
iDrive Programming Language

COMS W4115 Project Proposal

Parag Jain
pj2171@columbia.edu

1 Introduction

Cars equipped with a system that is capable of driving from one point to another without
input from a human operator have got significant attention from academic, commercial, de-
fense, and government sectors over the past few decades. Early prototypes date as far back
as late 1970s, however important progress only came to be seen in the late 2000s through pro-
grams like DARPA Grand Challenge competitions and Google Driverless Car project. Some
proposed systems depend on infrastructure-based guidance systems; while more advanced
systems propose to simulate human perception and decision-making during steering of a car
via advanced computer software linked to a range of sensors such as cameras, radar, and
GPS. Some of the advantages of “Driverless Cars” include managing traffic flow to increase
road capacity, avoid accidents by eliminating driver error, relieving vehicle occupants from
driving and navigating chores, transporting loads in dangerous zones such as battlefields,
and reducing costs of employing drivers.

2 iDrive Programming Language

iDrive is a high level programming language that provides basic constructs to develop algo-
rithms for cars to drive without a need for human intervention. Currently, no such language
exists and given the complexity of the paradigm, iDrive is extremely useful since it is spe-
cialized to accomplish this challenging task. The primary focus of iDrive is the abstraction
and reduction of non-essential or monotonous tasks so that the researchers no longer need
to spend time specifying the characteristics of driving and just need to focus on creating
intelligent algorithms for developing fully autonomous cars. iDrive provides the researcher
with a rich set of tools that may be used intuitively to implement algorithms for driving
cars. Every effort has been made to ensure that the language is intuitive and easy to read
and understand.

1

3 Language Outline

iDrive uses syntax based on that of C and Java because the idea is to create a development
environment that is relatively familiar to those who already know C and Java, hence reducing
the learning curve for transitioning to iDrive.

3.1 Simple Types

int : Used to hold integer data
decimal : Used to hold decimal data
string : Used to hold string data
boolean : Used to hold true/false data

3.2 Complex Types

Segment : Represents a segment out of the driving directions
Heading : An attribute of a Segment that determines usually direction altering action that
the car must perform at the start of a Segment. E.g. TurnRight, TurnLeft, Proceed,

BearRight, BearLeft, SwitchToRightLane, SwitchToLeftLane.

Distance : An attribute of a Segment that determines how far the car must drive before
reaching the next Segment
TargetSpeed : An attribute of a Segment that determines how fast the car may drive along
the Segment

Directions : An array of segments, which form the driving directions from source position
to destination position (in the initial implementation data for this variable is read from a
tab delimited text file)
Position : Repesents position in terms of geographic latitude and longitude

3.3 Control Statements

To control a program’s flow the following control statements are supported much like in C
and Java:

while loop: To repeatedly execute a block of code until a certain condition is met
for loop: To repeatedly execute a block of code until a certain condition is met
if / else condition: To conditionally execute a block of code

2

3.4 Built-in Functions

Here are the initially proposed keywords and frequently used built-in functions:

function : To create user-defined functions
TurnRight : To turn the car right
TurnLeft : To turn the car left
Proceed : To make the car proceed forward or to move the car as per the Heading

Reverse : To reverse the car
Stop : To stop the car as soon as possible
SlowDown : To slow down the car
Accelerate : To accelerate the car
BearRight : To make the car bear right
BearLeft : To make the car bear left
SwitchToRightLane : To make the car switch to the adjacent right lane
SwitchToLeftLane : To make the car switch to the adjacent left lane
IsClearToGo : To check if the car is clear to proceed (interrogates sensors attached to the
car)
Park : To make the car park
ReadDirections : To read directions from a tab delimited text file

3.5 Other Features

{ } To enclose a group of statements in a procedure or function
() To enclose a group of arguments for a function
; To separate a statement from another
, To separate arguments within a function
/* */ All characters between /* and */ are treated as comments
// To include inline comments
+ - * / Mathematical operators
< <= > >= == != Relational operators
! && || Logical operators

4 Representative Program

Here is a representative program that demonstrates a simple implementation of Drive algo-
rtihm, which reads the driving directions passed to it by the navigation system (in the initial
implementation driving directions are read from a tab delimited text file) and transports the
car from source position to destination position:

3

/* The init() function must always be present.

It is the entry point for a iDrive program much like main() in C and Java.*/

function init() {
string directionsFile = ‘‘directions.txt’’;

Directions d;

Position srcPosition;

Position destPosition;

[d, srcPosition, destPosition] = ReadDirections(directionsFile);

Drive(srcPosition, destPosition, Directions);

}

/* This is a user defined function that transports the car from

source position to destination position given the driving directions.*/

function Drive(srcPosition, destPosition, Directions) {
/* Current position of the car */

Position CurrentPosition = srcPosition;

/* Current speed of the car */

decimal CurrentSpeed = 0.0;

i = 0;

while (i < Directions.length) {
/* Current Segment to execute */

Segment CurrentSegment = Directions[i];

/* Distance covered along current Segment */

decimal DistanceCovered = 0.0;

while (CurrentSegment.Distance > DistanceCovered) {

/* IsClearToGo will take into account pedestrians,

traffic signals, and other traffic on the roadway by

interrogating sensors attached to the car */

if (IsClearToGo) {
/* Accelerate will increase the car speed if

CurrentSpeed < CurrentSegment.TargetSpeed

It will also update the CurrentSpeed. */

4

Accelerate;

/* Proceed will move the car forward or as per

CurrentSegment.Heading if this event hasn’t already taken

place. It will also update the CurrentPosition and

DistanceCovered accoring to CurrentSpeed. */

Proceed;

}
else {

SlowDown;

}

if (CurrentPosition == destPosition) {
Stop;

Park;

}
}
i++;

}
}

�

5

