R*
| \ 3)
'v " nr) fa-‘"
J ‘0 1 r ‘
TVV 3o 0 i :
v It “’05 N
Os 1 01 'J‘;l.
* v, (11-1
| |
uc |7 { 1
J,Q "

c 'S Hj ;E'TGE,:
Traders Joe

Language Reference Manual Version 1.0

By Monu Chacko Email: mc3574@columbia.edu

Traders Joe is a technical analysis language that is used for modeli

ng various algorithms.

Traders Joe

Table of Contents
11 oo [8Te3 ([o] o [T TT TR

Lexical CONVENLIONS.......cco e
(O3 g F= 1= 11 (=] T = PP PP
KBYWOITS. ...ttt e e et e et e e e e e e e e et e e e e e e e s bn e e e e e e e e e e e es
100010 1 1= 01 PP TTSSPPPP
LY C=T0 T @ 0] K] = o | £
FIoating POINT CONSTANTSuuiiiiiiiiee et e e e e e e e st r e e e e e e e s e annnbeeeas
Y 1T @0] = | £
(@ 0] =T 0] = TP TP PP PP PUPPPURT
PUNCIUBLOIS ...ttt e e e e ettt ee e e e e e e et e tbbb e e e e e e e eebeba s e e e e e e e
107011010 01T o £ 7O
WHILE SPACES ...

D= = B Y 01 ST TSP
SIMIPIE Ty PES ettt
LOT0T 0] 0] (=3 QN 1Y/ 0 L= TP

Y= 1] 0 1 T=T 0PRSS
LO70] 1] 0T 10 Lo IS r= 1=T 4 =] 1
EXPresSSion STAEMENTScccuiiiiiiiiie e e e e e e e e e e e s s e e e e e e e s s s snb b e e e e eeaeeeeaannnnsaeeas
(00] 01170 S o1 (=] 141 o £ PP PPRR PP

LAY 11T o T o
T (o T P SRRRURURRRR
=] £ o T 11 4o o PP

UL (o110 1T

Traders Joe

HIG Lo rannnrnnrrres 9
[0 TSR PTUPPTTTRR 10
Error Handling ... 10
TIME SIS INMPULS L. iee it e e e e e e et r e e e e e e e e et e e e eeeeeeeeae bt aeeeeeeeeentennnaeeaaaaeerennes 11
SCOPE RUIES. ...t e ettt e e e e e ettt e e e e e e e et e e et e e e e e e e eeees 11

Y o] 1= o 1 G 13

Traders Joe

Introduction

Traders Joe is a language that provides high level technical analysis capabilities for any product
like forex, security etc. This language is easy to use and has built in functions that help in
technical analysis. Traders Joe understands mathematical notations and uses algorithms for

modeling and simulating any trading models.

Traders Joe is written using OCaml and is optimized for technical analysis. It uses the state-of-
the-art algorithms that are widely used by the technical analysis community.

Lexical Conventions

Character Set
Traders Joe uses ASCII character.

Keywords

Following are the keywords used by this language. These reserved words cannot be used as
identifiers in the program. Keywords are case sensitive.

break High

candle is_equal_to

Case is_greater_than

Catch is_less_than

Close is_less_than_or_equal_to

Else is_not_equal_to

elseif Loop

ema Low

Fib Median

For Open
Constants

Integer Constants

An integer constant can contains series of number from 0 to 9. For example: 2000023

sma
sort_asc
sort_desc
sum
trace

try

while
alert

Traders Joe

Floating Point Constants
Floating point are real numbers that contain fraction part. These numbers has an integer part, a
decimal point and numbers that follow the decimal points. The character ‘e’ is optionally
assigned after the decimal point.

String Constants
String constant are enclosed within double quotes. It can contain escape characters that is used
for formatting messages.

Operators

Operators allow users to perform various operations. The following list contains various tokens
that are used to assess relationship, perform logical operation, calculate numerical values or to
assign values to a variable. Alternatively users can also use is_equal_to, is_greater_than,
is_less_than, is_less_than_or_equal_to, is_not_equal_to to perform relationship operations.

Equal To

Not Equal To I=
Less Than <
Greater Than

Less Than or Equal To <=
Greater Than or Equal To >=

Su btract -
Multiply *
Divide /
Power

Assign

Traders Joe

Punctuators

Following punctuators are used to enclose or separate values or arguments. For example a
string value is enclosed within double quotes “string value” and a character value is enclosed
within single quotes ‘a’.

Encloses string value

Encloses character value

() Groups arguments in a function

, Separates arguments in a function

Comments

Comments are started with an open square bracket immediately followed by a start and
terminated with a star immediately followed by a close square bracket. Any text between [* and
*] are ignored. Comments helps programmers describe the function they are writing. Any code
block enclosed between comments begin and end tag is also ignored.

For example:

[* This comment is ignored by the program *]

White Spaces
White spaces like tabs, line feeds etc are used to structure the code block. Developers may use
them to align the code block to make their code readable.

Data Types

Simple Types

boolean Boolean i.e. true or false

int Integer valuese.g. 1, 2,3

float Floating point values e.g. 1.2001
string String value e.g. "string value"
char Character value e.g. 'a'

Complex Types

Objects are classes that contain types, variables, functions etc that represents a model. Trading
algorithms can be organized into classes and initialized as objects at runtime. This is useful
when comparing the performance of two trading models.

WY Traders Joe

Statements

Statements are sequence of statements or expressions that are executed sequentially. They
can be complex or simple.

Compound Statements
Compound statement is collection of statements or expressions that are enclosed within a code
block. A code block can be a function that is enclosed within a ‘begin’ and ‘end’ keyword.

Expression Statements
An expression is a statement that is separated by a operator. For example

var price == 1.2005
Control Statements

While loop
While loop allows conditional execution of the ...

Example:

while close 0 is_less_than ema 20
begin

[* statement *]
end

For loop
for expression 1; expression 2; expression 3
begin
[* statement *]
end

If else condition
If... else are conditional statements and has the following syntax.

if SBEURUSD close 0 is_less_than ema 10 0 then
warn "Buy EURUSD"

else
warn "No signal”

Traders Joe

Functions

Built-in Functions

Alert

The alert function is used to return information to the user. A statement enclosed in double
quotes should follow the alert command. Alert statement without proper string statement will
return “Improper syntax error”.

Example:
alert “The opening price is greater than the previous closing price”

Trace

Trace is used to generate valuable information about the program and is used for debugging.
Trace outputs suppressed when moving the code to the production environment. A string
statement should follow the trace command.

Example:
trace “Reached the GetPrice function”

EMA

Exponential Moving Average (EMA) is a type of moving average that reacts faster to recent
price changes. This function takes time period and calculating period as its parameter and
returns a floating point number.

Example:

ema 10 1 [* returns the previous days EMA that is calculated using 10 days average *]

SMA

Simple Moving Average (SMA) is a type of moving average that reacts slower to recent price
changes. This function takes time period and calculating period as its parameter and returns a
floating point number.

el Traders Joe

debih
i

iﬂ#*ﬁ

i
it
i*ééiigﬁf¢7{? e a

e
), e, ﬁi* ﬁ 1a

10 14 18 20 22 24 28 30 3 5 7 11 131719 21 2527 1 I 5 9 11 1517 19 22 2529 31 2 6 8 1214 16 20 22 26 28
Example:

sma 10 1 [* returns the previous days SMA that is calculated using 10 days average *]

Candle

Candle sticks are patterns on the bar chart that describes the price movement. This function
takes the calculating time and returns the type of candle stick patter found for that day. Dogi,
Hammer are candle stick patterns.

Huh
Upper shadow
Open Close
Real
Body
Close Open
Lower shadow ‘
Low
Example:

Candle 1 [* returns the previous candle pattern. *]

Fib

Fibonacci retracement is a very popular technical analysis tool and is based on key nhumbers
identified by mathematician Leonardo Fibonacci in the thirteenth century. The function ‘Fib’
taken time period and a percentage as its parameter and returns a floating point number
indicating the retracement level.

SN Traders Joe

100%

MLLAS RALLE LAARY LAY MLLAY LASLE LAAA |

MLJ ML RALLN LLAA |

MALAN LA R

0.0%

LAN LA

[Nov " [Dec [2005" [reb [Mar [r My Jun [u o feug
Example:

Fib 60 50% [* returns the retracement at 50%. *)

Open
This function is used to find the opening price of a stock or currency pair. It takes time period
integer as its parameter and returns an opening price floating point number.

Example:
Open O [* returns the current opening price. *]

Close
This function is used to find the closing price of a stock or currency pair. It takes time period
integer as its parameter and returns a closing price floating point number.

Example:

Close 1 [* returns the closing price on the previous day. *|

High

This function is used to find the highest price of a stock or currency pair on a given day. It takes
time period integer as its parameter and returns a floating point number.

Example:

High 1 [* returns the highest price on the previous day. *]

Traders Joe

Low
This function is used to find the lowest price of a stock or currency pair. It takes time period
integer as its parameter and returns a lowest price floating point number.

Example:

Low 1 [* returns the lowest price on the previous day. *]

Error Handling

Following are the built in errors that the system throws.

1 FATAL_ERROR Unexpected error occurred

2 SYNTAX_ERROR Error in syntax

3 OUT_OF_BOUND The data in the array you are referring does not exist
4 TYPE_MISMATCH Data type is not in the correct format

5 MISSING_INPUT_FILE Input file is missing

6 FORMAT_ERROR Input file is not in the correct format

Errors can be handled using try and catch error block. The try... catch block without the throw
block will suppress errors. It is a best practice to handle all errors appropriately. Following code
catches error and suppresses it.

Suppress Error
[* Suppressing error *]
try
begin

[* Statement *]
end

Catching Error
[* Suppressing OUT OF BOUND error *]
try
begin
[* Statement *]
end
catch OUT_OF_BOUND
begin
[* Handle error *]
end

Traders Joe

Custom Error
[* Custom error *]
try
begin
[* Statement *]
end
catch FORMAT_ERROR
begin
throw “Error: Please check the format of the time series file.”
end

Time Series Inputs
Time Series data are inputs for various technical analysis operations. These inputs are stored in
a file and passed to the language. This is a tab delimited file in the following format.

Symbol{tab}DataTime{tab}Open{tab}Close{tab}High{tab}Low

There is no restriction on the number of lines of data that the system can accept. Following is a
sample time series data.

EURUSD 1/5/2011 1.5095 1.5105 1.5109 1.5085

EURUSD 1/4/2011 1.5031 1.5095 1.5095 1.5021

EURUSD 1/3/2011 1.5085 1.5031 1.5085 1.5031

EURUSD 1/2/2011 1.5021 1.5085 1.5021 1.5031

EURUSD 1/1/2011 1.5001 1.5021 1.5021 1.5001
Usage:

$EURUSD = “C:\EURUSD.txt”

[* This will warn if the current ema 10 is less than todays close *]
if SEURUSD close 0 is_less_than ema 10 0 then
warn "Buy EURUSD"

Scope Rules
Global variables:

The global variable many be declared anywhere in the program outside the local code blocks.
These variables can be accessed by functions and will retain its value. A variable that is defined

Traders Joe

with the same name within a code block will however has its own value that is initialized inside a
local code block.

Local variables:

A code block can be a function or a control statement like a while loop. Variables declared
within these blocks are local to its container. If a code block is a control statement then it should
begin with the ‘begin’ keyword and end with a ‘end’ keyword. Variable scope within a nested
code block is local to its container.

Example:

var targetPrice = 1.2002 [* Global variable *]
function GetTargetPrice

begin

var targetPrice = 1.4000
while close 0 is_lesser_than ema 20
begin
var targetPrice = 1.2500
end
end

Traders Joe

Appendix A

Scanner.mll

{ open Parser }

rule token =

parse [''"\t' \r' \n’] { token lexbuf }
| { comment lexbuf }
| ™" { comment lexbuf }

| { SEMICOLON }

|'({ LEFT_PAREN }

|y { RIGHT_PAREN }

| {LEFT_SQ_BRACKET }
| {RIGHT_SQ_BRACKET }

—_—

|+ {PLUS }

|- { MINUS }

| { TIMES }

| { DIVIDE }

| "~ { MATRIX_POWER }

| { DECIMAL_POINT }

|'=" { ASSIGNMENT }

== {EQUAL_TO}
| "1=" {NOT_EQUAL }
ne { LESS_THAN}
| ">" { GREATER_THAN }
| "<=" {LESS_THAN_EQUAL TO}
| "break" { BREAK_OUT}
| "case" {CASE_SWITCH}
| "else" { ELSE_CONDITION }
| "elseif" { ELSEIF_CONDITION }
| "end" { END_TERMINATE }
| "error" { ERROR_DISPLAY }
| "is"+"_"+"less"+"_"+"than" {IS_LESS_THAN }
| "is"+ "_"+"greater"+"_"+"than" {IS_GREATER_THAN }
| "is"+ " "+"equal"+"_"+"than" {IS_EQUAL TO}
| "is"+ " _"+"not"+"_"+"equal"+"_"+"to" {IS_NOT_EQUAL_TO}

| “is"+ " _"+less"+" "+"than"+"_"+'or'+"_"+'equal’+" "+"to" { IS_LESS_THAN_OR_EQUAL_TO}
| "for" { FOR_LOOP }

Traders Joe

| "while"

| "begin”

| "end"

| "if"

| "and"

| "then"

| "return”

| "switch"

| “try"

| "catch"”

| "throw"

| "trace"

| "warn"+' '+['A-'Z']
| "print"+" '+['A'-'Z]
| "break"

| "min"+" "+['0'-'9"]

| "max"+" "+['0'-'9"]

| "sum"

| "median”+" "+['0'-'9"]
| "sort_asc"

| "sort_desc"

| "ema"+" "+['0'-'9']

| "sma"+" "+['0"-'9"]

| "candle"+" "+['0"-'9"]
| "fib"+" "+['0'9]

| "open"+" "+['0"-'9"]

| "close"+" "+['0'-'9"]

| "high"+" "+['0"-'9"]

| "low"+" "+['0"-'9"]

| '$4[A-Z]

| [0-'9T+ as lit
| eof

{ WHILE_LOOP }

{ BEGIN_LOOP }

{ END_LOOP }
{IF_CONDITION }

{ AND_CONDITION }

{ THEN_CONDITION }

{ RETURN_STATEMENT }
{ SWITCH_STATEMENT }
{ ERROR_TRY }

{ ERROR_CATCH }

{ ERROR_THROW }

{ PRINT_TRACE }

{ WARNING }

{ PRINT_MSG }
{STATEMENT_TERMINATOR }

{ MINIMUM }

{ MAXIMUM }

{ SUM_OF}

{ MEDIAN_PRICE }
{ SORT_ASC}

{ SORT_DESC }

{ EMA_AVERAGE }
{ SMA_AVERAGE }
{ CANDLE_TYPE }
{FIB_SEQ}

{ OPEN_PRICE }

{ CLOSE_PRICE }
{ HIGH_PRICE }

{ LOW_PRICE }

{ PRODUCT_SYMBOL }

{ LITERAL(int_of_string lit) }
{EOF}

