written in a ‘host’ language (typically C or C++) running on
the cru. LooM is sufficiently low-level to implement efficient parallel algorithms, but
includes facilities such as parallel map, parallel reduce and parallel scan to abstract common
patterns.

Contents

1 Introduction 1
1.1 Background 1

1.2 Overviewof LooM 1
1.2.1 Design Goals and Language Features 1

1.2.2 Representative Programs 2

2 Tutorial 4
3 Loom Reference Manual 8
3.1 Introduction 8
3.2 Source Format 8
3.3 Lexical Elements 9
331 Comments 9

33.2 ReservedWords. 9

3.3.3 Operators and Delimiters 10

3.3.4 Identifiers L 11

33.5 Constants L 11

3.3.6 Boolean Constants 11

3.3.7 Thread Parameters 11

3.4 DataTypes 11
3.4.1 Type Declarations 12

3.42 Defining New Types 12

3.5 Expressions 12
3.6 Control Structures. L 13
3.6.1 Parallel Operators 13

3.6.2 Statementsand Blocks Lo oL 14

3.6.3 Conditionals. L 14

3.6.4 Loops. 14

3.7 Functions. 14
371 Kernels. 14

3.72 DeviceFunctions 0L, 15

ii CONTENTS
4 Architecture 16
41 TopLevel 16
4.2 Preprocessor 16
4.3 Scannerand Parser o 17
4.4 Semantic Analyzer L L o 18
4.5 Code Generator 20
5 Planning, Testing and Lessons Learned 21
5.1 General Comments L 21
52 GPUDeviceTesting 21
5.3 Lessons Learned 22
6 Source Listings 23

Chapter 1

Introduction

1.1 Background

Loowm is a language for programming massively parallel co-processors used on many
modern computers. The specific devices supported are NVIDIA GPGPUSs using the cupa ar-
chitecture.

Cupa devices support tens of thousands, or even millions of simultaneous execution
threads, with hundreds of threads running in parallel at any time. The threads are or-
ganized into a hierarchy: groups of 32 threads make up warps that execute in series on
single core, and do not have to be synchronized; groups of up to 512 threads make up
blocks, which can use high-speed shared memory for inter-thread communication and
user-managed caching; the blocks collectively form a grid, and all threads in a single grid
execute the same kernel code. Although the kernel is the same for each thread in a grid,
individual threads need not follow the same execution path.

In addition to shared memory, devices have cached constant memory, registers, and
global memory. Transfer of data from the host computer’s main memory to the device
global memory space occurs in code on the host side (that is, not within kernels running
on the GrGru device). This simplifies LooM, which is solely for compiling GrGruU kernels.
In addition to memory transfer to and from the host computer, all input and output occurs
on the host side.

Most cupa device programming is done in a C-like language supplied by NvIDIA.
The target language for LooM, however, is a lower-level language called prx. Prx looks
very much like a traditional assembly language, although it runs on a device-independent
virtual machine and is jiT-compiled to a cubin binary for execution.

Extensive documentation on cupa is available from http://developer.nvidia.com.

1.2 QOverview of Loom

1.2.1 Design Goals and Language Features

LooM attempts to abstract away many of the repetitive and error-prone details involved
in writing GrGPU kernels, such as explicit array index calculations and thread barrier

2 INTRODUCTION

synchronization, while remaining at a sufficiently low level to allow interesting parallel
algorithms to be implemented (rather than merely used in a black-box library, such as the
cupA linear algebra libraries supplied by NvIDI1A).

The language is statically typed. Types are indicated following a colon after a variable
name: x: Int32. In addition to basic types such as Int32 and Float32, which correspond
directly to PTx types, there are records such as pair: {first:Int32, second:Int32}
(a pair of integers), vectors such as v: Int32[10], and two dimensional arrays such as
a: Int32[5,5]. Several special constants make it easy to work on large vectors and
arrays in parallel.

Loowm has several standard control constructs for conditionals and looping, which are
demonstrated in the sample programs below. The language also has operators designed to
simplify parallel programming. There is a parallel map operator which applies a function
of one variable to each element in a vector or array: £ // v. The parallel reduce operator,
/., applies a function of two variables (which should be associative in those variables)
repeatedly to reduce a vector or array to a single value per cupa block (subsequent kernel
calls, or code running on the host cru, can then be used to complete the reduction).
Loowm also defines left and right parallel scan operators, /: and : /. As with the reduction
operator, scans work across blocks rather than across entire vectors.

Shared memory, which functions both as a user-managed cache and a mechanism
for sharing data between threads in a single block, is allocated by declaring a variable
with the shared keyword. Cuba programs typically use explicit barrier synchronization
instructions to synchronize threads within a block; in LooMm, statements that move data
between memory state spaces and alter state are synchronized by default.

Due to limitations of at least certain cubpa architectures, functions cannot be recursive.
A newer architecture used on high-end graphics cards, called ‘Fermi’, permits recursive
functions as well as a number of other powerful features. It would be an interesting
exercise to extend LooM to take advantage of some of those features.

1.2.2 Representative Programs
Finally, we show listings of a few short programs illustrating some of LooM’s features.
> Find the maximum values in a two-dimensional array (by cupa block):

kernel maximum(in: Int32[X THREADS, Y_THREADS],
out: Int32[X_BLOCKS, Y BLOCKS])
out <- max /. in

> Shift the values in a vector to the left by exactly one block:

kernel shiftLeft (in: Float32 [THREADS], out: Float32[THREADS])

current: Range <- block (B) —-— /B’ 1is the current block index
previous: Range <- block (B-1) —— Range type {Int32, Int32}
out[[current]] <- in[[previous]]

Note that arrays indexed with double brackets are bounds-checked and padded to zero
outside the defined range. Single-brackets perform unsafe array indexing. This following
is a more explicit, but equivalent, implementation:

kernel shiftlLeftl (in: Float32 [THREADS], out: Float32[THREADS])

if B > 0 then
for i: Int32 <- B+*BLOCKSIZE .. (B+1)+BLOCKSIZE

1.2 OVERVIEW OF LooM 3

out [1i] <- in[i-BLOCKSIZE]

else
for i: Int32 <- B+BLOCKSIZE .. (B+l)+BLOCKSIZE
out [1] <= 0
The .. symbol in the for statement shows that i takes on successive values from
B+BLOCKSIZE (inclusive) to (B+1) *BLOCKSIZE (exclusive). We could have expressed
the same range of values by writing BxBLOCKSIZE ... (B+1)+BLOCKSIZE-1, where
the ... symbol shows that i goes up to (B+1) *BLOCKSIZE-1 (inclusive).

> Compute the sum of squares (by block):

func sum(x: Float32, y: Float32): Float32
return x + y

func sqgr (x: Float32): Float32
return xx*x

kernel sumOfSquares (in: Int32 [THREADS], out: Int32[BLOCKS])
local current: Range <- block (B)
shared t: Float32[BLOCKSIZE] <- in[current]
out [B] <- sum /. (sqr // t)

Chapter 2

Tutorial

This tutorials shows the steps needed to get started with Loom.
> Verify that Caml is installed:

calliope:src jjenkins$ ocaml -version

The Objective Caml toplevel,

version 3.12.0

> Verify that all required files are present:

calliope

BUGS

Makefile

README
ast.ml

compiler.
compiler.

ml
mli

:src jjenkins$ 1s

depend.mk
loom.ml

parser.mly
preprocessor.ml
preprocessor.mli
sast.ml

scanner.mll
setup.sh
test

utx.ml
utx.mli

> Complete dependencies in the Makefile using ocamldep and build the system:

calliope:src jjenkins$

./setup.

sh

rm -f loom scanner.ml parser.ml parser.mli parser.output

rm —f x.cm[i0]
BHEIE o
str.

ocamlc -c
ocamlc -c
ocamlc -c
ocamlc -c
ocamlc -c
ocamlyacc
ocamlc -c
ocamlc -c

169 states,

ocamlc
ocamlc
ocamlc
ocamlc
ocamlc
ocamlc
parser.

=c
=
=C
=
—C
-0

str.
str.
str.

cma
cma
cma
cma
cma

utx.mli
utx.ml

preprocessor.
.ml

preprocessor
ast.ml

parser.mly
parser.mli
str.cma parser.ml
ocamllex scanner.mll

SHEIE o
str.
str.

10614
BHEIE o
str.

cma
cma
cma
cma
cma

transitions,
scanner.ml
sast.ml
compiler.mli
compiler.ml
loom.ml

mli

table size 43470 bytes

loom str.cma utx.cmo preprocessor.Cmo Scanner.cmo \
cmo ast.cmo sast.cmo compiler.cmo loom.cmo

> Check command options:

calliope:src jjenkins$./loom —help
LOOM version 0.1
usage: ./loom [-pl-al-s|-c] [-in <input>.<ext>] [-out <output>.<ext>]
-p : preprocess input
-a : parse input
-s : typecheck input
-c : compile to PTX code
—in : set input filename
—-out : set output filename
-version : print version string and exit
~help Display this list of options

When itis run with -in <file>or —out <file> arguments, LooM will try to figure
out what to do based on the file extensions (. 1m for LooM source, . lmp for preprocessed
source, . lma for parsed intermediate format, . 1ms for a typechecked, semantically ana-
lyzed intermediate format, and . ptx for PTx assembly).

> Create a simple LooMfest file:

cat > test/foo.lm
kernel foo(a: Uint32, b: Uint32)
sum: Int32 <- a

for i: Int32 <- 0...9
sum <- sum + 1

b <- sum
return
°D

> Preprocess to get the alternative free-form syntax:

calliope:src Jjjenkins$./loom —-p —-in test/foo.lm
kernel foo(a: Uint32, b: Uint32) {

sum: Int32 <- a;

for i: Int32 <- 0...9 {

sum <- sum + i;

}

b <- sum;

return;

}

> Check that it parses properly:
calliope:src jjenkins$./loom -a —-in test/foo.lm

Fatal error: exception Parsing.Parse_error

An error! The problem is that LooM requires that variable declarations specify an
address space. Let’s fix this.
calliope:src jjenkins$ cat > test/foo.lm

kernel foo(a: Uint32, b: Uint32)
local sum: Int32 <- a

for i: Int32 <- 0...9
sum <- sum + i

b <= sum
return

6 TUTORIAL

calliope:src Jjjenkins$./loom -a -in test/foo.lm
local sum: Int32 <- a;

for i: Int32 <- 0 .. (1 + 9)
sum <- (sum + 1i);

}

b <- sum;

return ;

}

Loowm has parsed the input file into an (untyped) AST, and used the tree to print out
the structure in a readable form so we can confirm that the input was parsed correctly.
> Run the type-checker:

calliope:src jjenkins$./loom -s -in test/foo.lm
Fatal error: exception Failure ("
«x% Variable sum initialization has incorrect type.")

Another bug in the LooM code - this time, we forgot to convert the type of a to match
sum.

calliope:src jjenkins$ cat > test/foo.lm
kernel foo(a: Uint32, b: Uint32)
local sum: Int32 <- a::Int32

for i: Int32 <- 0...9
sum <- sum + i

b <- sum

return
"D
calliope:src jjenkins$./loom —-s —in test/foo.lm
Typechecking finished with no errors.

> Compile to PTX:

calliope:src jjenkins$./loom -c —-in test/foo.lm
.version 1.4
.target sm_10, map_f64_to_£32
.entry foo(.param .u32 a, .param .u32 b, .param .u32 grid)
{
.reg .pred $%rp<99>;
.reg .s32 %rs<99>;
.reg .s64 %rsl<99>;
.reg .u32 %ru<99>;
.reg .u64 %rul<99>;
.reg .f32 %rf<99>;
.reg .f64 %rfl<99>;
.reg .b32 %rb<99>;
.reg .ul6 %rh<99>;
.reg .u32 %threads;
.reg .u32 %blocks;
.reg .u32 %blocksize;

ld.param.u32 $threads, [grid+0];
ld.param.u32 %$blocks, [grid+4];
ld.param.u32 $blocksize, [grid+8];

{

.local .s32 sum;

// ... Omitted

bra 10;

LO:
exit;

}

Unfortunately, in this case the omitted section hides a number of sins — the back
end code generation module is not finished at the time of this writing, so the generated
PTX code contains lots of gaps.

When the back end is completed, however, it should be possible to use the prx output
with the cupa software development kit to specify GrGru device code just as one can do
with kernels written in the cupa (C-like) language and compiled to pTx with the command
nvcc —-ptx

> Compile to PTX:

calliope:cuda jjenkins$ nvcc —-version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2011 NVIDIA Corporation

Built on Wed_Mar_23_02:02:59_PDT_2011

Cuda compilation tools, release 4.0, V0.2.1221
calliope:cuda jjenkins$ nvcc -ptx foo_kernel.cu
calliope:cuda jjenkins$ nvcc -o foo foo.c foo_kernel.ptx

Chapter 3

Loom Reference Manual

3.1 Introduction

This reference manual gives a brief description of the LooM language, following the model
of Appendix A to Kernighan and Ritchie, The C Programming Language (2nd ed.). In some
cases, sections headings have been taken directly from K&R.

Because LooM is designed to closely match the target cupa architecture, in a num-
ber of cases LooM language features should be understood with reference to the relevant
NVIDIA documentation. For example, internal floating-point formats, limitations on the
number of threads in a warp, and similar information can be found in the cupa ar1 Refer-
ence Manual Version 4.0, the cuba C Programming Guide Version 4.0, and the cupa rrx:
Parallel Thread Execution 1A Version 1.4, all of which are available at http://developer.nvid-
ia.com/nvidia-gpu-computing-documentation.

3.2 Source Format

A program is read in as lines of ASCII text separated by newline characters. A program
consists of exactly one kernel definition, along with func definitions for supporting
device functions, and type declarations.

Loom programs are typically written using line breaks and indentation to indicate
block structure, rather than with explicit curly braces and semicolons as for C-syntax
languages. To facilitate parsing, however, the first stage in compiling a Loom program is
running the input source code through a preprocessor that inserts braces and semicolons
to mark blocks and statements.

The preprocessor goes through the input line by line, keeping a stack of indentation
levels in a stack, as well as the indentation of the preceding line. For simplicity, inden-
tation is indicated solely by spaces at the beginning of the line — behavior is undefined
if there are tab characters in the input. The preprocessor applies the following rules for
each line:

1. If the current line is indented further than the preceding line, assume that the pre-
ceding line introduces a block. Add a semicolon to the end of the preceding line,

3.3 LExicaL ELEMENTS 9

push the current-line indentation level onto the stack, and add a semicolon at the
end of the current line.

2. If the current line is indented the same as the preceding line, add a semicolon at the
end.

3. If the line is indented less than the preceding line, pop the stack of all levels greater
than the current indentation level. Insert closing braces for each element of the stack
popped, and continue with steps 1—3 as appropriate.

> Example: convert the following code to use explicit braces and semicolons:

func foo(a: Int32): Int32
local sum: Int32 <- 0
for i: Int32 <- 1 .. 5
iSgr: Int32 <- ixi
sum <- sum + 1i2
return sum —— sum = 1 + 2+2 + 3*3 + 4%x4 = 30

The preprocessor converts this into

func foo(a: Int32): Int32 {
local sum: Int32 <- 0O;
for i: Int32 <- 1 .. 5 {
iSgr: Int32 <- ixi;
sum <- sum + 1i2;
}

return sum;

3.3 Lexical Elements

Tokens may be comments, keywords, operators, identifiers, constants, or thread parame-
ters. There are also a few delimiter tokens that do not fall into these categories, such as
parentheses (which are used to indicate grouping within expressions and to set off func-
tion arguments) and the two- and three-dot range symbols used within for statements.

After the preprocessing stage, whitespace is generally ignored except where necessary
to separate adjacent tokens that would otherwise be lexically ambiguous.

3.3.1 Comments

Comments are indicated by two adjacent hyphen characters (‘~-’). They may begin any-
where in a line, and continue until the next newline character, which marks the end of
the line. There is no special syntax for multiline comments. Comments are treated as
whitespace.

3.3.2 Reserved Words

The following keywords, typenames, and predefined value symbols are reserved:

10 LooM REFERENCE MANUAL

break global Bool B

sync kernel Void BLOCKS
continue local Float32 BLOCKSIZE
else return Float64 T

if shared Int32 THREADS
pass then Int64

for type Uint32 FALSE
func while Uinté64 TRUE

In addition, to facilitate working with two-dimensional arrays, 2-D variations of the block
and thread symbols in the right-hand column are also used (X-B, Y.B, X_.BLOCKS and
Y_BLOCKS, etc.).

3.3.3 Operators and Delimiters

LoomM recognizes the following operators and delimiters, ranked in order of precedence
from highest (top row) to lowest (bottom row):

AN — o°
>

Individual operators and delimiters are described in the following table:

unsafe array indexing
[1] safe array indexing with zero-padding
type tag,
type conversion operator
! boolean negation

{1} statement blocks, statement termination
[]
[

x /% multiply, divide, modulo
<< >> & shift-left, shift-right, bitwise and
+ - add, subtract / unary negate

| bitwise or, xor / unary one’s complement
= l= < <= > >= relational operators

&& || logical and, or

// /. /: :/ parallel map, reduce, scanl and scanr
range delimiter in for statements

<- assignment

Most binary operators group left-to-right, although assignments and expressions with
unary operators group right-to-left, as do the parallel array operators.

3.4 Data TyPEs 11

3.3.4 Identifiers

User-defined identifiers may refer to functions, variables, types, arrays, or records. Iden-
tifiers must be accepted by the following regular expression:

identifier:: [a-zA-Z][a-zA-Z0-9_'1x

3.3.5 Constants

Loowm supports literal constant expressions for booleans and 32-bit integers and floating-
point numbers.

Floating-point literals are written with an optional decimal point, and an optional
signed exponent following [eE].

Constants may be followed by a type conversion operator to force their type to be
different from the default (e.g., 123: :Float 32 will be read in as a Float32).

Constants may be combined into constant expressions using the evaluation rules for
expressions set forth below.

3.3.6 Boolean Constants

TRUE and FALSE are predefined symbolic constants of type Bool.

3.3.7 Thread Parameters

A number of symbolic parameters are defined at the time the kernel is invoked by host
code running on the cru. These parameters allow the GrGru device thread to know about
its execution context.

B Index of the current thread block
BLOCKS Number of thread blocks in the grid
BLOCKSIZE Number of threads per block

T Index of the current thread
THREADS Number of threads in the grid

The parameters in the table correspond to grids laid out in one dimension (i.e., laid
out to easily accommodate one-dimensional data structures for inputs and outputs to and
from the GpGru). LooM also supports two-dimensional layouts, in which case analogues
to the parameters above are defined at the time of kernel invocation, prefaced by X_ and
Y_.

3.4 Data Types

Each variable in LooM has an associated identifier (its name) and a data type. The ba-
sic LooM data types generally correspond their cupa/pTx equivalents, except for Bools,
which are primarily used to control program execution. In addition to the basic types,
LooM supports (one- and two-dimensional) array and record container types, as well as
new types defined in a type statement.

12 LooM REFERENCE MANUAL

3.4.1 Type Declarations

Variables must be declared before they are used (although in the special case of for state-
ments, the declaration can occur within the statement itself). Declaration statements take
an optional initialization assignment. If no explicit initialization is present, the variable is
set to zero (in the case of numerical types) or FALSE (in the case of Bools).

local x: Int32 -- Initialized to 0
local e: Float32 <- 2.718281828
for i: Int32 <- 0 .. 10

X <— x + 1

All variable objects exist in one of three memory spaces: global memory (the main
memory on the GPGPU device), shared memory (a much smaller amount of high-speed
memory simultaneously accessible to the threads in a single cupa block) or local memory
(memory local to a single thread, often mapped to registers).

variable-decl: memory-space identifier ’:’ type initializer

memory-—space: "local’” | ’'shared’” | "global’

type: identifier | basic-type | array-type | record-type
basic-type: "Bool’ | ’'Byte’ | '"Float32’ |

array-type: type ’ [’ constant-expression ']’

record-type: "{’" identifier ’:’ type maybe-more '}’

maybe-more: rr | 7, identifier ’:’ type maybe-more
initializer: '’ | ’<-' constant-expression

3.4.2 Defining New Types

Users may define their own types to supplement the built-ins.

type-definition: ’‘type’ identifier type

3.5 Expressions

Expressions are combinations of variables, constants, function calls and operators that
have a value, and therefore a type. Instead of specifying an unambiguous formal gram-
mar for expressions (as in K&R Appendix A), ambiguities in the following grammar are
resolved with reference to the operator precedence and grouping rules provided above.

expression: identifier
<literal>
" (! expression ')’
binop-expr | unary-expr

assignment-expr
parallel-expr

\
\
\
| reference
\
\
| function-call

binop-expr: expression binop expression

binop: + 0 =0 = | /|

unary-expr: unary-op expression

unary-op: [I

reference: array-unsafe-ref | array-safe-ref | record-ref

array-unsafe-ref: identifier ’ [’ expression second-index ']’

3.6 CONTROL STRUCTURES 13

array-safe-ref: identifier ' [[’ expression second-index "]1]’
second-index: " | ’,’ expression
record-ref: identifier 7.’ identifier

assignment-expr: lhs ’<-’ expression

lhs: identifier | reference

parallel-expr: map-expr | reduce-expr | scanl-expr | scanr—-expr
map-expr: function-name // array-expr

reduce-expr: function-name /. array-expr

scanl-expr: function-name /: array-expr

scanr-expr: function-name :/ array-expr

function-name: identifier

array—expr: identifier | map-expr

function-call: identifier ’ (’ expression maybe-others ’)’
maybe-others: rr | ',’" expression maybe-others

Note that an 1hs may be the name of an (unindexed) array, in which case the correspond-
ing assignment expression is compiled into a loop over the array, where each iteration
performs a sub-assignment to one element of the array.

3.6 Control Structures

Most LooM control structures are similar to those in traditional imperative languages. The
exceptions are the parallel operators. Strictly speaking, LooM programs run inside a single
thread on a cupa device, so in a sense these operators are not parallel by themselves.
Rather, they are designed to encapsulate common patters for coordinating many threads
to do work and share data in parallel. Each thread knows certain characteristic informa-
tion about its context (such as the index numbers of its thread and block), which is used
to differentiate thread behavior. For example, each thread may operate on a different
element of an array, where the array is indexed by the thread index number.

3.6.1 Parallel Operators

Certain type restrictions apply to parallel-expr expressions. For each of the four
operators, the function on the left must accept a value having the same type as the type
contained within the array on the right, and the array’s dimension should match the
number of cupA threads in the grid (in either one or two dimensions).

The map operator, £ // v, produces an array with the same dimensions as the start-
ing array (THREADS or X_THREADS X Y_THREADS). Each element of the array gets mapped
by £ (a function of one variable) to a new value.

The reduce operator, £ /. v, produces a scalar. £ must be a function of two argu-
ments, and also be associative in those arguments. If £ is defined to add its two arguments,
for example, then £ /. 0, 1, 2, 3 would yield the scalar value 6.

The two scan operators, /: and :/, produce arrays with dimensions BLOCKS or
X_BLOCKS X Y_THREADS (in the case of two-dimensional arrays, the reduce and scan
operators work over the first array index). If f is defined to add its two arguments, as
above, then £ /: 0, 1, 2, 3 would yield the array value 0, 1, 3, 6,and £ :/
0, 1, 2, 3 would yield the array value 6, 6, 5, 3.

If there are n parallel threads, // operates in one step, whereas /., / :, and :/ operate
in log n steps.

14 LooM REFERENCE MANUAL

The foregoing operators do implicit barrier synchronization among threads in a block.
However, lower-level parallel code may need to do explicit synchronization. For this, use
the sync statement.

3.6.2 Statements and Blocks

statement: expression ;'

block

if-stmt | for-stmt | while-stmt
"break’ ;'

"continue’ ’;’

"return’ return-val ’;’

’'sync’
block: "{’ statement other-stmts '}’
other—-stmts: "’ | other-stmts
return-val: "’ | expression

Blocks are significant not only for grouping statements within control structures, but
also because local variables have block scope.

The loop control statements break and continue act in the usual way on the inner-
most surrounding loop.

3.6.3 Conditionals

if-stmt: "if’ expression ’‘then’ block maybe-else
maybe-else: '’ | ’'else’ block

Loowm follows the C convention for resolving else ambiguity: the else connects with
the last-encountered else-less if.

3.6.4 Loops

while-stmt: ’‘while’ expression block

for-stmt: "for’ loop-var ’'<-’ expression dots expression block
loop-var: identifier maybe-type

maybe-type: '’ | ’':’ type

If a loop variable is declared within the for statement, its scope is the surrounding block
rather than the block in the body of the statement.

3.7 Functions
Loom has two kinds of functions: kernel functions (of which there is exactly one per pro-
gram, and which is called from code running on the host cpu) and device functions (which

can be called by the kernel function or by other device functions). Due to limitations of
the cupa architecture, recursion is not permitted.

3.7.1 Kernels

kernel-func: "kernel’ identifier ’ (’ parameters ')’ block
parameters: parm maybe-parms
parm: identifier ’':’ type

maybe-parms: '’ | ’,’ maybe-parms

3.7 FuNcCTIONS 15

The kernel function is the only function that does not have a return type — it can affect
the world only by altering the global variables passed in as arguments.

The block in the body of the kernel function must contain at least one return state-
ment.

3.7.2 Device Functions

device-func: ' func’ identifier ’ ('’ parameters ')’ ’:’ type block

Device function definitions are similar to kernel functions, except that they have a
return type and are introduced by a different keyword.

Arguments are generally passed by value except for arrays and records, which are
passed by reference. In a function-call statement such as £ (1+1,2+2,a), expressions
in the argument list are evaluated from left to right before the function call. Within the
function body, arguments exist in the register memory space (for arrays and records, the
corresponding pointers are stored in register memory space).

In fact, unlike a traditional assembly language, PTx includes support for passing vari-
ables in a C-like syntax, and LooM function calls compile to this form in a straightforward
way. Accordingly, further details about functions can be found in the pTxdocumentation
supplied by NvIDIA.

Chapter 4

Architecture

The LooMm program is implemented in Caml, and divided into several modules that op-
erate in a pipeline to translate input source code through various intermediate stages,
and finally into PTx assembly. In addition to the modules described below, there is also a
module of utility functions (see utx.ml1i), primarily for file input and output.

4.1 Top Level

The top level of the system, defined in 1oom.m1, contains a command line argument pro-
cessor using the Caml Arg package, and uses pattern matching on the following variant
types to provide a flexible interface to the various translation stages.

type filetype = Source | Pre | Parsed | Checked | Ptx

The top level also contains code to infer filetypes based on extension, and to print error
messages for unsupported translations (e.g., there are currently no serializer or reader
implemented for the typechecked ADT, so it is not possible to start from that intermediate
format). These features proved useful for testing and debugging the compiler front end.

4.2 Preprocessor

The preprocessor has a very simple interface, consisting of a function of the following
type:
val embrace : string list -> string
This function adds curly brackets and semicolons to Loom code based on indenta-
tion level only, and does not need to know anything about the Loom language. Indeed,

the same module could be used to add C-like block structure to a completely different
indentation-structure language.

16

4.3 SCANNER AND PARSER 17

4.3 Scanner and Parser

Loom uses ocamllex and ocamlyacc to tokenize the input and do a syntax-directed
translation into an abstract syntax tree (AST), respectively. The types implementing the
AST, contained in the Ast module, are as follows.

type memspace = Local | Shared | Global

type binop =
Mult | Div | Plus | Minus | Mod
| Lshift | Rshift | BitOr | BitAnd | BitXor
| Equal | NotEg | LessEg | Less | GreaterEg | Greater
| Map | Reduce | Scanl | Scanr | Or | And
type unop =

Not | Negative | BitComplement

type loom_type =
Bool | Void | Int32 | Int64 | Uint32 | Uint64 | Float32 | Float64
| Array of loom_type * expr
| Record of (string » loom_type) list

| Type of string (* to be associated with a loom type later x)
and expr =
IntLiteral of int

FloatLiteral of float
BoolLiteral of bool

\

\

| Convert of expr » loom_type

| Place of place

| Binop of expr x binop % expr
| Unop of unop * expr

| Call of string » expr list
| NullExpr

and place =

Aref of string * expr
| Saref of string *x expr
| Rref of string % string
| Id of string
type stmt =

Block of stmt list

Vdecl of memspace x* string * loom_type * expr option
Tdecl of string * loom_type

Expr of expr

Return of expr

Assign of place x expr

If of expr x stmt list x stmt list

For of string * loom_type * expr * expr * stmt list
While of expr % stmt list

Break

Continue

Sync

NullStmt

18 ARCHITECTURE

formals : (string % loom_ type) list;
ret_type : loom_type;
body : stmt list;

type kernel = {

kname : string;
kformals : (string * loom_type) list;
kbody : stmt list;

type program = kernel option x func list

For debugging purposes, the Ast module contains a serializer to produce string out-
put from the AST.

4.4 Semantic Analyzer

The AST corresponds to correct syntax, but contains little type or other semantic infor-
mation. The semantic analyzer (Sast) walks the AST recursively to verify that types are
consistent and that variables and other identifiers are properly in scope, and produces a
semantically-checked AST (SAST) that is significantly closer to a form that can be used
to generate code. For example, since each operator-expression node of the SAST has a
type stored in the node, the back end translator knows that it has to issue an instruction
putting the result of the operator into a register of that particular type (the pTx assem-
bly language, which is actually a machine-independent language for a low-level VM, has
typed virtual registers and instructions).
The SAST is implemented with the following types.

type memspace = Local | Shared | Global | Param

type binop =
Mult | Div | Plus | Minus | Mod
| Lshift | Rshift | BitOr | BitAnd | BitXor
| Equal | NotEg | LessEgq | Less | GreaterEqg | Greater
| Map | Reduce | Scanl | Scanr | And | Or
type unop =

Not | Negative | BitComplement

type loom_type =
Bool | Void | Int32 | Int64 | Uint32 | Uinté4 | Float32 | Floaté64
| Array of loom type x expr
Record of (string * loom_type) list
| Function of (loom_type list) x loom_type

and expr =
IntLiteral of int
FloatLiteral of float
BoolLiteral of bool

Convert of expr_t * loom_type
Binop of expr_t * binop x expr_t

|
|
|
| Place of place
[
I

Unop of unop * expr_t

4.4 SEMANTIC ANALYZER

19

and
and

and
and
and
and

type stmt =

Call
NullExpr

place =
Aref
Saref
Rref

Id

expr_t =
place_t

tdecl =
vdecl =
fdecl =
decl =

Block
Vdecl
Tdecl
Expr
Return
Assign
If

For
While
Break
Continue
Sync
NullStmt

type func =
fname

formals
ret_type
body

type kernel
kname

kformals
kbody

type program

expr x loom_type
place * loom_type

of

of
of
of
of

fdecl

vdecl
vdecl
vdecl
decl

expr_t list

expr_t
expr_t
string

string * loom_type

string % loom_type
string

Var

of
of
of
of
of
of
of
of
of

{

Func
Const of

stmt 1

of

(loom_type list)
vdecl
of fdecl
vdecl

ist

* loom_type

memspace x vdecl * expr_t option

tdecl
expr_t
expr_t

place_t x expr_t

expr_t * stmt list % stmt list
vdecl * expr_t x expr_t * stmt

expr_t x stmt list

string;

vdecl list;

string;
vdecl list;
stmt list;

loom_type;
stmt list;

kernel * func list

list

A noteworthy aspect of the SAST is that it carries a great deal of additional type
information in the expr_t subtypes scattered throughout.

20 ARCHITECTURE

4.5 Code Generator

The code generator (compiler.mli and compiler.ml) is currently incomplete, as de-
scribed in the ‘BUGS’ file in the source directory. The essential idea, however, is to walk the
SAST and convert it into a final low-level intermediate form that can be trivially printed
out to text. The intermediate form consists of a list of directives, declarations and instruc-
tions that are assembled with reference to an environment structure that accompanies the
traversal of the SAST. The intermediate form has the following interface:

type ptx_t = Pred | Void | S32 | S64 | U32 | U64
| F32 | F64 | B32 | B64 | Ule

type memspace = Local | Shared | Global | Param | Reg

type ptx_line

Direct of string
| Entry of string * (ptx_t * string) list
| Func of ptx_t * string x (ptx_t * string) list
| Decl of memspace x* ptx_t * string
| Label of string
| Branch of string option * string
| Op2 of string * ptx_t x string * string
| Op3 of string x ptx_t % string x string *x string
| Convert of ptx_t * ptx_t x string * string
| Load of memspace % ptx_t * string % string x int
| Store of memspace * ptx_t * string % int x string

type ptx = ptx_line list

Chapter 5

Planning, Testing and Lessons
Learned

5.1 General Comments

As a general matter plan, I implemented the ocamllex language and ocamlyacc lan-
guage first to test the parsability of the syntax, sketched out the intermediate form data
structures, implemented a simple top-level interface to facilitate testing, and then pro-
ceeded through the compilation modules more or less in order.

With more time I would have set up one of the standard Caml unit-testing frameworks,
but given the limited time available, I'm not sure the overhead of extensive unit testing
would have been justified. Instead, I had to rely on the Caml typechecker and incremental
testing with small examples, including extensive use of the Caml REPL.

It had originally been my plan to implement a minimal, stripped-down language first
and then built features gradually, and that is indeed how I am developing the back end.

A lot could be said about the advantages of schedules, milestones, and deadlines for
projects, but the reality is that they tend not to be compatible with having an unrelated
job.

5.2 GPU Device Testing

The back end is one area where more formal testing will be essential. Testing GrGrU ker-
nels is typically done by implementing routines in (single-threaded) C on the cru, using
these routines to compute ‘gold standard” data output, and then comparing the results to
results computed on the GrGrU device. Doing so allows for a greater range of testing pos-
sibilities (including testing processing of large or randomly-generated arrays), but does
depend on the correctness of the serial version.

21

22

PLANNING, TESTING AND LESSONS LEARNED

5-3

1.

Lessons Learned

Caml works well as a compiler implementation language, although the syntax seems
off in some respects. For example, nested pattern matching is awkward.

The Loom language seemed simple enough when I designed it, so I was surprised at
the steady pace at which complications and special cases came up. I would definitely
have chosen an even simpler language if I were to start over — the bare minimum
to make the point, with fewer types, operators and control structures. 1 would
certainly not have included record types, for example, which add significantly to
the complexity of the code but do not really get at the core ideas of parallelism.

I'm not convinced that a language like LooM is the best solution to the problem of
simplifying parallel programming for the cpGru. Even with a higher-level language
for the kernel, there is still a great deal of complexity remaining in C code on the
cru. The best approach would be a single language for solving computational prob-
lems with separate back end translators for the cru and GpGru, in which the two
parts would work together transparently. For example, a reduce operation might be
executed on the GPGPU to reduce an array by a factor of 512 (the maximum size of a
cooperative thread unit), with subsequent reduction handled by the cru (and with
no need to write two pieces of code in two different languages to do essentially the
same thing).

Chapter 6

Source Listings

BUGS

* Preprocessor doesn’t signal error in the case of inconsistent indentation --
in particular, if a statement is indented less than the previous statement
(but not all the way back to the last proper indentation level), the
enclosing block is not terminated and no error is signaled.

* Parser and typechecker / semantic analyzer work, but
— currently support only one-dimensional arrays and
- do not recognize array indexing by array range types.

* Literals are of Ocaml type int (signed 31-bit) and float (32-bit). This
means that if a large constant is read into a LOOM Int64, for example,
it may overflow. Floating-point literals cannot be in exponent format.

* Compiler back-end only partially implemented. Still needs a fair amount
of work to create a minimal working subset of the LOOM language. Some
fragments implemented, and most datatypes and utility functions in place.

* Testing framework not complete (needs at least a minimal subset of
the working compiler back-end for full LOOM -> PTX -> executable testing).

* Command-line interface supports input in LOOM or preprocessed code, and
output in preprocessed code, pretty-printed AST, and (incomplete) PTX.
Some other potentially useful combinations involving intermediate forms
are not implemented. E.g., the program cannot currently read in the
AST or typed AST directly, or write out the typed AST except by passing
to the compiler back-end.

README

If the usual OCaml binaries are installed and visible in the path, it should
be possible to compile LOOM by typing ’./setup.sh’ in this directory.

Once that’s done, type ’./loom -help’ for options.

23

24 SOURCE L1sTINGS

setup.sh

#!/bin/sh

make clean

ocamldep *.mli *.ml > depend.mk
make

Makefile

OBJS = utx.Cmo preprocessor.Cmo Scanner.cmo parser.cmo \
ast.cmo sast.cmo compiler.cmo loom.cmo

EXTRAS = str.cma

loom: $ (OBJS)

ocamlc -o loom $(EXTRAS) $(OBJS)

scanner.ml: scanner.mll parser.cmo
ocamllex scanner.mll

parser.ml: parser.mly ast.cmo
ocamlyacc parser.mly
ocamlc -c parser.mli
%.cmo: $.ml
ocamlc —-c $(EXTRAS) S$<
%.cmi: $.mli
ocamlc -c $ (EXTRAS) $<
clean:
rm -f loom scanner.ml parser.ml parser.mli parser.output
rm —-f x.cm[io]
Need to run ’ocamldep +.mli +.ml > depend.mk’

include depend.mk

loom.ml

(% loom.ml —-- top-level command-line interface +)

let version "LOOM, version_0.1"

type filetype Source | Pre | Parsed | Checked | Ptx

(+x+ Attempt to determine a file’s type based on its extension *)

let infer filetype filename

let parts = Str.split (Str.regexp "[.]") filename in
let extension = if List.length parts > 1 then
List.hd (List.rev parts)
else failwith "No_file extension_--_can’t_determine_type."
in

match extension with
"Im" -> Source

25

| "lmp" -> Pre

| "lma" -> Parsed

| "lms" -> Checked

| "ptx" -> Ptx

| -> failwith ("Unknown_extension:" ~ extension)

(#+ Print string corresponding to file type #)

let string_of_ filetype = function

Source -> "LOOM, ,source_code"

Pre —> "preprocessed_LOOM_code"

Parsed -> "parsed_LOOM_code"

Checked -> "semantically, analyzed, typechecked LOOM_code"
Ptx -> "PTX_code"

(» Parse arguments x)

let usage = version ~ "\nusage: " "~ Sys.argv. (0)
S " ol-polo—all sl el [-in_<input>.<ext>] [-out <output>.<ext>]"

(* Default values *)

let in_fname = ref "" (* stdin *)
let out_fname = ref "" (+» stdout x)
let in_filetype ref Source

let out_filetype = ref Ptx

let arguments = [

("-p" Arg.Unit (fun () -> out_filetype := Pre), ":_preprocess_input")
;o ("-am, Arg.Unit (fun () -> out_filetype := Parsed), ": parse input")
; ("-s", Arg.Unit (fun () -> out_filetype := Checked), ": typecheck_input")
g (T=e", Arg.Unit (fun () -> out_filetype := Ptx), ":_compile _to PTX_ code")
; ("-in", Arg.String (fun s -> in_fname := s), ":_set_input filename")
; ("-out", Arg.String (fun s -> out_fname := s), ": _set_output_filename")
("

-version",
Arg.Unit (fun () -> print_endline version; exit 0),
": _print_version_string_and_exit")

(* main %)

let _ =

let onerr = fun arg —> raise (Arg.Bad ("Unknown_argument: " ~ arg)) in
Arg.parse arguments onerr usage;

if !in_fname <> "" then in_filetype := infer_ filetype !in_fname;
if !out_fname <> "" then out_filetype := infer_ filetype !out_fname;

(+ take appropriate action depending on the input and output filetypes given x)
match (!in_filetype, !out_filetype) with
Source, Pre -> let lines = Utx.read_lines !in_fname in
Utx.write_string !out_fname (Preprocessor.embrace lines)

| Source, Parsed -> 1let lines = Utx.read_lines !in_fname in
let pre = Preprocessor.embrace lines in
let lexbuf = Lexing.from string pre in
let parsed = Parser.program Scanner.token lexbuf in

Utx.write_string !out_fname (Ast.to_string parsed)

26 SOURCE LISTINGS

| Source, Checked -> 1let lines = Utx.read_lines !in_fname in
let pre = Preprocessor.embrace lines in
let lexbuf = Lexing.from_string pre in
let parsed = Parser.program Scanner.token lexbuf in

let checked = Sast.analyze parsed in
Utx.write_string !out_fname (Sast.to_string checked)

| Source, Ptx -> let lines = Utx.read_lines !in_fname in
let pre = Preprocessor.embrace lines in
let lexbuf = Lexing.from_string pre in
let parsed = Parser.program Scanner.token lexbuf in
let checked = Sast.analyze parsed in
let ptx = Compiler.translate checked in

Utx.write_string l!out_fname (Compiler.to_string ptx)

| Pre, Parsed -> let pre = Utx.read_string !in_fname in
let lexbuf = Lexing.from_string pre in
let parsed = Parser.program Scanner.token lexbuf in

Utx.write_string !out_fname (Ast.to_string parsed)

| Pre, Checked -> let pre = Utx.read_string !in_fname in
let lexbuf = Lexing.from string pre in
let parsed = Parser.program Scanner.token lexbuf in

let checked = Sast.analyze parsed in
Utx.write_string !out_fname (Sast.to_string checked)

| Pre, Ptx -> let pre = Utx.read_string !in_fname in
let lexbuf = Lexing.from string pre in
let parsed = Parser.program Scanner.token lexbuf in
let checked = Sast.analyze parsed in
let ptx = Compiler.translate checked in

Utx.write_string !out_fname (Compiler.to_string ptx)
-> failwith ("*x%_Don’t_know_how_to_translate_ "

string_of_ filetype !in_filetype ~ "into"
string_of_filetype !out_filetype ~ ".\n")

utx.mli

(+#* Module Utx
Utility functions used throughout LOOM compiler %)

(#+ Return a list of strings corresponding to lines read in from an input
channel. Example: to read from stdin, use ’read_lines stdin’. #*)

val read_lines_from_channel : in_channel -> string list

(#* Write a list of strings to output channel. x)
val write_lines_to_channel : out_channel -> string list -> unit

(#* Return a list of strings corresponding to lines read in from an input

file. Examples: to read from stdin, use ’‘read_lines ""’/. To read from
a file called "foo.txt", use ’‘read _lines "foo.txt"’. %)
val read_lines : string -> string list

(#+ Given a filename, read in a string. If argument is "", use stdin. %)
val read_string : string -> string

27

o
7

(#+ Given a filename, write a list of strings to the file. If argument is
use stdout. x)

val write_lines : string -> string list -> unit
(#+ Given a filename, write string to the file. If argument is "", use stdout. %)
val write_string : string -> string -> unit

(#+ split3: analog of List.split for lists of triples x)
val split3 ¢ (Ya = 'b =+ ’'c) list -> ’"a list % ’'b list * 'c list

utx.ml

let read_lines_from channel chan =
let rec read_lines’ lines =
try
let line = input_line chan in
read_lines’ (line :: lines)
with
End_of_file -> List.rev lines
in
read_lines’ []

let write_lines_to_channel chan lines =
List.iter (function line -> output_string chan (line ~ "\n")) lines

let read_lines filename =

if filename = "" then
read_lines_from_channel stdin
else
let inchan = open_in filename in
let lines = read_lines_from_channel inchan in
close_in inchan;
lines

let read_string filename =
let lines = read_lines filename in
String.concat "\n" lines

let write_lines filename lines =

if filename = "" then
write_lines_to_channel stdout lines
else

let outchan = open_out filename in
write_lines_to_channel outchan lines;
close_out outchan

let write_string filename str =
if filename = "" then
output_string stdout str
else

28 SOURCE LISTINGS

let outchan = open_out filename in
output_string outchan str;
close_out outchan

let split3 list_of_ triples =

let £ = (fun (x,y,z) (xXs,ys,zs) —-> (x::xs, y::ys, z::zs)) in
List.fold_right f list_of triples ([1,1[1,1[1])
preprocessor.mli

(+#+ Module Preprocessor x)

(+#+ Add braces and semicolons to a list of strings holding LOOM lines of code. x*)
val embrace : string list —-> string

preprocessor.ml

(#+ preprocessor.ml
Convert a source file from pseudocode style, where block structure 1is
indicated by indentation level, to braces-and-semicolon style suitable
for input to the compiler front-end. Also strip out comments and blank lines.
NB - inserts a (harmless) empty statement on the last line. #)

(*+ Count the number of spaces before the first non-space character in str.
(NB - Caml doesn’t seem to encourage functional-style string manipulation,
so fall back on refs and while—-loops.) *)

let leading_spaces str =

let count = ref 0 in
while str.[!count] =’ ’ do
count := !count + 1
done;
!count; ;

(x#+ Strip off trailing spaces from str. %)
let right_strip str =
let i = ref (String.length str) in
while !i > 0 && str.[!1 - 1] ="' ' do
i:=11-1
done;
String.sub str 0 !i

(#+ Given a list of indentation levels (typically just been popped from the
indentation stack), terminate the preceding statement with a semicolon
and close out open blocks at each level specified. x)
let close_braces indents =
let braces =
List.fold_left (fun str n -> str ~ "\n" ~ String.make n ’ ’ ~ "}") "" indents in
";" ° braces "~ "\n";;

(x+ Given a state object representing prior lines, add braces and semicolons
to the next line. #)
let embrace_line (stack, acc) line =
let line’ = (# line’ is line sans comments x)

29

match Str.bounded_split (Str.regexp "--") line 2 with
str :: _ —> right_strip str
[-> "
in
if line’ = "" then
(stack, acc) (* ignore blank lines - pass through input state =)
else
let indent = leading_spaces line’ in
match stack with
[-> ([0], line’ :: acc)
| (s :: _) when indent = s -> (stack, (";\n" ~ line’) :: acc)
| (s :: _) when indent > s -> (indent :: stack, ("_{\n" ~ line’) :: acc)
| (s :: rest) ->
let (to_pop, reduced) = List.partition (fun x -> x >= indent) rest in
let closes = close_braces to_pop in
(indent :: reduced, (closes ~ line’) :: acc);;
let embrace lines =
let lines’ = lines @ ["X\n"] in (* HACK: add a placeholder at the end #)
let (_, backward_result) = List.fold_left embrace_line ([], []) lines’ in
let s = String.concat "" (List.rev backward_result) in
String.sub s 0 ((String.length s) - 2) (+ HACK: delete the placeholder #)
scanner.mll
{ open Parser }
let letter = [’'a’-"z’" 'A'-'Z7Z']
let digit = ['0"-"9"]
let idchar = [’a’-"z’" 'A’'-'Z’ ’'0’'-"'9" 7 " "\'"]
rule token = parse
[7 7 7%&” 7\m”] { token lexbuf } (» whitespace x)
["——" [" '\n’]x "\n’ { token lexbuf } (* comment =)
| { LPAREN }
|)’ { RPAREN }
| """ { LDOUBLE }
| "1]" { RDOUBLE }
| [{ LSQUARE }
[{ RSQUARE }
| {’ { LCURLY }
[{ RCURLY }
(A { SEMI }
| Tg=0 { ASSIGN }
| <" { LSHIFT }
| "S> { RSHIFT }
[{ STAR }
|/ { SLASH }
| 7%’ { MOD }
| T+ { PLUS }
| 7= { MINUS }
[{ VBAR }
| ror { CARET }
| ! { TILDE }
| r&’ { AMP }
| v=r { EQ }
I {

NE }

30 SOURCE LISTINGS

[r<=" { LE }

[">=" { GT }

| o< { LT }

[> { GT }

[{ COLON }

| 7,7 { coMMA }

[{ CONVERT }

[{ DOT }

| " " { TWODOTS '}

[{ THREEDOTS }

"/ { MAP }

(A { REDUCE }

["/ { SCANL }

| Wg /W { SCANR }

| "and" { AND }

| "break" { BREAK }

| "continue" { CONTINUE }

| "else" { ELSE }

| "if" { IF }

| "for" { FOR }

| "func" { FUNC }

| "global™" { GLOBAL }

| "kernel" { KERNEL }

| "local" { LOCAL }

| "not" { NOT }

| "or" { OR }

| "pass" { PASS }

| "return" { RETURN }

| "shared" { SHARED }

| "sync" { SYNC }

| "then" { THEN }

| "type" { TYPE }

| "while" { WHILE }

(» Basic types and constant literals x)

| "Bool" { BOOL }

| "Void" { VOID }

| "Int32" { INT32 }

| "Inted4" { INT64 }

| "Uint32" { UINT32 }

| "Uint64" { UINT64 }

| "Float32" { FLOAT32 }

| "Float64" { FLOAT64 }

| "TRUE" { TRUE }

| "FALSE" { FALSE }

| eof { EOF }

| digit+ as inum { INTLITERAL (int_of_string inum) } (% pos. integers =)

| digit+ 7.’ digit+ as fnum { FLOATLITERAL (float_of_string fnum) }

| letter idchar* as id { ID(id) }

| _ as bogus { raise (Failure ("Bad token: " ° Char.escaped bogus)) }
parser.mly

%{ open Ast %}

%token LPAREN RPAREN LDOUBLE RDOUBLE LSQUARE RSQUARE LCURLY RCURLY
%token SEMI COMMA DOT TWODOTS THREEDOTS COLON TYPE
%token ASSIGN MAP REDUCE SCANL SCANR

%token OR AND EQ NE LE GE LT GT

%token PLUS MINUS VBAR CARET

%token STAR SLASH MOD LSHIFT RSHIFT AMP TILDE NOT CONVERT
%$token ASSIGN LSHIFT RSHIFT STAR SLASH MOD PLUS MINUS VBAR CARET
%token FOR WHILE BREAK CONTINUE IF THEN ELSE PASS

%token FUNC KERNEL RETURN GLOBAL LOCAL SHARED SYNC

%$token BOOL VOID INT32 INT64 UINT32 UINT64 FLOAT32 FLOAT64
%token TRUE FALSE EOF

$token <int> INTLITERAL

%token <float> FLOATLITERAL

%token <string> ID

%$nonassoc NOELSE

%$nonassoc ELSE

%$nonassoc UMINUS

%$right ASSIGN

$right MAP REDUCE SCANL SCANR
%$left OR

$left AND

%left EQ NE LE GE LT GT

%$left PLUS MINUS VBAR CARET
%left STAR SLASH MOD LSHIFT RSHIFT AMP
%$nonassoc TILDE NOT

%left CONVERT

%$start program
%$type <Ast.program> program

ol
o

program:
/* empty program x/ { None, [] }
| program kernel { Some ($2), snd $1 }
| program func { fst $1, ($2 :: snd $1) }

kernel: KERNEL ID LPAREN args_opt RPAREN block

{ { kname = $2;
kformals = $4;
kbody = $6 } }

func: FUNC ID LPAREN args_opt RPAREN COLON ltype block

{ { fname = $2;
formals = &4g
ret_type = $7;
body =358 } }

args_opt:

/* nothing =*/ {01 1}

| args_list { List.rev $1 }

args_list:
ID COLON ltype { (81, $3)1 }
| args_list COMMA ID COLON ltype { ($3, $5) :: $1 }

block: LCURLY stmt_list RCURLY { List.rev $2 }

stmt_list:

32 SOURCE LISTINGS
/* nothing =*/ [1 1}
| stmt_list stmt $2 $1 1}
stmt
block { Block ($1) }
expr SEMI { Expr ($1) }
memspace ID COLON ltype ASSIGN expr SEMI { Vdecl ($1, $2, $4, Some ($6)) }
memspace ID COLON ltype SEMI { Vvdecl ($1, $2, $4, None) }
TYPE ID ltype SEMI { Tdecl($2, $3) }
place ASSIGN expr SEMI { Assign($1, $3) }
IF expr THEN block { If($2, s$4, [1) }
IF expr THEN block ELSE block { If($2, s$4, $6) }
FOR ID COLON ltype ASSIGN expr TWODOTS expr block
{ For($2, $4, $6, $8, $9) }
FOR ID COLON ltype ASSIGN expr THREEDOTS expr block
{ For($2, $4, $6, Binop(IntLiteral(l),Plus,$8), $9) }
WHILE expr block { While ($2, $3) }
BREAK SEMI Break }

CONTINUE SEMI
RETURN expr SEMI
RETURN SEMI

Continue }
Return ($2) }
Return (NullExpr) }

PN U0 A

SYNC SEMI Sync }
PASS SEMI NullStmt }
ID LSQUARE expr RSQUARE { Aref ($1, $3) }

ID LDOUBLE expr RDOUBLE { Saref ($1, $3) }

ID DOT ID { Rref ($1, $3) }

1D { Id(s$1) }

INTLITERAL { IntLiteral ($1) }
FLOATLITERAL { FloatLiteral ($1) }

TRUE { BoolLiteral (true) }
FALSE { BoolLiteral (false) }
LPAREN expr RPAREN { $2 1}

place { Place($1) }

expr CONVERT ltype { Convert ($1, $3) }

expr STAR expr { Binop ($1 Mult, $3) 1}
expr SLASH expr { Binop ($ Div, $3) }
expr PLUS expr { Binop($1 Plus, $3) }
expr MINUS expr { Binop($1, Minus, $3) }
expr MOD expr { Binop($1, Mod, $3) }
expr LSHIFT expr { Binop($1 Lshift, $3) }
expr RSHIFT expr { Binop ($ Rshift, $3) }
expr VBAR expr { Binop($1 BitOr, $3) 1}
expr AMP expr { Binop($1, BitAnd, $3) }
expr CARET expr { Binop($1l, BitXor, $3) }
expr EQ expr { Binop($1 Equal, $3) }
expr NE expr { Binop ($ NotEg, $3) }
expr LE expr { Binop($1 LessEq, $3) }
expr LT expr { Binop($1l, Less, $3) }
expr GE expr { Binop($1l, GreaterEq, $3) }
expr GT expr { Binop($l Greater, $3) }
expr MAP expr { Binop ($ Map, $3) }
expr REDUCE expr { Binop($1 Reduce, $3) }
expr SCANR expr { Binop($1, Scanr, $3) }

33

| expr SCANL expr { Binop($1, Scanl, $3) }
| NOT expr { Unop (Not, $2) }
| MINUS expr S%$prec UMINUS { Unop (Negative, $2) }
| TILDE expr { Unop (BitComplement, $2) }
| ID LPAREN actuals_opt RPAREN { Call($1l, $3) }
actuals_opt:
/* nothing =*/ {01 1}
| actuals_list { List.rev $1 }
actuals_list:
expr { [$1] 1}
| actuals_list COMMA expr { $3 :: $1 }
memspace :
LOCAL { Local }
| GLOBAL { Global }
| SHARED { Shared }
ltype:
BOOL { Bool }
| VOID { void }
| INT32 { Int32 }
| INT64 { Inte64d }
| UINT32 { Uint32 }
| UINT64 { Uinte64 }
| FLOAT32 { Float32 }
| FLOAT64 { Float64 }
| ltype LSQUARE expr RSQUARE { Array($1, $3) }
| LCURLY fields_opt RCURLY { Record($2) }
| ID { Type($1) }
fields_opt:
/* nothing %/ { [1 1}
| fields_list { List.rev $1 }

fields_list:
ID COLON 1
| fields_lis

ast.ml

(+#+ Module Ast
type memspace

type binop =
Mult |

| Lshift |

| Equal |

| Map |

type unop =
Not | Nega

type loom_type
Bool | Voi

type { [(s1, $3)1 }
t COMMA ID COLON ltype { ($3, $5) :: $1 }

*)

= Local | Shared | Global

Div | Plus | Minus | Mod

Rshift | BitOr | BitAnd | BitXor

NotEqg | LessEgq | Less | GreaterEg | Greater
Reduce | Scanl | Scanr | Or | And

tive | BitComplement

d | Int32 | Int64 | Uint32 | Uint64 | Float32 | Floato64

34 SOURCE L1STINGS

| Array of loom type * expr
| Record of (string x loom_type) list

| Type of string (x to be associated with a loom type later x)
and expr =
IntLiteral of int

FloatLiteral of float
BoolLiteral of bool

I

|

| Convert of expr » loom_type

| Place of place

| Binop of expr * binop * expr
| Unop of unop * expr

| Call of string * expr list
| NullExpr

and place =

Aref of string * expr
| Saref of string * expr
| Rref of string * string
| Id of string
type stmt =

Block of stmt list

Vdecl of memspace % string * loom_type * expr option
Tdecl of string x loom_type

Expr of expr

Return of expr

Assign of place * expr

If of expr * stmt list x stmt list
For of string * loom_type * expr x expr % stmt list
While of expr x stmt list
Break
Continue
Sync
NullStmt
type func = {
fname : string;
formals : (string * loom_type) list;
ret_type : loom_type;
body : stmt list;

type kernel = {

kname string;
kformals (string x loom_type) list;
kbody stmt list;

type program

kernel option * func list

(# —— String conversion functions —--— #)

let string_of_ memspace =

function
Local —>

"local" | Global -> "global" | Shared —> "shared"

35

let string_of binop = function
Mult -> "x" | Div -—> "/" | Plus -> "+" | Minu
| Lshift -> "<<" | Rshift -> ">>" | BitOr -> "|
| Equal -> "=" | NotEg -> "!=" | LessEg -> "<="
| Greater -> ">" | Map -> "//" | Reduce -> "/."
| And -> "&&" | Or —> " | |"
let string_of_unop = function

Not -> "!" | Negative -> W

BitComplement ->

let rec string of_ type

let str_field (s,t) = s = ": " string_of_type
function
Bool -> "Bool" | Void -> "Void" | Int32 —-—>
| Uint32 —-> "Uint32" | Uint64 —-> "Uint64"
| Float32 —-> "Float32"| Float64 —-> "Floate64"
| Array(t,e) -> string of_type t = "["
| Record(fields) -> "{" ° String.concat ",
~ e
| Type (name) —> name
and string_of_expr = function
IntLiteral (n) -> string of_int n
| FloatLiteral (x) -> string_of_ float x
| BoolLiteral(p) -> 4if p then "true" else "fa
| Convert (e, t) -> "(" " string_of_expr e
| Place(p) -> string_of_place p
| Binop(el,op,e2) —-> " (" " string_of_expr el ~
string_of_binop op "
string_of_expr e2 =~ ")"
| Unop (op, e) —> " string_of_unop op
| Call(f,args) -> £ ° "("
* String.concat ", "
~ wyn
| NullExpr => 00
and string_of_place = function
Aref (a,e) -> a ~ "[" " string_of_expr
| Saref (a,e) -> a ~ "[[" " string_of_expr
| Rref (v, x) -> v ~ """ ox
| Id(s) -> s

(* FIXME - should add hierarchical indentation for blocks

s —> "-" | Mod -> "§"
" | BitAnd -> "&" | BitXor -> "°"
| Less —> "<" | GreaterEgq -> ">="
| Scanl -> "/:" | Scanr -> ":/"
t in
"Int32" | Int64 -> "Int64"

string_of_expr e = "]"

(List.map str_field fields)

lse"

II)H::H"

string_of_type t

string_of_expr e "

(List.map string_of_expr args)

e w3 w

"

@

—-— would need to

pass around indentation parameter everywhere, though x*)
let rec string_of_stmt = function
Block (stmts) -> "{\n"
String.concat "" (List.map string_of_stmt stmts)
S "}\n"
| Vdecl (m,v,t,e) -> string_of memspace m LA A string_of_type t
" (match e with
Some (e’) —-> " _<-_" string_of_expr e’
| None —>
> "i\n"
| Tdecl (name, t) -> "type " name string_of_ type t ";\n"
| Expr(e) -> string_of_expr (e) ";\n"
| Return (e) -> '"return " string_of_expr e ";\n"

36 SOURCE LISTINGS

| Assign(p,e) -> string of_place p ~ " _<-_." " string_of_expr e = ";\n"
| If(e,ss, []) -> "if " ° string of_expr e ~ " _then_{\n"
String.concat "" (List.map string_of_stmt ss)
S "}\n"
| If(e,ss,ss’) -> "if " ° string of_expr e ~ " _then_{\n"
String.concat "" (List.map string_of_stmt ss)
~ "}\nelse_{\n"
String.concat "" (List.map string_of_stmt ss’)
S "}I\n"
| For(v,t,el,e2,ss) -> "for " "~ v ~ ":_ " " string_of_type t = " _<-_"
string_of_expr el ~ " .. " ° string of_expr e2 ~ "\n"
String.concat "" (List.map string_of_stmt ss)
S "I\n"
| While (e, ss) -> "while " ~ string_of_expr e
String.concat "" (List.map string_of_stmt ss)
S "}I\n"
| Break -> "break;\n"
| Continue -> "continue; \n"
| Sync -> "sync;\n"
| NullStmt -> "\n"

let string_of formal (name, t) =

name ":," ° string_ of_type t

[

let string_of_ func f =
"func " ° f.fname ~ " _ ("

® String.concat ", " (List.map string of_formal f.formals)
S "): " ° string_of_type f.ret_type ~ "_{\n"

" String.concat "" (List.map string_of_stmt f.body)

~ Il}\n"

let string_of_kernel k =

"kernel " ° k.kname ~ " _ ("

* String.concat ",_" (List.map string of_formal k.kformals)
M o{\n"

" String.concat "" (List.map string_of_stmt k.kbody)

-~ ll}\nll

let to_string (k,fs) =

String.concat "" (List.map string_of_func fs)
" match k with
Some (k') —> string_of_kernel k’
| None -> "—- Warning:_no_kernel supplied\n"
sast.ml
(#+ Module Sast —- semantic analyzer / typechecker #)

type memspace = Local | Shared | Global | Param

type binop =
Mult | Div | Plus | Minus | Mod
| Lshift | Rshift | BitOr | BitAnd | BitXor
| Equal | NotEg | LessEgq | Less | GreaterEqg | Greater
| Map | Reduce | Scanl | Scanr | And | Or

type unop =
Not | Negative | BitComplement

type loom_type =
Bool | Void | Int32 | Int64 | Uint32 | Uinté64 | Float32 | Floaté64
| Array of loom_type * expr
| Record of (string * loom_type) list
| Function of (loom_type list) = loom_type

and expr =
IntLiteral of int
FloatLiteral of float
BoolLiteral of bool

|

|

| Convert of expr_t * loom_type (+ in Sast, holds the SOURCE type x)
| Place of place

| Binop of expr_t * binop * expr_t

| Unop of unop * expr_t

| Call of fdecl » expr_t list

| NullExpr

and place =

| Aref of vdecl *x expr_t
| Saref of vdecl *x expr_t
| Rref of vdecl x string
| Id of decl

and expr_t = expr * loom_type

and place_t = place x loom_type

and tdecl = string * loom_type (+ type name, type %)

and vdecl = string x loom_type (x var name, type %)

and fdecl = string * (loom_type list) * loom_type (* name, args, return type x)
and decl = Var of vdecl

| Func of fdecl
| Const of vdecl (+ used from thread constants x)

type stmt =
Block of stmt list
Vdecl of memspace x vdecl x expr_t option
Tdecl of tdecl
Expr of expr_t
Return of expr_t
Assign of place_t * expr_t

|
|
|
|
I
I
| For of vdecl x expr_t * expr_t x stmt list
|
I
I
|
|

If of expr_t * stmt list % stmt list
While of expr_t * stmt list
Break
Continue
Sync
NullStmt
type func = {

fname : string;

formals : vdecl 1list;

ret_type : loom_type;

body : stmt list;

38

SOURCE LISTINGS

type kernel = {

kname string;
kformals vdecl list;
kbody stmt list;

type program =

let thread_constants =

kernel + func list

["T" "THREADS" ; "B" ; "BLOCKS" ; "BLOCKSIZE"
2 "X_T" "X_THREADS" ; "X_B" "X_BLOCKS" "X_BLOCKSIZE"
; "y T" "Y_ THREADS" ; "Y B" "Y_ BLOCKS" ; "Y_BLOCKSIZE"]
(# —— environment types and utility functions —-— %)
type symbols = {
parent symbols option
; mutable vars (vdecl % memspace) list
; mutable types tdecl list
; mutable funcs fdecl 1list
}
type environment = {
func_name string
; return_type loom_type
; loop_level int
; scope symbols

(+#+ Look up a variable name
found. Otherwise,

follow links upward in the scope chain.
name does not appear anywhere in the chain,

in a symbol table, and return (vdecl,

let rec lookup_var_full scope vname =

try
List.find (fun ((s,
with Not_found —>
match scope.parent with
Some (p)
| None

(#+ Look up a variable name in a symbol table,
let lookup_var scope vname =
lookup_var_full scope vname in

let
vd

(vd, _) =

(#+ Look up a function name,
(* FIXME: because LOOM functions have global scope,

_),2)

—-> s = vname) SCcope.vars

—> lookup_var_full p vname
—-> raise Not_found

and return fdecl if found. x*)

level
let rec lookup_func scope fname =
try
List.find (fun (s, _,

with Not_found ->
match scope.parent with
Some (p)

-> s = fname) scope.funcs

—> lookup_func p fname

memspace) 1if

If the variable
raise an exception. %)

and return vdecl 1if found. #*)

this will always go to the top
—— could be optimized by keeping fdecls in a separate global record =)

39

None —> raise Not_found

(#+ Look up a type name in scope, and return tdecl if found. *)
let rec lookup_type scope tname =
try
List.find (fun (s, _) -> s = tname) scope.types
with Not_found —>
match scope.parent with
Some (p) —> lookup_type p tname
None —> raise Not_found

(% Create a string containing a summary of the scope (for error messages) x)
let rec string of_ scope scope =
let vnames = List.map (fun ((name,_),_) —> name) scope.vars in
let tnames = List.map (fun (name,_) —> name) scope.types in
let fnames = List.map (fun (name,_,_) —> name) scope.funcs in
let parent_info =
match scope.parent with
Some (p) —-> "\nPARENT_" ~ (string_of_scope p)
None -> " (EARLIEST,_ANCESTOR) \n"
in
"SCOPE:"
° "\n__vars:__" ° String.concat ",_" vnames
° "\n_ types: " " String.concat ", " tnames
~ "\n__funcs:_" " String.concat ",_" fnames
S "\n"
" parent_info
rr
(x+ Convert a LOOM type int a string (for error reporting) =)
let rec string_ of_type =
let str_field (s,t) = s = ": " " string of type t in
function
Bool -> "Bool" | Void -> "vVoid" | Int32 -> "Int32" | Int64 —-> "Int64"
| Uint32 -> "Uint32" | Uint64 -> "Uinto64"
| Float32 -> "Float32"| Float64 -> "Floate64"
| Array(t,_) -> string of_type t ~ "[...]"
| Record(fields) -> "{" " String.concat ",_" (List.map str_field fields)
~ e
| Function(args_t,ret_t) ->
"Function_ ("
" (String.concat ", _" (List.map string_of_type args_t))
©"): " ° string_of_type ret_t
rr
(+ —— semantic analysis —— %)

(+ FIXME - probably better to just share Ast.binop and Ast.unop types x)
let check_binop = function

Ast.Less —> Less
Ast .Map -> Map

Ast.LessEgq -> LessEq
Ast.Greater —-> Greater

Ast .Mult -> Mult | Ast.Div -> Div | Ast.Plus —-> Plus
| Ast.Minus —-> Minus | Ast.Mod —-> Mod | Ast.Lshift -> Lshift
| Ast.Rshift -> Rshift | Ast.BitOr -> BitOr | Ast.BitAnd -> BitAnd
| Ast.BitXor -> BitXor | Ast.Equal -> Equal | Ast.NotEg —-> NotEqg
| | |
| | |

Ast .Reduce —-> Reduce

Ast.GreaterEq -> GreaterEqg

40 SOURCE LISTINGS

| Ast.Scanl —-> Scanl | Ast.Scanr -> Scanr
| Ast.Or -> Or | Ast.And —> And

let check_unop = function

Ast .Not —-> Not Ast .Negative -> Negative Ast.BitComplement -> BitComplement

let check_memspace = function
Ast.Global -> Global | Ast.Local -> Local | Ast.Shared -> Shared

let rec check_loom_type env = function

Ast .Bool -> Bool | Ast.Void -> Void
| Ast.Int32 -> Int32 | Ast.Int64 -> Int64
| Ast.Uint32 —> Uint32 | Ast.Uinto64 —-> Uint64
| Ast.Float32 -> Float32 | Ast.Float64 -> Float64
| Ast.Array(t,e) ->
let t’/ = check_loom_type env t in
let (e’,_) = check_expr env e in
begin
match e’ with
IntLiteral (_) | Place(Id(Const(_))) —-> Array(t’,e’)
| _ -> failwith ("\n**x_Array_type_declaration_parameter_must_be"
~ " _either_an_integer constant, or _a thread_constant.")
end
| Ast.Record(ts) =>
let r = List.map (fun (s,t) -> (s, check_loom type env t)) ts in
(x let fieldnames, _ = List.split r in %)
(+ FIXME - check no duplicate field names x)
Record(r)
| Ast.Type (s) =>

let tdecl = try
lookup_type env.scope s

with Not_found ->

failwith ("\nx**_Unknown_type " ~ s)
in

let (_, t) = tdecl in t

(#+ Given an Ast expression, recursively build up a typechecked structure. *)
(# Nomenclature: "primed" variables are in Sast (e.g., e’, t’) %)
and check_expr env = function

Ast.IntLiteral (n) —-> IntLiteral (n), Int32
| Ast.FloatLiteral (x) —> FloatLiteral (x), Float32
| Ast.BoolLiteral (p) -> BoolLiteral (p), Bool
| Ast.Convert (e, dest_t) => (+ in Ast, Convert takes dest type x)
let e’, source_t’ = check_expr env e in

let dest_t’ = check_loom_type env dest_t in
Convert ((e’, dest_t’), source_t’), dest_t’

Ast.Place (p) == (x have to thread the node type t’ through =)
let (p’, t’) = check_place env p in
Place(p’), t’

41

| Ast.Binop(el,op,e2) —>
begin
let (el’, tl’) as etl’ = check_expr env el in
let (e2’, t2’) as et2’ = check_expr env e2 in
let op’ = check_binop op in
match op’ with

Map -> begin
match (tl’, t2’) with
Function([arg_t], ret_t), Array(arr_t, n) ->
if arg_t <> arr_t then
failwith "\nxxx_map: function arg_and _array, types_must_match."

else
Binop (etl’, op’, et2’), Array(ret_t, n)
| —> failwith ("\n=**x_map operator must_have function_of_one_argument"

" _on_left, and _array on_right")

end

| Reduce -> begin
match (tl’, t2’) with

Function([argl_t; arg2_t], ret_t), Array(arr_t, n) ->
if argl_t <> arg2_t || argl_t <> arr_t then
failwith "\nxx*_reduce: function_arg _and array, types_must _match."
else
Binop (etl’, op’, et2’), ret_t
| _ -> failwith ("\nx**_reduce_operator_must, have_ function_of two_"
® "arguments_on_left, .and_array_on_right")
end
| Scanr | Scanl —-> begin
match (tl’, t2’) with
Function([argl_t; arg2_t], ret_t), Array(arr_t, n) —->
if argl_t <> arg2_t || argl_t <> arr_t then
failwith "\nxxx_scan[lr]:_function_arg_and _array_types_must_match."
else
Binop (etl’, op’, et2’), Array(ret_t, n)
| _ => failwith ("\nxx*_reduce_operator_must_have function_of two "
~ "arguments_on_left, and_array on_right")
end

| BitXor -> begin

| Mult | Div | Plus | Minus | Mod | BitOr | BitAnd
if tl1’ <> t2’ then
failwith ("\n*x*_types_for_operands_of ’'" ~ Ast.string_of binop op
~ " _must_match_exactly.")

else if tl1’ = Bool || tl’ = Void then
failwith ("\nx**_operands_to_" "~ Ast.string _of_binop op
~ "must_have_numeric_type.")
else
Binop (etl’, op’, et2’), tl’
end

| Lshift | Rshift -> begin
if t2’ <> Int32 then
failwith ("\nxx*_shift_operator " ~ Ast.string of binop op
" _expects_Int32_on_right_ (try_a,_type_conversion?).")
else if t1’ = Bool || tl’ = Void then

42 SOURCE LISTINGS

failwith ("\nxx*_operands_to_" ~ Ast.string of binop op
" "must_have_numeric_type.")
else
Binop (etl’, op’, et2’), tl’
end

| And | Or -> begin

if tl’ <> Bool || t2’ <> Bool then
failwith ("\nxx*_and_/_or_operands must_have type Bool.")
else
Binop (etl’, op’, et2’), Bool
end

| _ —> begin (x comparison operators x*)
if t1’ <> t2’ then
failwith ("\nxx*_types_for_operands_of '" "~ Ast.string of binop op
© " _must_match_exactly.")

else
Binop (etl’, op’, et2’), Bool
end
end
| Ast.Unop (op,e) >
let (e’, t’) as et’ = check_expr env e in
let op’ = check_unop op in

if op’ = Not then
if t’ <> Bool then
failwith "\n***_not_operand_must_have_type Bool"

else
Unop (op’, et’), Bool
else if t’ = Bool || t’ = Void then
failwith ("\n**x_operand _to_" ~ Ast.string_of_ unop op
® "must_have_numeric_type.")
else
Unop (op’, et’), t’
| Ast.Call(f, args) >
let args’ = List.map (check_expr env) args in
let _, types’ = List.split args’ in
let (fname, formals_t, ret_t) as fd =
try

lookup_func env.scope f
with Not_found ->
failwith ("\nx%*_Undefined_function_name_ " ~ f)
in
(* check the types of the actual arguments against function signature x)
if List.for_all (fun (x, y) —> x = V)
(List.combine types’ formals_t) then

Call (fd, args’), ret_t
else
failwith ("\nx%*_arguments_to " ~ £ ~ "(...)_do_not _match_formals.")
| Ast.NullExpr -> NullExpr, Void

and check_place env =
let vlookup name =
try

43

lookup_var env.scope name
with Not_found ->

failwith ("\nx*%_No_variable_or_function_declaration_for_identifier "
name ~ "_in_array/record; \nscope_trace: _\n"
string_of_scope env.scope)
in
function
Ast .Aref (a,e) —>
let (e’, t’) as et’ = check_expr env e in
let (_, a_t) as vd = vlookup a in
begin
match a_t with
Array(elem_t, _) -> Aref(vd, et’), t’
_ => failwith ("\nx*xx_" ° ° "_has_non-array_type.")
end
| Ast.Saref (a,e) ->
let (e’, t’) as et’ = check_expr env e in
let (_, a_t) as vd = vlookup a in
begin
match a_t with
Array(elem_t, _) -> Saref(vd, et’), t’
[—> failwith ("\nx*x_" ~ a ~ "_has,_non-array_type.")
end
| Ast.Rref (r, x) —>
let (_, r_t) as vd = vlookup r in
begin
match r_t with
Record(fields) —>
let t/ = try List.assoc x fields
with Not_found -> failwith ("\n**x_Unknown_field " ~ x)
in
Rref (vd, x), t’
(— -> failwith ("\n*x%_" = r °~ " _has_non-record_type.")
end
| Ast.Id(s) —>
let id = (# id has type decl %)

if List.mem s thread_constants then
Const (s, Int32)
else
try Var (lookup_var env.scope s)
with Not_found ->
try Func (lookup_func env.scope s)
with Not_found ->
failwith ("\n#*x_No_variable_or, function_declaration_for_identifier "
~ string_of_scope env.scope)

s ° ";\nscope_trace:_\n"

in
begin
match id with
Var (name, t) -> TId(Var(name,t)), t
| Func(name, args_t, ret_t) -> Id(Func(name, args_t, ret_t)),
Function(args_t, ret_t)
| Const (name, t) -> Id(Const (name,t)), t

end

44 SOURCE L1STINGS

let rec check_block env stmts =
(+ create a new child scope x)

let scope’ = { parent = Some (env.scope);
vars = [];
funcs = [1];
types = [] } in
let env’ = { env with scope = scope’ } in
let stmts’ = List.map (fun s -> check_stmt env’ s) stmts in
stmts’

and check_stmt env = function
Ast.Block (stmts) —->
let stmts’ = check_block env stmts in
Block (stmts’)

| Ast.Vdecl (space, name, t, init) ->
begin
if List.exists (fun ((s,_),_) —> s = name) env.scope.vars then
failwith ("\nxx*_Attempt to re-declare_variable " "~ name)
else
let t’ = check_loom _type env t in
let space’ = check_memspace space in
env.scope.vars <-—
((name, t’), space’) :: env.scope.vars;
match init with
Some (e) -> 1let (_,init_t) as et’ = check_expr env e in
if init_t <> t’ then
failwith ("\nx**_Variable_ " "~ name
" _initialization_has_incorrect type.")
else
Vdecl (space’, (name, t’), Some(et’))
| None -> Vdecl (space’, (name, t’), None)
end

| Ast.Tdecl (name, t) ->
if List.exists (fun (s,_) -> s = name) env.scope.types then
failwith ("\n**x%_Attempt to_re-declare type " ~ name)
else
let t’ = check_loom_type env t in
env.scope.types <- (name, t’) :: env.scope.types;
Tdecl (name, t’) (+ FIXME - could probably just be NullStmt =)

| Ast.Expr (e) —> Expr (check_expr env e)

| Ast.Return(e) —>

let (_, t’) as et’ = check_expr env e in
if t’ <> env.return_type then
failwith ("\nx%%_Return_expression_ (of_type_ "

string_of_type t’
") _must_match_function_return_type_ "

string_of_type env.return_type _ing,

n

env.func_name ~ ".")
else
Return (et’)

| Ast.Assign(p,e) —->
let p’ = check_place env p in
let e’ = check_expr env e in

Assign(p’, e’)

| Ast.If(e,stmtsl,stmts2) —->
let (_,t’) as et’ = check_expr env e in
if t’ <> Bool then
failwith "\n*xx_Expression_in_if statement_must have_type Bool."
else
If(et’, check_block env stmtsl, check_block env stmts2)

| Ast.For (name,t,el,e2,stmts) —->
let t’ = check_loom_type env t in
let (_,tl’) as etl’ = check_expr env el in
let (_,t2’) as et2’ = check_expr env e2 in
if t7 <> tl17 || t7 <> t2’ || t’ = Bool || t’ = Void then
failwith "\n#xx_Mismatched_or non-numeric_types_in for_loop."
else
(# can’t use check _block because we have to squeeze in index var +*)
let scope’ = { parent = Some (env.scope);
vars [((name,t’),Local)];
funcs = [1];
types = [] } in
let env’ = { func_name = env.func_name
; return_type = env.return_type
; loop_level = env.loop_level + 1
; scope = scope’ } in
let stmts’ = List.map (fun s -> check_stmt env’ s) stmts in
For ((name, t’), etl’, et2’, stmts’)

| Ast.While(e,stmts) —>
let (_,t’) as et’ = check_expr env e in
if t’ <> Bool then
failwith "\n#*xx_Expression_in_while_statement_must_have_type_Bool."
else
let env’ = { env with loop_level = env.loop_level + 1 } in
While (et’, check_block env’ stmts)

| Ast.Break =>
if env.loop_level > 0 then
Break
else

failwith "\nxx%_Attempt, to_BREAK_outside_of_loop_environment."

| Ast.Continue —>
if env.loop_level > 0 then
Break
else

failwith "\n#xx_ Attempt to CONTINUE_outside_of, loop, environment."
| Ast.Sync -> Sync

| Ast.NullStmt -> NullStmt

(» Side effect: updates env scope (as in variable declaration). x*)

46 SOURCE LISTINGS

let check_formal env (name, t) =

let t’ = check_loom_type env t in

let new_var = ((name, t’), Param) in
env.scope.vars <— new_var :: env.scope.vars;
(name, t’)

let empty_environment name =

let empty_scope = { parent = None
; vars = []
i types = []
; funcs = [] } in
{ func_name = name
; return_type = Void
; loop_level = 0
; scope = empty_scope }
rr
let extract_fdecl (f : Ast.func) : fdecl =
let empty_env = empty_environment "" in
let (_, types) = List.split f.Ast.formals in
let types’ = List.map (check_loom_type empty_env) types in
let ret_t’ = check_loom _type empty_env f.Ast.ret_type in

(f.Ast.fname, types’, ret_t’)

let get_fdecls funcs = List.map extract_fdecl funcs

rr

let check_kernel fdecls k =

let name = k.Ast.kname in
let env = empty_environment name in
let kformals’ = List.map (check_formal env) k.Ast.kformals in
env.scope.funcs <- fdecls;
let kbody’ = check_block env k.Ast.kbody in
{ kname = name
; kformals = kformals’
; kbody = kbody’ }

let check_func (fdecls : fdecl 1list) (f : Ast.func) =

let name = f.Ast.fname in
let env = empty_environment name in
let ret_type’ = check_loom_type env f.Ast.ret_type in
let env’ = { env with return_type = ret_type’ } in
let formals’ = List.map (check_formal env’) f.Ast.formals in
env’ .scope.funcs <- fdecls;
let body’ = check_block env’ f.Ast.body in
{ fname = f.Ast.fname
; formals = formals’
; ret_type = ret_type’
; body = body’ }

let analyze : Ast.program —-> program = function
Some (k), funcs ->
let fdecls = get_fdecls funcs in

47

let k’ = check_kernel fdecls k in
let funcs’ = List.map (check_func fdecls) funcs in
(k”, funcs’)
-> failwith "\nx=*%_No_kernel function_found."

(+ Sast pretty printer not yet implemented #*)

let to_string _ = "Typechecking _finished_with no_errors.\n"
compiler.mli

type ptx

val translate : Sast.program -> ptx

val to_string : ptx —-> string

compiler.ml

(+#+ Module Compiler *)
(#+ PTX virtual machine types
Pred is used for conditionals, Ul6 is used for thread constants #)

type ptx_t = Pred | Void | S$32 | s64 | U32 | U64 | F32 | F64 | B32 | B64 | Ulé6

(% Memory address spaces. Param 1s the space of actual arguments to the kernel x)
type memspace = Local | Shared | Global | Param | Reg

type ptx_line =

Direct of string
| Entry of string x (ptx_t % string) list
| Func of ptx_ t * string x (ptx_t * string) list
| Decl of memspace * ptx_t x string
| Label of string
| Branch of string option * string (* option for conditioned branch x)
| Op2 of string x ptx_t * string x string
| Op3 of string * ptx_t * string * string x string
| Convert of ptx_ t * ptx_t * string » string
| Load of memspace x ptx_t * string x string * int
| Store of memspace * ptx_t * string * int % string

type ptx = ptx_line list

(+ FIXME - incomplete LOOM type implementation; only covers basic types and
arrays of basic types x)
type full type =
Basic of ptx_t
| ArrayN of ptx_t * int (* Size of array is integer literal =)
| ArrayC of ptx_t x string (+ Size of array specified by thread const x)

(# Type for translation environment x)
type symbols = {
parent : symbols option
; mutable vars : (memspace x full type x string) list
; return_label : string

48 SOURCE LISTINGS

; continue_label : string option
; break_label : string option

}

type count_t = {
mutable lab : int (x Label index count =)

; mutable pred: int (* Counts for various virtual register types x)
; mutable s32 : int

; mutable s64 : int

; mutable u32 : int

; mutable u64 : int

; mutable f32 : int

; mutable f64 : int

; mutable ul6 : int

let counts =
{lab=0; pred=0; s32=0; s64=0; u32=0; u64=0; £32=0; £64=0; ule6=0}

(+#+ Return consecutively-numbered labels x)
let new_label () =

let current = counts.lab in

counts.lab <- current + 1;

"L" ° string_of_int current

(#* Return consecutively-numbered virtual register names of a PTX type x*)
let new_register = function
Pred -> let current = counts.pred in
counts.pred <- current + 1;
"$rp" ° string_of_int current
| S32 -> let current = counts.s32 in
counts.s32 <- current + 1;
"$rs" ° string_ of_int current
| S64 -> let current = counts.s64 in
counts.s64 <- current + 1;
"$rsl" ° string_of_int current
| U32 -> let current = counts.u32 in
counts.u32 <- current + 1;
"$ru" ° string_of_int current
| U64 -> let current = counts.u64 in
counts.u64 <- current + 1;

"Srul" string_of_int current
| F32 -> let current = counts.f32 in
counts.f32 <- current + 1;
"$rf" ° string_of_int current
| F64 -> let current = counts.f64 in
counts.f64 <- current + 1;
"$rfl" ° string_of_int current
| Ul6 -> let current = counts.ul6 in
counts.ul6 <- current + 1;
"$rh" ° string_of_int current
-> failwith "*x*_can’t_make register of this_type"

let sizeof = function

49

Uleé -> 2
Pred | S32 | U32 | F32 | B32 —> 4
| S64 | U64 | F64 | B64 —> 8

Void —-> failwith "x*x_should_not_try to_determine_size_of void type"

(+ —— string output -- %)
let string_of_ type = function
Pred -> ".pred" | Void -> ""
| S32 -> ".s32" | se4 -> ".s64"
| U32 => ", ,u32" | Ue4 => ".,u64"
| F32 -> " f32" | Foe4 -> ".fe4"
| B32 -> ".b32" | B64 -> ".be4"
| Ul6 -> ".ule"
let string_of_space = function
Local -> ".local"
| Shared -> ".shared"
| Global -> ".global"
| Param -> ".param"
| Reg -> ".reg"
rr
let string_of_params (params) =
let one (t, name) = ".param" ~ string_of type t ~ "_" © name in
String.concat ",_" (List.map one params)
rr
let string_of ptx_line = function
Direct (s) -> "\t" s
| Entry(name,args) -> "\t.entry" ~ name "~ " ("
® string_of_params args ~ ")"
| Func(Void,name,args)-> "\t.func_" ~ name ~ " ("
® string_of_params args ~ ")"
| Func (t,name,args) -> "\t.func_(" ° string_of_params [(t,name)]
~ name ~ " ("

string_of_params args "~ ")"
Decl (space, t,name) -> "\t" "~ string_of_space space ~ "_"
string_of_type t ~ "_"
name ~ ";"

comy om
—

Label (lab) -> lab ~ ":"
Branch (None, 1bl) -> "\tbral\t" ©~ 1lbl ~ ";"
Branch (Some (p), 1bl) -> "@" ~ p ~ "\tbralt" "~ 1bl =~ ";"
Op2 (op,t,d,a) -> "\t" ~ op " string_of_type t ~ "\t"
~ d -~ n " ~ a ~ nm.n
o r
Op3 (op,t,d,a,b) -> "\t" °~ op " string_of_type t ~ "\t"
~ d -~ "’H" ~ a ~ ",HH ~ b ~ “;"
Convert (tl,t2,d,a) -> "\tcvt" " string_of_type tl ~ string_of_type t2 =~ "\t"
-~ d ~ n , H" -~ a -~ ll; n
Load(s,t,d,a, i) -> "\tld" ° string_of_space s " string_of_type t ~ "\t"
“d ", [" " a "+" ° string_of_int i "~ "];"
Store(s,t,d,i,a) -> "\tst" " string_of_space s ~ string_of_type t = "\t"

Sommtd C "+" © string_of_int 1 © "],

Hll ~a ° Do W

50

SOURCE LISTINGS

let to_string p

let st

rs = List.map string_of ptx_line p in
(String.concat "\n" strs) ° "\n"

-> failwith "x%x_cannot _translate_Sast.Void_type."

(* —— translation functions —— #*)
let trans_type = function
Sast.Bool -> Pred

| Sast.Void

| Sast.Int32 -> S32

| Sast.Int64 -> S64

| Sast.Uint32 -> U32

| Sast.Uinto64 -> U64

| Sast.Float32 -> F32

| Sast.Float64 -> Fo64

|

-> U32 (+ pointer for other types x)

let trans_type_full t =
match t with

Sast.Bool | Sast.Void | Sast.Int32 | Sast.Int64
| Sast.Uint32 | Sast.Uint64 | Sast.Float32 | Sast.Float64 —>
Basic (trans_type t)
| Sast.Array(elem_t, Sast.IntLiteral(n)) ->
ArrayN (trans_type elem_t, n)
| Sast.Array(elem_t, Sast.Place(Sast.Id(Sast.Const(s, _)))) —>
ArrayC (trans_type elem_t, s)
| _ —> failwith "*x%_Not_all_compound types, implemented."
i
let trans_space = function
Sast.Local -> Local | Sast.Global —-> Global
| Sast.Shared -> Shared | Sast.Param —-> Param
i
let trans_special = function
llTll _> ll%tidll
| "THREADS" —> "%threads" (#* FIXME —-—- need to think more about how these work #)
| llBll _> ll%ctaid"
| "BLOCKS" -> "%blocks"
| "BLOCKSIZE" —-> "%blocksize"
|

rr

(++ Translate expression,
(* Need to pass in env for array,

=>

let rec trans_expr env (e, t) =
= trans_type t in
let rname = new_register t’ in (x create a virtual register for each node x*)
match e with
Sast.IntLiteral (n) ->

let t’

rname,

[Op2 ("mov", t’, rname,

| Sast.FloatLiteral (f) ->

rname,

[Op2 ("mov", t’, rname,

returning a register,
identifier lookups #*)

failwith "x*x_unknown_special, constant."

string_of_int n)]

string_of_float f)

]

instruction-1list pair x*)

| Sast.BoolLiteral (b) —>

rname, [Op2("mov", t’, rname, if b then "1" else "0")]
| Sast.Place (p) -> trans_place env p t
| Sast.Binop(etl, op, et2) ->
let regl, ptxl = trans_expr env etl in
let reg2, ptx2 = trans_expr env et2 in
let ptx_op =
ptxl
@ ptx2
@ begin
match op with
Sast .Mult -> [Op3("mul", t’ , rname, regl, reg2) |
| Sast.Div -> [Op3("div", t’ , rname, regl, reg2) |
| Sast.Plus —> [Op3("add", t’ , rname, regl, reg2)]
| Sast.Minus -> [Op3("sub", t’ , rname, regl, reg2)]
| _ —> [Direct("//_BinOp_placeholder")]
end
in
rname, ptx_op
| Sast.Unop (op, et) >
let regl, ptxl = trans_expr env et in
let ptx_op =
ptxl
@ begin
match op with
| Sast.Negative ->
let byte_t = if (sizeof t’) = 32 then B32 else B64 in
let regl’ = new_register t’ in
[Op2("neg", byte_t , rname, regl’)]
| Sast.Not
| Sast.BitComplement -—>
let byte_t = if (sizeof t’) = 32 then B32 else B64 in
let regl’ = new_register t’ in
[Op2("not", byte_t , rname, regl’)]
end
in

rname, ptx_op

| Sast.Convert ((e, dest_t) as et, source_t) >
(» FIXME: only works for basic types x*)
let regl, ptxl = trans_expr env et in
let dest_t’ = trans_type dest_t in
let source_t’ = trans_type source_t in
let ptx_op =
ptxl
@ [Convert (source_t’, dest_t’, rname, regl)]
in

rname, ptx_op

| Sast.Call (f,args) ->
rname, [Direct("//_Call _placeholder")]

| Sast.NullExpr -> rname, []

52 SOURCE LISTINGS

(#+ Translate a ’place’ (lvalue), returning a register holding the address and
a list of instructions used to calculate the address x*)

and trans_place env p t =
"r _debug", [Direct ("//_Place_placeholder")]

let rec trans_stmt env stmt =
match stmt with
Sast.Block (stmts) —>
(* PTX has scope blocks built—-in x*)
[Direct ("{") 1
@ List.concat (List.map (trans_stmt env) stmts)
@ [Direct("}") 1

| Sast.Vdecl (space, (name, t), init_opt) -> begin
let space’ = trans_space space in
let full_t = trans_type_full t in
let name’, t’ =
match full t with
Basic (typ) -> (name, typ)
| ArrayN(typ, n) —-> (name =~ "[" ° string of_int n ~ "]", typ)
(+ FIXME - need to implement ArrayC types x*)
[-> failwith "*xx_cannot_declare compound_type"
in
[Decl (space’, t’, name’) |
end

| Sast.Tdecl (name, t) —>
(+ Defined types are interpreted by the typechecker, so nothing to do here x)
[1]

| Sast.Expr (et) -> (* throw away register holding value #)
let rname, lst = trans_expr env et in
1st
| Sast.Return(e, t) —>

[Branch (None, env.return_label)]

| Sast.Assign(p, e) =5
(+ let place_r, place_t = trans_place p %)
[Direct ("//_Assign_placeholder")]

| Sast.If((e, t), stmtsl, stmts2) ->
[Direct("//_If_placeholder")]

| Sast.For((name, t), el, e2, stmts) ->
[Direct ("//_For_placeholder")]

| Sast.While(et, stmts) >
(* General idea:
labell

if (test_code) branch label2
branch label3
label2:
recursively call trans_stmt on the body block with a translation
environment having break_label = label3 and continue_label = labell
branch labell

label3:
*)
[Direct ("//_For_placeholder")]

| Sast.Break —>
[Direct ("//_Break_placeholder")]

| Sast.Continue ->
[Direct ("//_Continue, placeholder")]

| Sast.Sync —>
[Direct ("bar.sync;") 1

| Sast.NullStmt -> []
let trans_params params =

let trans_one (name, t) = (trans_type t, name) in
(List.map trans_one params) @ [(U32, "grid")]

let trans_params_full params =
let trans_one (name, t) = (Param, trans_type_full t, name) in
(List.map trans_one params) @ [(Param, ArrayN(U32,10), "grid")]

let new_environment vs =

{ parent = None

; vars = vs

; return_label = new_label ()
; continue_label = None

; break_label = None }

let trans_kernel k =
let kname = k.Sast.kname in

let basic_params = trans_params k.Sast.kformals in
let full _params = trans_params_full k.Sast.kformals in
let env = new_environment full params in
[Entry(kname, basic_params)
; Direct ("{")
; Decl (Reg, Pred, "%rp<99>") (+# Declare types of virtual registers %)
; Decl (Reg, S32, "$rs<99>")
; Decl (Reg, S64, "$rsl<99>")

; Decl (Reg, U32, "Sru<9o>")

; Decl (Reg, U64, "$rul<99o>")

; Decl (Reg, F32, "$rf<99o>")

; Decl (Reg, F64, "$rfl<99o>")

; Decl (Reg, B32, "$rb<99>")

; Decl (Reg, Uls6, "$rh<99>")

; Decl (Reg, U32, "$threads") (+ Set up thread constants *)
; Decl (Reg, U32, "%blocks")

; Decl (Reg, U32, "$blocksize")

; Load(Param, U32, "%threads", "grid", 0)
; Load(Param, U32, "%$blocks", "grid", 4)

; Load(Param, U32, "%$blocksize", "grid", 8) 1]
@ trans_stmt env (Sast.Block (k.Sast.kbody))

54

SOURCE LISTINGS

@

[Label (env.return_label)
; Direct ("exit;")
; Direct ("}1")

]

trans_func £ = [Direct ("//_FUNC_" ~ f.Sast.fname

translate (k, fs) =

Direct (".version 1.4")

Direct (".target _sm_10, map f64_to_£32")
List.concat (List.map trans_func fs)
(trans_kernel k)

]

"_placeholder")]

