Loowm Compiler Proposal

Johnathan Jenkins

June 8, 2011

Abstract

LooM is a domain-specific language for general-purpose graphics
processing units (‘GPUS’) designed to support millions of parallel exe-
cution threads. It is designed to interface with code written in a ‘host’
language running on the CPU. LooM is sufficiently low-level to im-
plement efficient parallel algorithms, but includes abstraction facilities
such as parallel map, parallel reduce and parallel scan.

1 Introduction and Background

LooM is a language for programming massively parallel co-processors used
on many modern computers. The specific devices supported are NVIDIA
GPUs using the cUDA architecture.

CubA devices support tens of thousands, or even millions of simultane-
ous execution threads, with hundreds of threads running in parallel at any
time. The threads are organized into a hierarchy: groups of 32 threads make
up warps that execute in series on single core, and do not have to be synchro-
nized; groups of up to 512 threads make up blocks, which can use high-speed
shared memory for inter-thread communication and user-managed caching;
the blocks collectively form a grid, and all threads in a single grid execute
the same kernel code. Although the kernel is the same for each thread in a
grid, individual threads need not follow the same execution path.

In addition to shared memory, devices have cached constant memory,
registers, and global memory. Transfer of data from the host computer’s
main memory to the device global memory space occurs in code on the host
side (that is, not within kernels running on the GPU device). This simplifies
LOOM, which is solely for compiling GPU kernels. In addition to memory
transfer to and from the host computer, all input and output occurs on the
host side.



Most CUDA device programming is done in a C-like language supplied by
NVIDIA. The target language for LOOM, however, is a lower-level language
called PTX. PTX looks very much like a traditional assembly language, al-
though it runs on a device-independent virtual machine and is JIT-compiled
to a cubin binary for execution.

Extensive documentation on CUDA is available from http://developer.download
.nvidia.com.

2 Overview of Loom

2.1 Design Goals and Language Features

LoowMm attempts to abstract away many of the repetitive and error-prone
details involved in writing GPU kernels, such as explicit array index calcu-
lations and thread barrier synchronization, while remaining at a sufficiently
low level to allow interesting parallel algorithms to be implemented (rather
than merely used in a black-box library, such as the cuDA linear algebra
libraries supplied by NVIDIA).

The language is statically typed. Types are indicated following a colon
after a variable name: x: Int32. In addition to basic types such as Int32 and
Float32, which correspond directly to PTX types, there are records such as
pair: {first: Int32, second: Int32} (a pair of integers), vectors such
asv: Int32[10], and two-dimensional arrays such as a: Int32[5,5]. Sev-
eral special constants make it easy to work on large vectors and arrays in
parallel.

LooM has several standard control constructs for conditionals and loop-
ing, which are demonstrated in the sample programs below. The language
also has operators designed to simplify parallel programming. There is a
parallel map operator which applies a function of one variable to each ele-
ment in a vector or array: £ /~ v. The parallel reduce operator, /., applies
a function of two variables (which should be associative in those variables)
repeatedly to reduce a vector or array to a single value per CUDA block (sub-
sequent kernel calls, or code running on the host CPU, can then be used
to complete the reduction). LooM also defines left and right parallel scan
operators, /: and :/. As with the reduction operator, scans work across
blocks rather than across entire vectors.

Shared memory, which functions both as a user-managed cache and a
mechanism for sharing data between threads in a single block, is allocated by
declaring a variable with the shared keyword. CUDA programs typically use
explicit barrier synchronization instructions to synchronize threads within



a block; in LOOM, statements that move data between memory state spaces
and alter state are synchronized by default.

Due to limitations of at least certain CUDA architectures, functions can-
not be recursive. A newer architecture used on high-end graphics cards,
called ‘Fermi’, permits recursive functions as well as a number of other pow-
erful features. It would be an interesting exercise to extend LOOM to take
advantage of some of those features.

2.2 Representative Programs

Finally, we show listings of a few short programs illustrating some of LOOM’s
features.
Find the maximum values in a two-dimensional array (by CUDA block):

kernel maximum(in: Int32[X_THREADS, Y_THREADS],
out: Int32[X_BLOCKS, Y_BLOCKS])
out <- max /. in

Shift the values in a vector to the left by exactly one block:

kernel shiftLeft(in: Float32[THREADS], out: Float32[THREADS])
current: Range <- block(B) -- ‘B’ is the current block index
previous: Range <- block(B-1) -- Range type {Int32, Int32}
out [[current]] <- in[[previous]]

Note that arrays indexed with double brackets are bounds-checked and
padded to zero outside the defined range. Single-brackets perform unsafe
array indexing.

This following is a more explicit, but equivalent, implementation:

kernel shiftLeft1(in: Float32[THREADS], out: Float32[THREADS])
if B> 0
then for i: Int32 <- range(B*BLOCKSIZE, (B+1)*BLOCKSIZE)
out[i] <- in[i-BLOCKSIZE]
else for i: Int32 <- range(B*BLOCKSIZE, (B+1)*BLOCKSIZE)
out[i] <- 0

Compute the sum of squares (by block):

func sum(x: Float32, y: Float32): Float32
return x + y



func sqr(x: Float32): Float32
return x*x

kernel sumOfSquares(in: Int32[THREADS], out: Int32[BLOCKS])
current: Range <- block(B)
shared t: Float32[] <- in[current] -- size is BLOCKSIZE
out[B] <- sum /. (sqr /= t)



