Highly Organized &

Optimized Trading In
Exchanges (HOOTIE)

Final Report

Highly Organized & Optimized Trading In Exchanges Final Report

INTRODUCTION

Most traders have little or no technical knowledge and rely on software and human interaction
to perform complex trading routines. The primary objective of this language is to provide a way
for traders to create an automated black box system that is simple enough to understand and
use yet robust enough for high volume trading. The language and compiler will handle all of the
details leaving the user free from worrying about actual code.

The HOOTIE language is very simple and those that have the basic knowledge of trading stocks
can pick it up very quickly. Each command is written on a single line with no semicolon and
each item is separated by spaces. The symbol is in reference to a stock symbol.

QUICK LANGUAGE TUTORIAL

Each HOOTIE program requires at least one EXECUTE block within the .hoot file. Inside each
block can be a series of instructions followed by a semi-colon for each instruction. To compile a
.hoot file type (where FILE_NAME_LOCATION is the name of your source file):

./hooties FILE_NAME_LOCATION.hoot
Now you can simply type “ant run” or locate the java executable in the dist folder and run that.
A basic program:

// This is a comment (Comments are not used by the program) //
// Hoot_Hoot.hoot //

EXECUTE hello_world {
PRINT “HELLO STOCK MARKET WORLD”;
EXIT;

To run this program

./hooties hoot_hoot.hoot
ant run

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

LEXICAL CONVENTIONS

There are five kinds of tokens in this language: identifiers, stock symbols, keywords, strings, and
operators. Tabs, blanks, and comments are ignored except when acting as separators. Newlines
ignored and semicolons are used to terminate a statement.

COMMENTS

A comment or note is determined by beginning and ending with a double backslash and does
not interfere with the execution of the program.

// This is a comment //
IDENTIFIERS

An identifier is a sequence of letters and digits with the first character being alphabetic
including the underscore “_”. Upper and lower case letters are NOT considered different.

STOCK SYMBOLS

Stock symbols are always capitalized and start with a dollar sign.

For Example: SMGM
KEYWORDS

The following capitalized keywords are reserved and may not be used as identifiers:

e LOOKUP

e BUY

e SELL

e WHEN

e OTHERWISE
e LOOP

e WAIT

e WAITEXE

e BREAKOUT
e AND

e OR

e NOT

e IS

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges

e PRINT

e EXEUTE

e STOP

o EXIT

e TRUE

e FALSE

e PRICE

e VOLUME

e MCAP

e BETA

e RANGE
NUMBERS

Numbers can be either integer or floating point values with the following restrictions

e Numbers are a sequence of digits from 0 through 9.
0 Example: 3000000

e Floating point values must have a decimal point
O Example: 3000000.00

STRINGS

" u

A string is a sequence of characters starting and ending with double quotes (“ “). For Example:

“THIS IS A STRING”
OPERATORS

An operator is a specific token which specifies an operation on one or more operand and may
be an expression or constant. Arithmetic and comparison operators are left associative,
Assignment is right associative, and logical operators have no associativity.

COMPARISON OPERATORS

Final Report

Operator Definition Number Example Stock Example

< Less than a>b SNTFL IS > 400.00
> Greater than a<b SNTFL IS > 400.00
<= Less than or equal to a<=b SNTFL IS > 400.00
>= Greater than or equal to a>=b SNTFL IS > 400.00
EQUALS Equal to a EQUALS b SNTFL IS > 400.00

Copyright © 2011

Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges

Final Report

ARITHMETIC OPERATORS

Operator Definition Number Example Stock Example
+ Addition a+b SNTFL + 400.00
- Subtraction a-b SNTFL - 400.00
Multiplication a*b SNTFL * 400.00
Division a/b SNTFL / 400.00
% Modulus a%b SNTFL % 400.00

ASSIGNMENT OPERATORS

Operator Definition

Number Example

Stock Example

= Assignment

var=5

N/A

LOGICAL OPERATORS

Operator Definition Example Stock Example
AND Logical AND varl AND var2 N/A
OR Logical OR varl OR var2 N/A
NOT Logical NOT NOT var2 N/A

DECLARATIONS

There are two specific types of declarations. One type is the buying and selling of a stock and

the other is the variable declarations.

BUY AND SELL

Buying or selling a stock begins with the BUY or SELL keyword followed by the required stock

symbol, and optional conditions, and optional term. For example:

SELL Symbol Quantity;
Example: SELL SAIG 2000;

BUY Symbol Quantity;
Example: BUY SMGM 2000;

VARIABLES

To declare a double percision variable the ampersand issued with the variable identifier.

@variablename;

Copyright © 2011

Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

The assignment operator can assign values to each variable. For example:

@number_of_trades;
number_of trades = 50;

STATEMENTS

Statements are only one per line and executed in order however statements instead the
EXECUTE blocks are executed concurrently. Whitespace has no effect.

WHEN STATEMENT

The WHEN statement is in the follow two form

WHEN (condition) {
statement

WHEN (condition) {
statement

} OTHERWISE {
statement

}

In both cases if the condition is true the first statement after the WHEN is executed. If the
statement is false and there is an OTHERWISE clause then that statement will be executed.

Example:

WHEN ($NFLX IS > 210.00) {
PRINT “NETFLIX IS TOO EXPENSIVE!”;
EXIT;

} OTHERWISE {
EXIT;

LOOP STATEMENT

The LOOP statement is in the form

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

LOOP (condition) {
statement

}

The statement is executed repeatedly until the value of the condition becomes false.
BREAKOUT STATEMENT

The BREAKOUT statement is put within a WHEN or LOOP statement and causes the termination
of that statement.

EXIT STATEMENT
The EXIT statement terminates the execution of the program completely.
PRINT STATEMENT

The print statement can be used to output strings or variables to the terminal. For example:

PRINT “HELLO STOCK MARKET WORLD”;
EXECUTE STATEMENT

The execute statement begins with the EXECUTE keyword and the followed by an identifier.

EXECUTE identifier {

}

Each execute block is done concurrently and each program needs at least one execute block.
For example:

EXECUTE a_merger {
WHEN (SBLOAQ IS >=.09) {
SELL NFLX 2000;
EXIT;

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

WAITEXE STATEMENT

The WAITEXE before a BUY or SELL and halts the execution until the BUY or SELL finishes. For
Example:

WAITEXE SELL SNFLX 2000;

This will halt execution until 2000 shares of NFLX are sold.

WAIT STATEMENT

The WAIT followed by an integer will halt the execution for a specific number of milliseconds.
For example:

WAIT 1000;
This will halt execution of the program for 1000 milliseconds.

LOOKUP STATEMENT

The LOOKUP statement begins with the LOOKUP keyword followed by the stock symbol and a
certain characteristic.

LOOKUP Symbol [Information]

INFORMATION
VOLUME
BETA
MCAP
RANGE
PRICE (default)

PROJECT PLAN

The project design and development was divided into three parts.

1. The first important step was to get the Parser & Interpreter developed to a certain point
in which basic functionality was implemented which resembled our Language Reference
Manual.

2. Next phase we begin by creating the java application that would have core functionality
of running and connecting to a firm’s platform APl and providing stock data.

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

3. The final installment would be to combine our generated code with the core java
application to provide a complete application for a user.

PROJECT TIMELINE

Date Milestone

02/09/2011 Proposal

03/20/2011 Basic Parser

03/21/2011 Language Reference Manual
04/19/2011 Java Application Development
05/02/2011 Combining Parser and Java Application
05/06/2011 Debugging and Testing

05/09/2011 Final Report

SOFTWARE DEVELOPMENT ENVIRONMENT

Since this project only involved one developer a version control system was not used however
the project was maintained with numerous (daily) backups and stored on a RAID 5 drive
configuration. The code was compiled and run on two different machines (Dual Core and Hex
Core) and operating systems (Mac OS X x64 and Windows 7 Ultimate SP1 x64); both yielding
the same results.

The interpreter was written with O’Caml and gedit and compiled with ocamlc, ocamllex, and
ocamlyacc from the terminal. For the java side, Netbeans 7.0 was used to compile and debug.

PROGRAMMING SYTLE

The programming style for HOOTIE is very simple. Each block should be indented to provide for
readability. Identifiers should begin with a lowercase and be descriptive of what they are
representing whenever possible.

For Example:

EXECUTE inRange {
LOOP($NFLX 1S > 222.50 AND $NFLX 1S < 500) {
BUY $NFLX 200;
BREAKOUT;

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

ARCHITECHTURAL DESIGN _

The architecture of the HOOTIE compiler contains three major components.

ure.java

ootie Core

(java)

The .hoot file is first run through the scanner, parser, and translator in which a
LanguageStructure.java file is generated that contains the java code that will run with the
Hootie Core. Each EXECUTE block is transformed into a separate thread that will work with the
APl that is currently implemented to buy and sell stocks based on given conditions. Each trading
firm platform needs to have StockTradingAPI interface implemented. For the purposes of this
project a sample TestTradingFirm was used with basic information. Combining both will give us
the Hootie java executable that can be run on any machine with JRE 6 or JDK 1.6 installed.

Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

TEST PLAN

It is impossible to test every single path that a compiler can generate. However, the most
important paths and basic control structures can be tested to provide a certain level of sanity.
Two sample test cases are shown below:

TEST 1

‘INPUT
// THIS 1S AN OPERATOR TEST //

EXECUTE testerA {
LOOP($NFLX 1S > 222.50 AND $NFLX 1S < 500) {
BUY $NFLX 200;
BREAKOUT ;

}

EXECUTE testerB {
LOOP($NFLX IS > 222.50 OR $NFLX IS < 500) {
BUY $NFLX 200;
BREAKOUT;

}

EXECUTE testerC {
@temp;
temp = temp + 1;
PRINT "RUNNING NOW';
WHEN(temp EQUALS 10) {
EXIT;
}

WHEN($SNFLX 1S > 222.50 I= $NFLX IS < 500) {

BUY $NFLX 200;
BREAKOUT ;

}

‘OUTPUT
[java] RUNNING NOW
[java] RUNNING NOW
[java] RUNNING NOW
[java] RUNNING NOW
[java] RUNNING NOW
[java] RUNNING NOW
[java] RUNNING NOW
[Java] RUNNING NOW
[Java] RUNNING NOW

10
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

[§ava]l RUNNING NOW
[Java] hootie.exceptions. InsufficientFunds: Insufficient funds in
the account for the transaction!

[Java] hootie.exceptions. InsufficientFunds: Insufficient funds in
the account for the transaction!

TEST 2

‘INPUT
// THIS IS A EXIT AND WAIT TEST //

EXECUTE tester {

Otest;

@bools;

LOOP($NFLX IS > 222.50) {
WAIT 2000;
test = 50;

s

}

EXECUTE testerB {
PRINT "THIS 1S A TEST";
WAITEXE SELL $NFLX 200;
LOOP($NFLX IS < 500.50) {
EXIT;
}

}

‘OUTPUT
[java] THIS IS A TEST

[Java] hootie.exceptions.NotlnPortfolio: Symbol: $NFLX was not
found in the users portfolio!

TEST CASES

A test case developed for each of the specific types of blocks as well as individual operators.
Certain test cases were created to cause runtime errors. There were also test cases created to
cause compiling errors (not included with tests but can be easily reproduced). The output of
each test case was compared with what should have been logically expected.

11
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

LESSONS LEARNED

Writing a compiler is a difficult and complex task. There should be ample time to design and
think through all possible outcomes. Although it is very hard to keep on schedule because of
work and school, | tried my best to keep a consistent level work throughout the time period.
There is not enough time in a term to create a fully functional compiler that tests and runs
every path. Going through the process, however, helps understand the process in which your
source is generated into machine code. As a recommendation to future teams, it is important
to start the design early so you have enough time to go back and change things that may not
necessarily work.

CODE LISTING

The following is a complete listing of the source code used by the HOOTIE Project:

SCANNER.MLL
{ open Parser }

rule token = parse
[° °\t" "\r" "\n"] { token lexbuf } (* Whitespace *)

| /7" { comment lexbuf } (* Comments *)
| "e- { AWP }

| “C { LPAREN }
| DF { RPAREN }
| “{ { LBRACE }
| "} { RBRACE }
| "5 { SEMI }

| =." { COMMA }
| =+- { PLUS }

| =-- { MINUS }
| =*" { TIMES }
| /" { DIVIDE }
| °=" { ASSIGN }
| ""AND" { AND }

| "OR™ {OR }

| "NOT" { NOT }

| "EQUALS" { EQ }

| = { NEQ }

| °<* {LT}

| <=" { LEQ }

| >" {GT}

| ">=" { GEQ }

| ""WHEN" {IF }

| "OTHERWISE" { ELSE }

| ""LOOP™" { WHILE }
| ""BREAKOUT" { RETURN }
| "BUY" { BUY }

12
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

"SELL" { SELL }

"EXECUTE" { EXECUTE }

ISR {1S}

"PRICE" { PRICE }

"VOLUME"™ { VOLUME }

"MCAP" { MCAP }

"BETA" { BETA }

"RANGE" { RANGE }

""LOOKUP"" { LOOKUP }

"WAITT { WAIT }

"WAITEXE" { WAITEXE }
{ EXIT }

"PRINT" { PRINT }

"TRUE" { TRUE }

"FALSE"™ { FALSE }

[*""1["a"-"z" "A"-"Z" "0°"-"9" " " ® "1*["""]1 as Ixm { TEXT(Ixm) }
[FO"-"9"]+ as Ixm { LITERAL(int_of_string Ixm) }
[FO"-"9"]1*["-"1["0"-"9"]* as Ixm { FLOAT (float_of_string Ixm) }
"$"["A"-"Z"]+ as Ixm { SYMBOL(Ixm) }

[Fa"-"z" "A"-"Z"]["a"-"z" "A"-"Z" "0"-"9" " _"]1* as Ixm { ID(Ixm) }
eof { EOF }

_as char { raise (Failure("illegal character " ~ Char.escaped

har)) }

and comment = parse
“//" { token lexbuf }
| _ { comment lexbuf }

I
I
I
I
I
I
I
I
I
I
I
| "EXIT™
I
I
I
I
I
I
I
I
I
I
C

PARSER.MLY
%{ open Ast %}

%token BUY SELL EXECUTE LOOKUP EXIT PRINT
%token WAIT WAITEXE

%token 1S PRICE VOLUME MCAP BETA RANGE
%token <string> SYMBOL

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE ASSIGN
%token EQ NEQ LT LEQ GT GEQ

%token AND OR NOT TRUE FALSE

%token RETURN IF ELSE FOR WHILE AMP
%token <float> FLOAT

%token <int> LITERAL

%token <string> ID

%token <string> TEXT

%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%left ASSIGN

13
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

%left 1S

nleft EQ NEQ

%left AND OR NOT
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ast.program> program

%%

program:
/* nothing */ { [1. [1 }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
EXECUTE ID LBRACE vdecl list stmt_list RBRACE
{ { fname = $2;
locals = List.rev $4;
body = List.rev $5 } }

vdecl_list:
/* nothing */ {11}
| vdecl _list vdecl { $2 :: $1 }

vdecl :
AMP 1D SEMI { $2 }

stmt_list:

/* nothing */ { [1 }
| stmt_list stmt { $2 :: $1 }

{ ".price" }

| VOLUME { ".volume™" }

| PRICE { ".price"™ }

| MCAP { "_.mcap"” }

| BETA { "_.beta" }

| RANGE { ".range"™ }
stmt

expr SEMI { Expr($1) }
| RETURN SEMI { Return }
| WAITEXE stmt { Waitexe($2) }
| WAIT LITERAL SEMI { Wait($2) }
| EXIT SEMI { Exit }
| LBRACE stmt_list RBRACE { Block(List.rev $2) }
| 1F LPAREN expr RPAREN stmt %prec NOELSE { IFf($3, $5, Block([1)) }
| IF LPAREN expr RPAREN stmt ELSE stmt { IT($3, $5, $7) }
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

14
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges

| BUY SYMBOL LITERAL SEMI { Buy
| SELL SYMBOL LITERAL SEMI { Se
| LOOKUP SYMBOL cmpr SEMI { Loo
| PRINT TEXT SEMI { Print($2) }

expr:
LITERAL { Literal($1
FLOAT { Price(%$1) }
ID { 1d($1) }
TRUE { True }
FALSE { False }

SYMBOL IS cmpr { Symbol($1,
expr PLUS expr { Binop($l,
expr MINUS expr { Binop($l,
expr TIMES expr { Binop($l,
expr DIVIDE expr { Binop($1,

expr EQ expr { Binop(%$1,
expr NEQ expr { Binop(%$1,
expr LT expr { Binop(%$1,
expr LEQ expr { Binop(%$1,
expr GT expr { Binop(%$1,

expr GEQ expr { Binop(%$1,
expr AND expr { Binop(%$1,
expr OR expr { Binop(%$1,
expr NOT expr { Binop(%$1,
ID ASSIGN expr { Assign($l,
LPAREN expr RPAREN { $2 }

AST.MLI

(%2, $3) }
11($2, $3) }
kup($2, $3) }

)}

$3) }
Add, $3) }
Sub, $3) }
Mult, $3) }
Div, $3) }
Equal, $3) }
Neq, $3) }
Less, $3) }
Leq, $3) }
Greater, $3) }
Geq, $3) }
And, $3) }
Oor, $3) }
Not, $3) }
$3) }

Final Report

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater

| Geg | And | Or | Not

type expr =

Literal of int

Price of float

Symbol of string * string
Id of string

Binop of expr * op * expr
Assign of string * expr
True

False

Noexpr

type stmt =

Block of stmt list

Expr of expr

Return

Wait of int

Waitexe of stmt

Exit

IT of expr * stmt * stmt

Copyright © 2011 Houtan Fanisalek

15

Highly Organized & Optimized Trading In Exchanges Final Report

While of expr * stmt

Buy of string * int

Sell of string * int
Lookup of string * string
Print of string

type func_decl = {
fname : string;
locals : string list;
body : stmt list;

}

type program = string list * func_decl list

PRINTER.ML
open Ast

let rec string_of_expr = function
Literal(l) -> string_of_int 1
Price(f) -> string_of_float T
Symbol (s, ¢) -> "api.lookup(\"" ~ s ~ "\'")" ~ c

Id(s) -> s
Binop(el, o, e2) ->
string_of expr el ~ "™ " A
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> /"
| Equal -> "==" | Neq -> "I="
| Less -> <" | Leq -> "'<=" | Greater -> ">" | Geq -> "">="
| And -> "&&™ | Or => "]|" | Not -> "I') ~ ™ " A
string_of_expr e2
Assign(v, e) -> v N~ ' =" N gtring_of_expr e

True -> "true"
False -> "false"
Noexpr -> "'

let rec string of _stmt = function
Block(stmts) ->

"{An" N String.concat """ (List.map string_of stmt stmts) "}\n"
Expr(expr) -> string_of_expr expr ™ ";\n";
Return -> "break;\n";
Wait(i) -> "sleep("" ™ string_of_int i ~ ");"
Waitexe(s) -> "\nnew Thread(\n new Runnable() { \npublic void
run() {" "

" try { " N string_of_stmt s N " } \ncatch (Exception e) {
\ne._printStackTrace();" ©

"3 \n } \n}P).start();"

| Exit -> ""System.exit(0);"

| 1f(e, s, Block([])) -> "if (" ™ string_of expr e ™~ "H)\n" ~
string_of _stmt s

| If(e, s1, s2) -> "if (" ~ string_of expr e ™~ ")\n" ~

string_of _stmt sl » "else\n" ” string_of _stmt s2

16
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges Final Report

| While(e, s) -> "while (" ” string_of_expr e ~ ™) "~
string_of _stmt s
| Buy(e, s) -> "api.-buy(\"" ~ e A "\", " A string_of_int s ™ ");\n"
| Sell(e, s) -> "api.sell(\"" ~ e ~ "™\", " ~ string_of_int s »
"y:\n"
| Lookup(s, c) -> "api.lookup(\"" ~ s ~ "\'")" ~ c
| Print(s) -> "api.print(*™ ~ s ™ ');"

let string_of vdecl id = "private double "™ » id ™ ";\n"

let string_of fdecl fdecl =
" class " N fdecl.fname ™ " extends Thread {\n" ~
private boolean running = true; \n"
String.concat """ (List.map string_of _vdecl fdecl.locals) »
' public void run() { \n" ~
" while(running) {\n" ~
“try { \n"
String.concat " (List.map string of stmt fdecl.body)
"} catch (Exception e) { \n System.out.printin(e); \n running =
false; " ~
"MN\n \n F\n }\n"

let string_of threads tdecl =
let rec helper i = function
[1 -> "\n";
| h::t -> (helper(i - 1) t) »
' threads["™ ™ string_of _int i ~ "] = new "™ ~ h_fname » "(Q;\n"
in helper ((List.length tdecl) - 1) tdecl

let string of program (vars, funcs) =
"package hootie.generated;\n" »
“import hootie.connector.StockTradeAPI ;\n\n" ~
"public class LanguageStructure { \n" ~
" private StockTradeAPl api;\n" ~
" public Thread[] threads = new Thread["™ » string_of _int
(List.length funcs) ™ "];\n" ~
' public LanguageStructure(StockTradeAPl api) {\n" ~
(string_of_threads funcs) »
' this_api = api; "
"\n e
String.concat (List.map string_of _vdecl vars) ~ "\n" 7~
String.concat "\n" (List.map string_of fdecl funcs) ~
ll}\nll

HOOTIE.ML
let =
let lexbuf = Lexing.from_channel stdin in
let program = Parser.program Scanner.token lexbuf in
let listing = Printer.string_of _program program in
17
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges

print_string listing

MAIN.JAVA

/*

* Houtan Fanisalek
* Copyright (c) 2011
*/

package hootie;

import hootie.firms.TestTradingFirm;
import hootie.generated.lLanguageStructure;

/**
*
* @author Houtan Fanisalek
*/

public class Main {

/**

* @param args the command line arguments
*/

public static void main(String[] args) {

TestTradingFirm etrade = new TestTradingFirm();

Final Report

LanguageStructure executor = new LanguageStructure(etrade);

Thread[] execute = executor.threads;
try {
for (int 1 = 0; i < execute.length;
execute[i].start();
by

for (int i = 0; 1 < execute.length;
execute[i]-join();

} catch (InterruptedException ignore) {
//Do nothing

} catch (Exception e) {
System.out.printin(e);

}
}
}
STOCK.JAVA
/*

* Houtan Fanisalek

* Copyright (c) 2011

*/

package hootie.connector;
/**

*

* @author Houtan Fanisalek

Copyright © 2011 Houtan Fanisalek

18

Highly Organized & Optimized Trading In Exchanges

*/

public class Stock {
public double price;
public int volume;
public double beta;
public double range;
public double mcap;
public String Name;

public Stock () {
Name = "$EMPTY';
price = 0.0;
volume = 0O;
range = 0.0;

mcap = 0.0;
}
}
STOCKTRADEAPI.JAVA
/*

* Houtan Fanisalek

* Copyright (c) 2011

*/

package hootie.connector;

import hootie.exceptions.BadSymbol;
import hootie.exceptions. InsufficientFunds;
import hootie.exceptions.NotInPortfolio;

/**

*

* @author Houtan Fanisalek
*/
public class StockTradeAPl {

public StockTradeAPl ()
{

}

public synchronized void print(String output) {

System.out.printin(output);

Final Report

}
public synchronized Stock lookup(String stock) throws BadSymbol
{
return new Stock();
}

public synchronized boolean buy(String stock,
throws BadSymbol, InsufficientFunds {

Copyright © 2011 Houtan Fanisalek

int quant)

19

Highly Organized & Optimized Trading In Exchanges Final Report

return true;

}

public synchronized boolean sell(String stock, int gquant)
throws BadSymbol, NotlnPortfolio {

return true;

}
}
TESTTRADINGFIRM.JAVA
/*

* Houtan Fanisalek
* Copyright (c¢) 2011
*/

package hootie.firms;

import hootie.connector._Stock;

import hootie.connector.StockTradeAPl;
import hootie.exceptions.BadSymbol;

import hootie.exceptions. InsufficientFunds;
import hootie.exceptions.NotlnPortfolio;

/**

*

* @author Houtan Fanisalek
*/
public class TestTradingFirm extends StockTradeAPl {

@Override

public synchronized void print(String output) {
System.out.printin(output);

}

@Override
public synchronized Stock lookup(String stock) throws BadSymbol {
Stock s = new Stock();
if (stock.equalslgnoreCase(""'$NFLX')) {
s.price = 250.0;
s.volume = 20000000;
} else if (stock.equalslgnoreCase("$A1G™)) {
s.price = 24.0;
s.volume = 44444444
} else {
throw new BadSymbol (stock);
}

return s;

20
Copyright © 2011 Houtan Fanisalek

Highly Organized & Optimized Trading In Exchanges

@Override
public synchronized boolean buy(String stock, int quant)
throws BadSymbol, InsufficientFunds {

if (stock.equalslgnoreCase("$NFLX")) {
throw new InsufficientFunds();

} else if (stock.equalslgnoreCase("'$A1G")) {
return true;

} else {
throw new BadSymbol (stock);
}

}

@Override
public synchronized boolean sell(String stock, int quant)
throws BadSymbol, NotlInPortfolio {

iT (stock.equalslgnoreCase("$NFLX'")) {
throw new NotInPortfolio(stock);
} else if (stock.equalslgnoreCase("'$A1G")) {
return true;
} else {
throw new BadSymbol (stock);

}
}
}
BADSYMBOL.JAVA
/*

* Houtan Fanisalek

* Copyright (c) 2011

*/

package hootie.exceptions;

/**

*

* @author Houtan Fanisalek
*/
public class BadSymbol extends Exception {

public BadSymbol (String Symbol) {
super(*'Symbol: " + Symbol + "does not exsist');
}

INSUFFICIENTFUNDS.JAVA
/*

* Houtan Fanisalek

* Copyright (c) 2011

Copyright © 2011 Houtan Fanisalek

Final Report

21

Highly Organized & Optimized Trading In Exchanges

*/
package hootie.exceptions;

/**
*
* @author Houtan Fanisalek
*/
public class InsufficientFunds extends Exception {

public InsufficientFunds(Q {
super('Insufficient funds in the account for the
transaction!');

}
}
NOTINPORTFOLIO.JAVA
/*

* Houtan Fanisalek

* Copyright (c) 2011

*/

package hootie.exceptions;

/**
*
* @author Houtan Fanisalek
*/
public class NotlnPortfolio extends Exception {

public NotInPortfolio(String Symbol) {
super(*'Symbol: ™ + Symbol +
portfolio!™);

}
}

Copyright © 2011 Houtan Fanisalek

Final Report

was not found iIn the users

22

