
12/22/11 11:55 PMFinal Report of PLT

Page 1 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

Project(Report(of(W4115:(Programming(Languages(and
Translators

!!by:!!!!!!!!Benjamin!Kornacki!(blk2129)
!!Thomas!Rantasa!(tr2286)
!!Chengchen!Sun!(cs2890)

1. Introduction
This is the final project report of Language: MoveIt, which can be used to implement 2D
image movement easily yet giving stunning effects. This language supports drawing
rectangles, ellipses, and lines on an empty graph and easily implementable animation
features that can be combined with arithmetic operations and flow-control methods to create
relatively powerful animation and physical simulations. MoveIt also implements arrays
allowing for mass-processing of objects with similar purposes and operational ease.

2. Language Tutorial
Our language can be downloaded directly via google code.

2.1
Download source tar.gz file or use svn to check it out directly from: http://plt-2d-
compiler.googlecode.com/svn/trunk/
Compiling the source files requires a full OCaml enviroment with Thread, Graphics, Unix and
String libraries on top of the basic installation. Our compiler has been fully tested and
debugged on Mac OS X and Ubuntu 11.10 32bit.

2.2
We present a simple tbc file below. This is a simple hello world program called hello.tbc,
which prints the String “hello, world!” onto the OCaml graphics screen at position (200, 200).

1 run()
2 {
3 string s;
4 s = S:{200 200 “hello, world!”};

12/22/11 11:55 PMFinal Report of PLT

Page 2 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

5 print(s);
6 halt(5000);
7 }
The run() is the function that will be first called when program is executing (similar to main() in
C). The Compiler will look for the run() function to start and begin execution in it’s body. Line 3
declares a string identified by “s” and line 4 assigns a value to it. Line 5 calls the built-in print
to display the string on the graph. Line 6 suspends the graph for 5000 milliseconds so that the
graph remains visible to the eye for the designated period.

2.3
Write ./tbc < hello.tbc in the command line to run the program. This will cause a graph to
appear, that contains the single string “hello, world!”.

2.4
If you want to see the generated bytecode, simply add the option -b to the compilation
command i.e. ./tbc -b < hello.tbc. Below is the resulting bytecode for the hello world program.

0 slots to store global variables
0 Sgraph
1 Jsr 3
2 Hlt
3 Ent 30
4 Litst200 200 "hello world!"
5 Sfp 30
6 Drp
7 Lfp 30
8 Jsr -1
9 Drp
10 Litin 5000
11 Jsr -2
12 Drp
13 Litin 0
14 Rts 0
These instructions will be explained in the “Architectural Design” part.

2.5
This completes a very first look at coding in MoveIt. The source package for MoveIt contains
more complex code samples and demonstrations which can be run using the following
commands.
./tbc < test/demo-array-bubble-sort.tbc
./tbc < test/demo-bounce.tbc
./tbc < test/demo-hello.tbc

3. Language Reference Manual
3.1: Lexical Conventions

3.1.1: Tokens
There are five types of tokens: identifiers, keywords, constants, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines and comments are ignored except
when they’re used to separate tokens. Generally, whitespace will separate two tokens.

3.1.2: Comments
The symbol (: starts a comment, and :) will terminate it. Comments do not nest.

3.1.3: Identifiers
An identifier is a sequence of letters and digits, and the underscore _. The first character of an
identifier must be a letter. Identifiers can represent any variables defined in our language.

12/22/11 11:55 PMFinal Report of PLT

Page 3 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

Identifiers must be global unique meaning that you cannot have a rectangle named a and an
array named a at the same time.

3.1.4: Keywords
The following words are reserved as keywords and thus cannot be used as identifiers for the
reasons mentioned below:
int, string, rectangle, ellipse, line, shape. used to declare specific
variables
for, if, else, while, return: Used to control the flow of program.
v1, v2, v3, v4: Used to get the value in shape elements.

3.1.5: Constants:
There are three kinds of constant: integer-constant, string constant, and shape constant

3.1.5.1: Integer constant
An integer constant is a sequence of decimal digits 0 - 9. For example, 3042, 0097 are valid
integer constants while 0x64, 0d55, 7f32 are not valid. Floating point numbers are not
supported by our language.
The negative symbol (-) can be added before an integer to represent this is a negative
number.
Integer constant can be assigned to an integer variable, or elements in an integer array.

3.1.5.2: String constant
A String constant has the form of S:{<x_val> <y_val> <string>}. Values are separated by
space. <x_val> is the x coordinate of the starting point i.e. bottom left point of this string.
<y_val> is the y coordinate of the starting point. <string> is a plain string enclosed with two
quotation symbols “”. The capital S, the colon, and the two braces are compulsory to
represent a string variable.
String constant cannot be assigned to an array. MoveIt does not support arrays of string
constant.

3.1.5.3: Shape constant
Shape constants can be of one of three types: a rectangle, an ellipse, and a line. There is a
general type called shape. This is used when a function can take any type of shape
regardless of whether it’s a rectangle, an ellipse, or a line.
Shape constant must be defined like R:{<v1> <v2> <v3> <v4>}, E:{<v1> <v2> <v3> <v4>}, L:
{<v1> <v2> <v3> <v4>}, S:{<v1> <v2> <v3> <v4>}. For rectangles, v1 and v2 represent the
coordinate of bottom left point of the rectangle, v3 and v4 are the height and width of the
rectangle respectively. For ellipses, v1 and v2 represent the center and v3, v4 represent the
x-radius and y-radius. For lines, v1 and v2 represent the starting point of the line, v3 and v4
represent the coordinate of the end point. A shape it can be casted to any of the above.
One key feature for shape is that v1 to v4 can be expressions. for example, R:{i+1 j+1 3*k 4*l}
is valid if i, j, k, l are valid integers.
Shape constant can be assigned to a shape variable, or an element inside a shape array.

3.2 Variables
A variable is one specific memory area of which the value can be modified and accessed
through the program. You can perform read and write operations on them, and pass them to
function calls.

3.2.1: Single variable
Variables can be defined by type. We have these types in our language:
int : declares this is an integer variable.
string: declares this is a string variable.
rectangle: declares this is a rectangle variable.
ellipse: declares this is an ellipse variable.
line: declares this is a line variable.
shape: declares this is a shape variable.
The definition syntax is to use the keyword followed by a valid identifier. For example, int abc9
is a valid variable of int, but string int is not a valid identifier, as int is not a valid identifier
name.

12/22/11 11:55 PMFinal Report of PLT

Page 4 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

3.2.2: Arrays
Arrays are defined a little differently by putting array size within brackets following the name:
int ab[10] declares an integer array with 10 integers inside it, rectangle r[30] defines a
rectangle array with 30 rectangles inside it and so on. To get a specific element within the
array, simply put the index within the bracket. For example, ab[8] will reference the 9th
element in the array. Like C, the index starts from 0 and ends at size-1.

3.2.3: Variable declaration
For simplicity, in MoveIt, we force the declaration of all variables to be at the first place of a
scope i.e. at beginning of the file or at beginning of a function.
The declaration and initialization must be divided onto two lines, meaning that an operation
like:
rectangle r = R:{10 20 30 40}; will not be accepted.

3.3: Scopes
In MoveIt we have a global scope and a local scope. All variables declared in global
scope can be referenced within local scope, but not vice versa. Functions cannot
reference other functions’ local scope variables.
The static scoping method is adopted in MoveIt. For example, the following code:
 1 int a;
 2 assign()
 3 {
 4 a = 4;
 5 }
 6 run()
 7 {
 8 int a;
 9 a = 44;
 10 assign(a);
 11 print_int(a);
 12 }

Will print out 44, not 4 as that would imply dynamic scoping.

3.4: Functions

3.4.1: Function definitions
A function is defined with a valid identifier as its unique name, followed by a pair of
parenthesis, which may have parameters inside it or not. Parameters must be single variables
and declared with type. The function body is enclosed with a pair of braces {} which may have
or have not return a value. If there’s no return value, a default integer 0 will be returned.
A function is not required to be defined with a type.
For example, the following are valid function definitions:
draw_a_bar(int start, int end)
{
 line l;
 l = L:{start end start + 100 end + 200};
 print(l);
 halt(5000);
}

give_a()
{
 return 9;
}

3.4.2: Built-in functions
In MoveIt, the graph is drawn by calling built-in functions. We provide two built-in functions,
named print() and halt() to construct the graph, and another two: print_int() and dumpstack()
for debug use. Although they’re debug functions, you may call them in your program if you

12/22/11 11:55 PMFinal Report of PLT

Page 5 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

wish.
The definition of each built-in functions are:
print(<var>): <var> is a string or a single shape variable, with shape type correctly set
i.e. a rectangle, an ellipse, or a line. when calling print(), it will print the string/shape according
to its parameters. On error, it will print an exception to the terminal and close the program.
halt(<var>): <var> is an integer. This function suspends the graph for <var>
milliseconds and will clear all the graph after that.
print_int(<var>): This function will take an integer and print it to the terminal screen.
dumpstack(): This function will dump current stack to the terminal screen.

3.4.3: Return values
The function’s return value is not defined nor checked in MoveIt. As a result, if you return a
rectangle type to a variable of int type, the type check will fail. Also, only one single value will
be returned, arrays are not supported.

3.5: Operations

3.5.1: Arithmetic/Logical operations
In MoveIt, arithmetic and logical operations are permitted on integers. We support the
following arithmetic operations:
+ -> add two integers
- -> subtract two integers
* -> multiply two integers
/ -> first divided by second
== -> is the two integers equal?
!= -> is the two integers not equal?
>= -> is first larger or equal second?
<= -> is first smaller or equal second?
> -> is first larger than second?
< -> is first smaller than second?
Arithmetic operations, are left associate and * / will have higher priority over + -.

3.5.2: Movement operations
The basic operations on shape and string are movement. MoveIt has two definitions of
movement, namely MoveTo and MoveBy.
The syntax of MoveTo is the => operator on a shape or string. For example, to move a
rectangle’s starting point to {100 100}, use:
r => {100 100}
For MoveBy, use ->. This will make the shape/string’s starting point move by a vector. For
example, to move an ellipse e to 50 pixels down and 50 pixels left, use:
e -> {-50 -50}
In short, Movement operators directly manipulate the coordinates of shapes/strings.

3.6: Array and Shape References
It’s easy to load and store value into arrays. For example:
a[2] = 4 will assign value 4 to the integer array a’s third element;
a[9] = a[7] will assign eighth element’s value to tenth’s of array a.
For shape, use the system reserved tokens v1 - v4 to access respective value. For example:
rectangle r;
r = R:{10 20 30 40};
print_int(r.v1);
print_int(r.v2);
print_int(r.v3);
print_int(r.v4);
will print out 10 20 30 40.

3.7: Expressions
Expressions are basic operations terminated by semi-colon. Expressions include:
a. constants
b. variable names
c. binary arithmetic/logical operations

12/22/11 11:55 PMFinal Report of PLT

Page 6 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

d. assignments
e. function calls
f. movements
g. get index values
h. another expressions enclosed by two parenthesis.
All these must be handled properly and will be discussed in the architectural design part.

3.8: Statement:

3.8.1: The flow control
Statements are groups of expressions. Usually statements are divided into blocks by using
flow-control keywords. MoveIt supports if, else, while, return, and for.

3.8.1.1: if / else
If is used to switch execution of either one blocks based on the result of an expression, or just
determine if one block should be executed or not. The syntax of if is:
if (expression) { block_1 } else { block_2}, or
if (expression) { block }
The else is not mandatory. if expression is true, in the first case it will do block_1, in the
second case it will do block; if it is false, in the first case it will do block_2, in the second case
it will do nothing. Expression will be evaluated before blocks are ever executed.

3.8.1.2: while
While is used to do a loop based on some criterion. The syntax of while is:
while (expression) { block }
it will first evaluates the expression to see if it is true. If yes, continue on doing block. After
block is done, go back to expression again and evaluate if it is true. Once the expression is
evaluated to false, it will skip the block and jump out of while, continuing to execute on the
next expression after while.

3.8.1.3: for
the for is a more complex version of while: it has three expressions and one statement block:
for (expr1; expr2; expr3) { block }
for will evaluate expr1, then judge if expr2 is true. If yes, go on executing block. After block
is finished, execute expr3, and go back to judge if expr2 is true. Once expr2 is judged as
false, it will break for and continue on doing the statements after the block.

3.8.1.4: return
return will return a specific value to the place where this function is called. The syntax is
simply
return <var>
Where var can be a variable, a constant, or an expression. Be careful that return cannot
return the function itself. For example, in the factorial function, f(n) needs to call n*f(n-1). In
this case, return cannot be applied on n*f(n-1).

3.8.2: The first run
The program will starts from a function called run(). If there’s no such function, compiler will
complain and terminate.

4. Project Plan
Process:

Our project was very much a team effort. Planning was the most important part of our
process. We tried to constantly set deadlines for ourselves. This started at the very beginning
of the semester when our group first got together. We immediately distributed responsibilities
and set deadlines for ourselves.
 Specification occurred mostly at the beginning of the term. However, as we were
working, if we thought of a feature that we would like to add or remove, we would immediately
halt the production and work to redefine the specification and change anything that needed to
be changed.
 When it became time to start writing code we did almost all of it together. We did not
necessarily all work on the same code at the same time, but we were always in the same

12/22/11 11:55 PMFinal Report of PLT

Page 7 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

room together. This allowed for constant communication in case anyone had any questions or
suggestions for how we can make the project better. Testing was a constant process during
development. Whenever anything was implemented, we would immediately test it to ensure it
works exactly as we want it to.

Style Guide:
While writing the code, we constantly emphasized documentation. Anything that

anyone wrote must be documented in some way so that the other members of the group
could understand what one member had written if he wasn’t around to explain it.

Other then that, we did not specify any particular style to use for the project. Since we
were with each other while we were wrote the majority of the code, there was no need to have
a specified style guide, since we were in constant communication. That is any question on
how to write or format a chunk of code we be answered immediately by another member of
the group. The only thing we stressed was clarity. We allowed ourselves to write the code
however we liked, it just had to be clear.

Timeline:

September 20: First Group Meeting/ Project Idea

September 28: Proposal

October 15: Implement AST, Scanner, and Parser

October 22: Implement Interpreter and hello_world.tbc

October 31: Language Reference Manual/have current code completely debugged and
running as desired

November 15: Have full implementation of interpreter/begin working on compiler and bytcode
interpreter

December 1: Run hello-world.tbc using bytecode interpreter and compiler

December 15: Have full implementation of entire project

December 17: finsih debugging/ write demo’s for presentation

December 20: Present to Professor Edwards

December 21: Implement arrays

December 22: Final Report

Roles and Responsibilities:
 Most of the project was done as a team. We would work sitting next to each other so that
we could easily collaborate with each other. We would each focus on individual aspects of the
project however, but no one was the sole contributor to any part of the project.

In terms of what we individually did, Benjamin Kornacki worked a lot on testing and
writing the demonstrations that would show off the compiler. Chengchen Sun worked primarily
on the compiler (i.e. the compile.ml and and execute.ml). Thomas Rantasa worked primarily
on the bytecode interpreter (i.e. bytecode.ml). There was an equal contribution on most of the
other files (ast.ml, scanner.ml, etc). The interpreter (i.e. interpreter.ml) was implemented
mostly by Ben and Chen, but was not used in the final version of the project.

Software Environment:
 For the project we used the svn development tool from google code. All of our file
sharing including code updates, progress reports, language reference manual as well as the
final report were comitted and editted using google code and google docs.

The code is written entirely in O’Caml. Since we use the O’Caml graphics library, there
was no need to translate the code to another language.

Project Log:

12/22/11 11:55 PMFinal Report of PLT

Page 8 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

Rev Commit log message Date

r187 Removed unused Prt and
Prtint

Today (4 hours ago)

r186 3 more testcase Today (6 hours ago)

r185 bubble sort using arrays Today (7 hours ago)

r184 previous testcase has a typo
and caused interesting

problem

Today (9 hours ago)

r183 shape arrays work perfectly Yesterday (24 hours
ago)

r182 Full functional array on int
operation

Yesterday (25 hours
ago)

r181 Int array works. Bug is array
must be initialized and a[0]

must be written.

Yesterday (26 hours
ago)

r180 Edited wiki page DefineArray
through web user interface.

Yesterday (30 hours
ago)

r179 update scanner Dec 20 (2 days ago)

r178 Created wiki page through
web user interface.

Dec 20 (2 days ago)

r177 No run(), not no main() Dec 20 (2 days ago)

r176 Deleted microc folder Dec 18 (4 days ago)

r175 clean execute and test case Dec 18 (4 days ago)

r174 execute works on strings
demo-hello updated to new
functions random test files

Dec 18 (4 days ago)

r173 bubble sort Dec 18 (4 days ago)

r172 Make code cleaner Dec 17 (5 days ago)

r171 Added three testcases for
return

Dec 17 (5 days ago)

r170 Updated a tiny testcase Dec 17 (5 days ago)

r169 Fixed a bug in returning
rectangle, ellipse and line

Dec 17 (5 days ago)

r168 Minor changes on test Dec 17 (5 days ago)

r167 Several test cases Dec 17 (5 days ago)

r166 Deleted print out AST in
tbc.ml

Dec 17 (5 days ago)

r165 Minor changes on code style Dec 17 (5 days ago)

r164 Minor adjust of bytecode
output format

Dec 17 (5 days ago)

r163 Edited wiki page
LanguageGrammar through

web user interface.

Dec 17 (5 days ago)

Rev Commit log message Date

r162 Edited wiki page
LanguageGrammar through

web user interface.

Dec 17 (5 days ago)

r161 Remove Bind and thus
suppress

Dec 17 (5 days ago)

r160 Move test codes under test Dec 16 (5 days ago)

12/22/11 11:55 PMFinal Report of PLT

Page 9 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

folder
r159 Latest commit Dec 16 (5 days ago)

r158 Latest scanner.mll Dec 16 (5 days ago)

r157 beq/bne Dec 16 (5 days ago)

r156 hopefully fixed bin op Dec 16 (6 days ago)

r155 fixed binop Dec 16 (6 days ago)

r154 implement moves in execute
and bytecode

Dec 16 (6 days ago)

r153 please work now Dec 16 (6 days ago)

r152 updated execute Dec 16 (6 days ago)

r151 demmo hello Dec 16 (6 days ago)

r150 demmo bounce Dec 16 (6 days ago)

r149 fixed stack bug Dec 16 (6 days ago)

r148 modified syntax error Dec 16 (6 days ago)

r147 updated print Dec 16 (6 days ago)

r146 lfp Dec 16 (6 days ago)

r145 implemented sfp Dec 16 (6 days ago)

r144 very minor update Dec 16 (6 days ago)

r143 new stack size Dec 16 (6 days ago)

r142 dump stack implemented Dec 16 (6 days ago)

r141 debug debug Dec 16 (6 days ago)

r140 debug print int added to jsr Dec 16 (6 days ago)

r139 jsr-2 Dec 16 (6 days ago)

r138 moved jsr Dec 16 (6 days ago)

Rev Commit log message Date

r137 new print Dec 16 (6 days ago)

r136 Add support for GetV1 Dec 16 (6 days ago)

r135 Finished execute Dec 16 (6 days ago)

r134 Tbc for debug Dec 16 (6 days ago)

r133 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 16 (6 days ago)

r132 Add code to avoid the three
unmatched warnings

Dec 16 (6 days ago)

r131 changes to bytecode and
updated scanner

Dec 16 (6 days ago)

r130 Modified one of your typo in
Sub -> op1 op2 to Sub ->

op1 - op2

Dec 16 (6 days ago)

r129 Adding declaration of Shape,
delete dot, float, time, add

bind.

Dec 16 (6 days ago)

r128 Adding declaration of Shape
and delete Movein function

Dec 16 (6 days ago)

r127 Deleting ref.txt Dec 16 (6 days ago)

r126 Deleting listtest.ml Dec 16 (6 days ago)

r125 added negative numbers to Dec 16 (6 days ago)

12/22/11 11:55 PMFinal Report of PLT

Page 10 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

scanner

r124 bug in execute and
bytecode..

Dec 16 (6 days ago)

r123 Add the test folder Dec 16 (6 days ago)

r122 Full version of tbc Dec 16 (6 days ago)

r121 fixed bytecode bug Dec 16 (6 days ago)

r120 Delete listtest.cmo Dec 16 (6 days ago)

r119 delete listtest.cmi Dec 16 (6 days ago)

r118 updated bytecode and
execute

Dec 16 (6 days ago)

r117 Adding makefile Dec 16 (6 days ago)

r116 Add compiler.ml Dec 16 (6 days ago)

r115 started debugging bytecode
interpreter (cant figure out

this one set of bugs maybe
you guys can help)

Dec 15 (6 days ago)

r114 updated scanner parser ast
for new commands (in

collaboration with chen)
current version of bytecode

interpreter (not fully finished)

Dec 15, 2011

r113 Created wiki page through
web user interface.

Dec 15, 2011

Rev Commit log message Date

r112 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 15, 2011

r111 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 15, 2011

r110 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 15, 2011

r109 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 15, 2011

r108 Edited wiki page
BytecodeGrammar through

web user interface.

Dec 15, 2011

r107 Edited wiki page RootPage
through web user interface.

Dec 15, 2011

r106 Created wiki page through
web user interface.

Dec 15, 2011

r105 Special makefile to use for
ONLY BYTECODE and

EXECUTE

Dec 15, 2011

r104 Sorry, this is the Correct File Dec 15, 2011

r103 Add Modified makefile to
compile bytecode, execute

and compile.

Dec 15, 2011

r102 temporary commit until
bytecode interpreter is

finished

Dec 15, 2011

r101 Created Full Bytecode: Dec 14, 2011

12/22/11 11:55 PMFinal Report of PLT

Page 11 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

Please take a look because I
made a few important

realizations and put them as
comments above the code!!!!
Started Bytecode interpreter:

more to follow in the next
hours

r100 Start on Compiler Dec 14, 2011

r99 wed morning2 Dec 14, 2011

r98 wed morning Dec 14, 2011

r97 end of Tue Dec 13, 2011

r96 Line Dec 13, 2011

r95 Weird problem in declaration
order

Dec 13, 2011

r94 tbc file Dec 13, 2011

r93 tbc file Dec 13, 2011

r92 Lots of work Dec 13, 2011

r91 Created wiki page through
web user interface.

Dec 11, 2011

r90 added rectangle to scanner
and started parser work

Nov 30, 2011

r89 Thread works Nov 30, 2011

r88 Updated commit Nov 30, 2011

Rev Commit log message Date

r87 Using Thread Nov 28, 2011

r86 Edited wiki page RootPage
through web user interface.

Nov 19, 2011

r85 Edited wiki page RootPage
through web user interface.

Nov 19, 2011

r84 Edited wiki page RootPage
through web user interface.

Nov 19, 2011

r83 Edited wiki page Progress
through web user interface.

Nov 19, 2011

r82 helloworld program succeed Nov 19, 2011

r81 Uploaded complete Scanner Nov 16, 2011

r80 Edited wiki page Progress
through web user interface.

Nov 16, 2011

r79 Edited wiki page Progress
through web user interface.

Nov 16, 2011

r78 Edited wiki page Progress
through web user interface.

Nov 16, 2011

r77 Edited wiki page RootPage
through web user interface.

Nov 16, 2011

r76 Original Version of MicroC Nov 13, 2011

r75 Edited wiki page Progress
through web user interface.

Nov 7, 2011

r74 Edited wiki page RootPage
through web user interface.

Nov 7, 2011

r73 Edited wiki page RootPage
through web user interface.

Nov 7, 2011

r72 Edited wiki page RootPage Nov 7, 2011

12/22/11 11:55 PMFinal Report of PLT

Page 12 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

through web user interface.

r71 Edited wiki page RootPage
through web user interface.

Nov 7, 2011

r70 Edited wiki page RootPage
through web user interface.

Nov 7, 2011

r69 Edited wiki page Progress
through web user interface.

Nov 7, 2011

r68 Created wiki page through
web user interface.

Nov 7, 2011

r67 Edited wiki page RootPage
through web user interface.

Oct 31, 2011

r66 Edited wiki page RootPage
through web user interface.

Oct 31, 2011

r65 Edited wiki page RootPage
through web user interface.

Oct 31, 2011

r64 Add our names and uni. Oct 31, 2011

r63 Modified to let identifiers start
with '$' for simpler parser.

Oct 31, 2011

Rev Commit log message Date

r62 First submitted version to TA
on Oct 23. HelloWorld

Sample code out.

Oct 23, 2011

r61 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r60 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r59 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r58 \ Oct 22, 2011

r57 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r56 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r55 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r54 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r53 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r52 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r51 Edited wiki page RootPage
through web user interface.

Oct 22, 2011

r50 Updated Scanner Oct 21, 2011

r49 Created Folders and did
Scanner work

Oct 21, 2011

r48 Created the project files and
started the scanner

Oct 21, 2011

r47 Edited wiki page RootPage
through web user interface.

Oct 21, 2011

r46 Edited wiki page RootPage
through web user interface.

Oct 21, 2011

12/22/11 11:55 PMFinal Report of PLT

Page 13 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

r45 Edited wiki page RootPage
through web user interface.

Oct 21, 2011

r44 Edited wiki page RootPage
through web user interface.

Oct 21, 2011

r43 Edited wiki page RootPage
through web user interface.

Oct 21, 2011

r42 Edited wiki page RootPage
through web user interface.

Oct 20, 2011

r41 Edited wiki page RootPage
through web user interface.

Oct 20, 2011

r40 Edited wiki page RootPage
through web user interface.

Oct 20, 2011

r39 Edited wiki page RootPage
through web user interface.

Oct 20, 2011

r38 Edited wiki page RootPage
through web user interface.

Oct 20, 2011

Rev Commit log message Date

r37 Edited wiki page RootPage through web
user interface.

Oct 20, 2011

r36 Edited wiki page RootPage through web
user interface.

Oct 20, 2011

r35 [No log message] Oct 20, 2011

r34 Modification 3 Oct 20, 2011

r33 Try to update folders Oct 20, 2011

r32 Delete README.txt Oct 20, 2011

r31 hello Oct 20, 2011

r30 [No log message] Oct 20, 2011

r29 Edited wiki page RootPage through web
user interface.

Oct 20, 2011

r28 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r27 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r26 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r25 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r24 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r23 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r22 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r21 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r20 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r19 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r18 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

12/22/11 11:55 PMFinal Report of PLT

Page 14 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

r17 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r16 Edited wiki page RootPage through web
user interface.

Oct 19, 2011

r15 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r14 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r13 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

Rev Commit log message Date

r12 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r11 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r10 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r9 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r8 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r7 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r6 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r5 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r4 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r3 Edited wiki page RootPage through web
user interface.

Oct 18, 2011

r2 Created wiki page through web user
interface.

Oct 18, 2011

r1 Initial directory structure. Oct 16, 2011

5. Architectural Design
5.1: Ast/Parser/Scanner (Ben, Thomas, Chen)

5.1.1: General Idea
The Parser loads the tbc source file and generates the abstract syntax tree (AST) for the
program. This is done in the following manner:

a. the rule token is called in scanner to convert source code into discrete tokens.
b. parser calls the program routine to parse the token sequence into two large lists: one is for
variable declaration, one is for function declaration. The variable declaration list is for global
variables, and the function declaration is for all functions defined. Since our implementation
only has global variable declarations outside functions, this suffices.
The block diagram is on the next page.

12/22/11 11:55 PMFinal Report of PLT

Page 15 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

5.1.2: Abstract Syntax Tree (ast.ml)
The Abstract Syntax Tree consists of three parts:

a. define tag-union of binary operands and shapes
This defines the valid binary operations and shape types.

b. define how different types of variables are represented
This defines how our compiler defines variable metadata internally. We treat a variable
declaration and variable value separately, since when a variable is declared, all we can know
is its name and type.
A variable declaration structure is like:
type vari_decl = { vtype: string; vsize: int; name: string; }

12/22/11 11:55 PMFinal Report of PLT

Page 16 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

The vtype means the type of this variable. It can be:
‘int’, ‘string’, ‘rect’, ‘ellipse’, ‘line’, ‘shape’,
‘arrayi’, ‘arrayr’, ‘arraye’, ‘arrayl’, ‘arrays’.
The vsize represents the size of this variable. Except for arrays, which is the number of
elements in arrays, all other variables’ vsize should be 1.
The name is straightforward: this is the identification of this variable.
A variable value structure is like:
type vari_value = { ltype : string; value: string; }
The ltype is simply the same as vtype, representing the data type of this variable.
The value is actual value of this variable, stored as string for further processing. For example,
if this is a rectangle, the value would be a string like “10 20 30 40”.
A function declaration structure is like:
type func_decl = { fname : string; formals: (vari_decl) list; locals:
(vari_decl) list; body: stmt list; }
It takes the

c. define expression and statement ‘types’ i.e. what can be substituted by expr / stmt
This defines what an expression / statement can be reduced to, and by how. Details:
Expressions:
Literal of int: This gets a sequence of digits put decimal number on top of stack
String of string: This gets a string and returns each character as its ASCII number, plus the
metadata to identify that this area is a string, on top of the stack;
Rectangle of string: converts string to rectangle structure
Ellipse of string: Identical to Rectangle
Line of string: Identical to Rectangle
Shape of string: Identical to Rectangle
Id of string: perform Id operation
Binop of expr * op * expr
Assign of string * expr
Call of string * expr list
Moveto of string * expr * expr : Move to a specific coordinate
Moveby of string * expr * expr : Move by a specific vector
Noexpr
GetV1 of string : Get the first value of a shape
GetV2 of string : Get the second value of a shape
GetV3 of string : Get the second value of a shape
GetV4 of string : Get the second value of a shape
Aid of string * expr : Array id
AAssign of string * expr * expr : Assign value to array element
REvaluation of expr * expr * expr * expr : Make Rectangle definition accept expressions,
not only numbers.
EEvaluation of expr * expr * expr * expr
LEvaluation of expr * expr * expr * expr

5.2: Compiler (Chen) compile.ml
The compiler’s work is to
a. convert methods used by ast into bytecode
b. allocate global and local variables’ index using enum and string_map_pairs
c. initialize an empty graph, find run() function and concatenate functions.

5.2.1 Bytecode used by compiler:
Litin of int: push an int literal on top of stack.
Litst of string: push string on top of stack.
Litsh of string: parse the string to form shapes’ parameter and store these parameters on
top of stack.
Drp: drop the value on top of the stack
Bin of Ast.op: get two values on top of stack and apply them to the operation defined as
Ast.op
Lod of int: load a global variable by index to top of stack.
Str of int: store whatever on top of stack to the global variable area referenced by index
Lfp of int: load a local variable by index to top of stack
Sfp of int: store whatever on top of stack to local variable referenced by index

12/22/11 11:55 PMFinal Report of PLT

Page 17 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

Jsr of int: Jump to a specific offset
Ent of int: Allocate local variable space
Rts of int: Clear all local variables, set sp and fp pointer back, to return to a previous location.
Beq, Bne, Bra of int: flow control bytecode which is identical to those in MicroC
Loda of int: Load from global array variables with base address as int. Fetch the integer
currently on top of stack as element offset, and store the value back to top of stack.
For example, there’s a rectangle array r[10] as a global variable, and you want to load r[5].
Suppose r[0] is laid on global offset 2 (this is the case if an int variable is defined before this
rectangle array), so the bytecode to fetch r[5] is
Litin 5; Lfpa 2;
The first is to store 5 on top of stack, the second will load from it, and calculate the specific
location of r[5]. Finally, r[5] will be put back on top of stack.
Stra of int: identical to Loda, except the value it will store is placed starting from stack.(sp-3),
because stack.(sp-1) and stack.(sp-2) are the element offset value.
Lfpa of int: identical to Loda;
Sfpa of int: -identical to Stra;
Hlt: terminate the program;
Sgraph: start to paint a new empty graph
Egraph: erase the whole graph
Susp: Load the int on top of stack and suspend for that number of milliseconds.
Movby: move object by vector;
Movto: move object by absolute location
GetC: fetch elements’ value inside a shape.
MakeS: Grab the top five integers on stack and place back a shape make by these integers.
Detailed implementation of how to convert each Ast method to Bytecodes can be found in our
attached compile.ml file.

5.2.2 Allocate variables’ space
The compiler first calculates the offset of local and global variables and store them in a
StringMap called global_indexes and local_indexes. These indexes are assigned to
environmental variable env and are used in executing bytecode numbers like Lod/Str, Lfp/Sfp.

5.2.3 Initialize empty graph, find run(), make functions work
compiler will add Sgraph at thte beginning of the program, and search for run() function and
place it at the beginning of the bytecode sequence. For other functions, compiler will map all
non-built-in function to func_offset.(i) and use Jsr to jump to their entry point. At each entry
point, compiler also adds a Ent command to allocate local variable space.

5.3: Bytecode/Bytecode Interpreter (Thomas) bytecode.ml, execute.ml
The Bytecode used by the interpreter is, of course, identical to the bytecode that the compiler
uses. The interpreter will read the bytecode instructions and interpret them for the OCaml
execution environment. Furthermore, the interpreter handles all stack and variable operations,
maintaining control of the stack-pointer, frame-pointer and program-counter. The general
structure of these was derived form the MicroC language, but modified for the graphics
purposes of MoveIt. Since MoveIt operates on logically complex objects as opposed to only
ints, the stack operations are significantly more involved. All stack data is identified by an
integer-ID pushed on top of the actual object data. Based on this ID the interpreter is able to
process the following data correctly.

5.4: Interpreter (Ben) interpret.ml
Early on in the coding stages the interpreter was used to test various implementation methods
and to give us general feedback about the output our language created without having to write
the full compiler and bytecode interpreter.

6. Test Plan
Example programs:

This first program shows how to write a simple hello world function that uses the power
of our language. That is, instead of simply printing the string “hello” to the screen, this
program using various shapes draws out the letter “h e l l o”. This code can be found in
appendix 1.
 As stated above, the compiler is capable of implementing real world movement. To

12/22/11 11:55 PMFinal Report of PLT

Page 18 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

demonstrate this, this next program shows a ball falling under the of some gravity and having
it bounce when it hits the bottom. This code can be found in appendix 2.
 MoveIt also has the power to implement more complex algorithms such as bubble sort.
This last program shows 8 rectangles of various sizes being sorted based on there height.
This program takes advantage of all this language has to offer. It uses arrays, shapes
movement, and functions to visually show the sorting of a list using bubble sort. Before, we
implemented arrays, this code was 1700 lines long, however, after we implemented arrays,
the code is now only 130 lines long. The code can be found in appendix 3.

Test Suites:
 All our test programs can be found in Appendix 4. These test cases were chosen based
on the desired functionality of our compiler. We wanted some of the basic functionality as C.
That is, the basic arithmetic, loops (i.e. while and for), if statements, and functions. There is
also functionality that we needed to test that is specific to MoveIt. For example, initializing
shapes, printing shapes, returning and passing shapes as arguments to function, and moving
shapes.
 The purpose of our testing was to ensure that not only our compiler would generate the
correct output, but also that the compiler allocates and manipulates memory on the stack
correctly. To test this we implemented two functions, dumpstack() which prints the entire stack
to standard out and print_int(int i) which prints the integer i to standard out.

There was no automation used in testing. Since our compiler deals with movement of
shapes it would have been very difficult to create automated test cases. For example, if we
were to have a circle move from point a to point b in 5 seconds there will not be a single
output but potentially thousands of outputs, (one for every movement of the object). This
added level of complexity made it difficult to create an automated test case.

Who Did What:
 The majority of this project was done as a team. That is, we we worked individually on
various parts of the project but we always worked in the same room. This allowed constant
communication and brainstorming. If one person thought of a way to make the project better,
then we would immediately discuss and decide what changes need to be made. Also if
anyone of us got stuck or couldn’t figure out how to implement something, as a team we could
help that individual out. So even though we were working individually on various sections, we
were constantly collaborating so no one person had the sole input on any given section. This
also allowed for much faster implementation time.
 In terms of what we individually did, Benjamin Kornacki worked a lot on testing and
writing the demonstrations that would show off the compiler. Chengchen Sun worked primarily
on the compiler (i.e. the compile.ml). Thomas Rantasa worked primarily on the bytecode and
bytecode interpreter (i.e. bytecode.ml and execute.ml). There was an equal contribution on
most of the other files (ast.ml, scanner.ml, etc). The interpreter (i.e. interpreter.ml) was
implemented mostly by Ben and Chen, but was not used in the final version of the project.
 Again, saying that someone implemented some part of the project only means that they
did the grunt work for that section. Every member of the group made a significant contribution
to every aspect of this project. This includes testing. Even though Ben was in charge of
testing, we all tested our code as we were writing it.

7. Lessons Learned
Chen:
I think the most important thing I learned from the project is how to team with other cool guys,
especially in understanding their ideas, trying to explain to them my ideas and persuade them,
discuss about the right implementation. Meanwhile, in team work I must be responsible for my
work, always trying to make them perfect because my careless can make others wasting
much time in finding MY errors, and always trying to help others. Besides, another important
skill is to think, talk quickly in geek English. This is critical for my future work.
For techniques, learning how to manage work efficiently using svn, really powerful tool.

Ben:
This was the first major project that I worked on with a group so there were a lot of

12/22/11 11:55 PMFinal Report of PLT

Page 19 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

things that I have learned through out the semester. The most important was the willingness
to be open to new ideas and to not be afraid to to voice your opinion when you believe that
you have an idea that will be beneficial. I believe that the key to success is a group that works
well together. This means that everyone does what they are supposed to do, and that people
are respective of each other.
 From the technical side, before this project I had no experience using svn. Having
completed the project I would highly recommended this to anyone working on a large project
with other people. Without svn, the compiler would have been vary difficult to implement and
there would have been many more mistakes throughout the code.
 The biggest piece of advice that I can give to future groups is to start early and to write
test cases as you go along. Starting early allowed to include new ideas that we did not think of
in our initial conception of the project. If we did not start early we would not have had the time
to think through the new ideas that we ended up implementing. Also writing test cases was
key to the success of our project. These test cases helped us find bugs that were hidden in
the code. That is, the code would compile but since we knew the expected output of each test
case we were able to know whether or not our code was running as we had intended.

Thomas:
 The most important lesson I learned from this was planning. On smaller projects and
assignments, “coding by doing” is often a very appealing planning strategy. A project of this
scale, implemented collaboratively between 3 people did not allow for such freedom. The
parts of the project that we planned effectively were implemented twice as quickly on average,
simply because we knew exactly what we could expect from our teammates. At the same
time, I learned to have faith in my team. This experience showed me that teamwork can be a
very effective way to complete larger projects as long as members are willing and able (which
was luckily the case here).
 Lastly, working on MoveIt showed me the importance of deadlines. When working alone,
it is easy to forgive oneself for procrastination, but having others rely on me completing my
work on time made me realize that deadlines exist for a reason and need to be kept to.

Appendix 1:
Here is the code for hello.tbc

rectangle h1;
rectangle h2;
rectangle h3;
rectangle h4;
rectangle h5;
rectangle h6;
rectangle h7;
rectangle h8;
rectangle h9;
rectangle h10;

string e1;
string e2;
string e3;
string e4;
string e5;
string e6;
string e7;
string e8;
string e9;
string e10;
string e11;

12/22/11 11:55 PMFinal Report of PLT

Page 20 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

string e12;
string e13;
string e14;
string e15;
string e16;
string e17;
string e18;
string e19;
string e20;

line l1;
line l2;
line l3;
line l4;
line l5;
line l6;
line l7;
line l8;
line l9;
line l10;
line l11;
line l12;
line l13;
line l14;
line l15;
line l16;

ellipse o1;
ellipse o2;
ellipse o3;
ellipse o4;
ellipse o5;
ellipse o6;
initialize_h(){
 h1 = R:{ 0 0 20 20 };
 h2 = R:{ 0 0 20 20 };
 h3 = R:{ 0 0 20 20 };
 h4 = R:{ 0 0 20 20 };
 h5 = R:{ 0 0 20 20 };
 h6 = R:{ 0 0 20 20 };
 h7 = R:{ 0 0 20 20 };
 h8 = R:{ 0 0 20 20 };
 h9 = R:{ 0 0 20 20 };
 h10 = R:{ 0 0 20 20 };
}

initialize_e(){
 e1 = S:{ 0 0 "e" };
 e2 = S:{ 0 0 "e" };
 e3 = S:{ 0 0 "e" };
 e4 = S:{ 0 0 "e" };
 e5 = S:{ 0 0 "e" };
 e6 = S:{ 0 0 "e" };
 e7 = S:{ 0 0 "e" };
 e8 = S:{ 0 0 "e" };
 e9 = S:{ 0 0 "e" };
 e10 = S:{ 0 0 "e" };
 e11 = S:{ 0 0 "e" };
 e12 = S:{ 0 0 "e" };
 e13 = S:{ 0 0 "e" };
 e14 = S:{ 0 0 "e" };
 e15 = S:{ 0 0 "e" };

12/22/11 11:55 PMFinal Report of PLT

Page 21 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 e16 = S:{ 0 0 "e" };
 e17 = S:{ 0 0 "e" };
 e18 = S:{ 0 0 "e" };
 e19 = S:{ 0 0 "e" };
 e20 = S:{ 0 0 "e" };
}

initialize_l(){
 l1 = L:{ 0 0 0 120 };
 l2 = L:{ 0 0 0 120 };
 l3 = L:{ 0 0 0 120 };
 l4 = L:{ 0 0 0 120 };
 l5 = L:{ 0 0 0 120 };
 l6 = L:{ 0 0 20 0 };
 l7 = L:{ 0 0 20 0 };
 l8 = L:{ 0 0 0 120 };
 l9 = L:{ 0 0 0 120 };
 l10 = L:{ 0 0 20 0 };
 l11 = L:{ 0 0 20 0 };
 l12 = L:{ 0 0 20 0 };
 l13 = L:{ 0 0 20 0 };
 l14 = L:{ 0 0 20 0 };
 l15 = L:{ 0 0 20 0 };
 l16 = L:{ 0 0 20 0 };

}

initialize_o(){
 o1 = E:{ 0 0 20 20 };
 o2 = E:{ 0 0 15 15 };
 o3 = E:{ 0 0 10 10 };
 o4 = E:{ 0 0 5 5 };
 o5 = E:{ 0 0 0 0 };
 o6 = E:{ 0 0 25 25 };
}

print_all(){
 print(h1);
 print(h2);
 print(h3);
 print(h4);
 print(h5);
 print(h6);
 print(h7);
 print(h8);
 print(h9);
 print(h10);

 print(e1);
 print(e2);
 print(e3);
 print(e4);
 print(e5);
 print(e6);
 print(e7);
 print(e8);
 print(e9);
 print(e10);
 print(e11);
 print(e12);
 print(e13);
 print(e14);
 print(e15);

12/22/11 11:55 PMFinal Report of PLT

Page 22 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 print(e16);
 print(e17);
 print(e18);
 print(e19);
 print(e20);

 print(l1);
 print(l2);
 print(l3);
 print(l4);
 print(l5);
 print(l6);
 print(l7);
 print(l8);
 print(l9);
 print(l10);
 print(l11);
 print(l12);
 print(l13);
 print(l14);
 print(l15);
 print(l16);

 print(o1);
 print(o2);
 print(o3);
 print(o4);
 print(o5);
 print(o6);
}

move_h(int x){
 int i;
 int increment;
 i = 0;
 increment = 10;
 while (i <= x){
 h1 -> { (100*i)/(x) (300*i)/(x) };
 h2 -> { (100*i)/(x) (280*i)/(x) };
 h3 -> { (100*i)/(x) (260*i)/(x) };
 h4 -> { (100*i)/(x) (240*i)/(x) };
 h5 -> { (100*i)/(x) (220*i)/(x) };
 h6 -> { (100*i)/(x) (200*i)/(x) };
 h7 -> { (120*i)/(x) (240*i)/(x) };
 h8 -> { (140*i)/(x) (240*i)/(x) };
 h9 -> { (140*i)/(x) (220*i)/(x) };
 h10 -> { (140*i)/(x) (200*i)/(x) };
 print_all();
 i = i+increment;
 halt(increment);
 }
}

move_e(int x){
 int i;
 int increment;
 i = 0;
 increment = 10;
 while (i <= x){
 e1 -> { (190*i)/(x) (220*i)/(x) };
 e2 -> { (200*i)/(x) (220*i)/(x) };
 e3 -> { (210*i)/(x) (220*i)/(x) };

12/22/11 11:55 PMFinal Report of PLT

Page 23 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 e4 -> { (220*i)/(x) (220*i)/(x) };
 e5 -> { (220*i)/(x) (220*i)/(x) };
 e6 -> { (215*i)/(x) (230*i)/(x) };
 e7 -> { (210*i)/(x) (235*i)/(x) };
 e8 -> { (205*i)/(x) (237*i)/(x) };
 e9 -> { (200*i)/(x) (237*i)/(x) };
 e10 -> { (195*i)/(x) (237*i)/(x) };
 e11 -> { (190*i)/(x) (235*i)/(x) };
 e12 -> { (185*i)/(x) (230*i)/(x) };
 e13 -> { (180*i)/(x) (225*i)/(x) };
 e14 -> { (180*i)/(x) (220*i)/(x) };
 e15 -> { (180*i)/(x) (215*i)/(x) };
 e16 -> { (185*i)/(x) (208*i)/(x) };
 e17 -> { (190*i)/(x) (205*i)/(x) };
 e18 -> { (195*i)/(x) (200*i)/(x) };
 e19 -> { (202*i)/(x) (200*i)/(x) };
 e20 -> { (210*i)/(x) (200*i)/(x) };
 print_all();
 i = i+increment;
 halt(increment);
 }
}

move_l(int x){
 int i;
 int increment;
 i = 0;
 increment = 10;
 while (i <= x){
 l1 -> { 240*i/x 200*i/x };
 l2 -> { 245*i/x 200*i/x };
 l3 -> { 250*i/x 200*i/x };
 l4 -> { 255*i/x 200*i/x };
 l5 -> { 260*i/x 200*i/x };
 l6 -> { 240*i/x 200*i/x };
 l7 -> { 240*i/x 320*i/x };
 l8 -> { 280*i/x 200*i/x };
 l9 -> { 300*i/x 200*i/x };
 l10 -> { 280*i/x 200*i/x };
 l11 -> { 280*i/x 220*i/x };
 l12 -> { 280*i/x 240*i/x };
 l13 -> { 280*i/x 260*i/x };
 l14 -> { 280*i/x 280*i/x };
 l15 -> { 280*i/x 300*i/x };
 l16 -> { 280*i/x 320*i/x };
 print_all();
 i = i+increment;
 halt(increment);
 }
}

move_o(int x){
 int i;
 int increment;
 i = 0;
 increment = 10;
 while (i <= x){
 o1 -> { 350*i/x 230*i/x };
 o2 -> { 350*i/x 230*i/x };
 o3 -> { 350*i/x 230*i/x };
 o4 -> { 350*i/x 230*i/x };
 o5 -> { 350*i/x 230*i/x };

12/22/11 11:55 PMFinal Report of PLT

Page 24 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 o6 -> { 350*i/x 230*i/x };
 print_all();
 i = i+increment;
 halt(increment);
 }
}

run(){
 initialize_h();
 initialize_e();
 initialize_l();
 initialize_o();
 move_h(1000);
 move_e(1000);
 move_l(1000);
 move_o(1000);
 print_all();
 halt(5000);
 halt(2000);
}

Appendix 2:
Here is the code for bounce.tbc:

ellipse c;

bounce(int velocity, int height, int direction){
 int v;
 int y;
 int new_y;
 int i;
 int d;
 int a;
 a = 50;
 d = direction;
 v = velocity;
 new_y = height;
 i = 0;
 while (i < 10000){
 y = new_y;
 if (d == 1){
 if (v > y){
 new_y = v-y;
 moveIN(y, 0, y*1000/v+1);
 moveIN(0, new_y, 1000-(y*1000/v)+1);
 v = v*new_y/v;
 d = 0;
 }
 else {
 new_y = y-v;
 moveIN(y, new_y, 1000);
 v = v+a;
 }
 }
 else{
 if (v < a){
 new_y = y;
 moveIN(y, new_y, 1);
 d = 1;

12/22/11 11:55 PMFinal Report of PLT

Page 25 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 v = a-v;
 }
 else {
 new_y = y+v;
 moveIN(y, new_y, 1000);
 v = v-a;
 }
 }
 i = i+1;
 }
}

moveIN(int old_y, int new_y, int t){
 int i;
 int increment;
 i = 0;
 increment = 10;
 while (i <= t){
 if (new_y < old_y){
 c -> { 200 (old_y-(old_y-new_y)*i/t)+25 };
 }
 else {
 c -> { 200 (old_y+(new_y-old_y)*i/t)+25 };
 }
 print(c);
 halt(increment);
 i = i+increment;
 }
}

run(){
 int i_h;
 i_h = 400;
 c = E:{ 200 250 25 25 };
 bounce(50, i_h, 1);
}

Appendix 3:
Here is the code for bubble_sort.tbc. Originally, before arrays were implemented, this code
was 1700 lines long. Now that arrays have been implemented, the code is only 130 lines long.

rectangle r[8];

print_all(){
 int i;
 for (i = 0; i < 8; i = i+1){
 print(r[i]);
 }
}

test_height(int i){
 int x;
 int y;
 rectangle r1;
 rectangle r2;
 r1 = r[i];
 r2 = r[i+1];
 x = r1.v4;
 y = r2.v4;

12/22/11 11:55 PMFinal Report of PLT

Page 26 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 if (x > y){
 return 1;
 }
 else {
 return 0;
 }
}

test_area(int i){
 int x1;
 int x2;
 int y1;
 int y2;
 rectangle r1;
 rectangle r2;
 r1 = r[i];
 r2 = r[i+1];
 x1 = r1.v3;
 x2 = r1.v4;
 y1 = r2.v3;
 y2 = r2.v4;
 if (x1*x2 > y1*y2){
 return 1;
 }
 else {
 return 0;
 }
}

switch(int i){
 rectangle temp1;
 rectangle temp2;
 int val1;
 int val2;
 int val3;
 int val4;
 int tick;
 int delay;
 int height;
 delay = 10;
 height = 60;
 temp1 = r[i];
 temp2 = r[i+1];
 tick = 0;
 while (tick < height){
 temp1 => { 0 1 };
 temp2 => { 0 -1 };
 r[i] = temp1;
 r[i+1] = temp2;
 print_all();
 halt(delay);
 tick = tick + 1;
 }
 tick = 0;
 while (tick < 50){
 temp1 => { 1 0 };
 temp2 => { -1 0 };
 r[i] = temp1;
 r[i+1] = temp2;
 print_all();
 halt(delay);
 tick = tick + 1;

12/22/11 11:55 PMFinal Report of PLT

Page 27 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 }
 tick = 0;
 while (tick < height){
 temp1 => { 0 -1 };
 temp2 => { 0 1 };
 r[i] = temp1;
 r[i+1] = temp2;
 print_all();
 halt(delay);
 tick = tick + 1;
 }
 val1 = temp2.v1;
 val2 = temp2.v2;
 val3 = temp2.v3;
 val4 = temp2.v4;
 r[i] = R:{ val1 val2 val3 val4 };
 val1 = temp1.v1;
 val2 = temp1.v2;
 val3 = temp1.v3;
 val4 = temp1.v4;
 r[i+1] = R:{ val1 val2 val3 val4 };
}

bubble_sort(){
 int i;
 i = 0;
 while (i < 7){
 if (test_height(i)){
 switch(i);
 i = 0;
 }
 else{
 i = i+1;
 }
 }
}

run(){
 r[0] = R:{ 110 200 15 15 };
 r[1] = R:{ 160 200 30 40 };
 r[2] = R:{ 210 200 40 30 };
 r[3] = R:{ 260 200 5 70 };
 r[4] = R:{ 310 200 40 40 };
 r[5] = R:{ 360 200 35 20 };
 r[6] = R:{ 410 200 5 5 };
 r[7] = R:{ 460 200 20 10 };
 bubble_sort();
 print_all();
 halt(5000);
}

Appendix 4:
Following are all of the test cases used to test our compiler.

arith.tbc

run()
{
 int i;
 i = 3 + 5;

12/22/11 11:55 PMFinal Report of PLT

Page 28 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 print_int(i);
 print_int(5 - 3);
 print_int(3 * 5);
 print_int(3 - 5 * 20 / 4 + 1);
}

array_int.tbc

int a[10];

run()
{
 int b;
 int c[20];
 for (b=0;b<10;b=b+1) {
 a[b] = b * 2;
 print_int(a[b]);
 }
 for (b=0;b<20;b=b+1) {
 c[b] = b + 5;
 print_int(c[b]);
 }
 for (b=0;b<10;b=b+1) {
 print_int(c[b]-a[b]);
 }
}

array_shape.tbc

rectangle a[10];
ellipse e[10];
line l[10];

run()
{
 rectangle r;
 int b;
 for (b=0;b<9;b=b+1) {
 a[b] = R:{20+b*10 20+b*20 20+b*30 20+b*40};
 e[b] = E:{10+b*2 20*b*5 b*3 b*4};
 l[b] = E:{100+b*2 20*b*5 200+b 300+b*4};
 print(a[b]);
 print(e[b]);
 print(l[b]);
 r = a[b];
 print_int(r.v1);
 }
 halt(5000);
}

dumpstack.tbc

run()
{
 int i;
 i = 99999;
 dumpstack();
}

12/22/11 11:55 PMFinal Report of PLT

Page 29 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

func1.tbc

func(int i)
{
 return i * 2;
}

run()
{
 int i;
 i = func(2);
 print_int(i);
}

hello.tbc

run()
{
 string s;
 s = S:{100 100 "hello"};
}

if.tbc

run()
{
 int i;
 if (2 < 3)
 {
 i = 9000;
 }
 else
 {
 i = 8000;
 }
 print_int(i);
}

if2.tbc

run()
{
 if (0)
 {
 print_int(100);
 }
 else
 {
 print_int(111);
 }
}

memberin.tbc

12/22/11 11:55 PMFinal Report of PLT

Page 30 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

run()
{
 rectangle r;
 line l;
 ellipse e;
 r = R:{100 100 30 30};
 l = L:{200 100 20 30};
 e = E:{250 200 30 30};
 print_int(r.v1);
 print_int(e.v2);
 print_int(l.v3);
 print_int(r.v4);
}

move.tbc

run()
{
 int i;
 rectangle r;
 i = 10 + 20;
 r = R:{ 100 200 100 100 };
 print(r);

 halt(2000);
 r -> { 300 10 };
 print(r);
 halt(3000);
 r => { i 0 };
 print(r);
 halt(5000);
}

print.tbc

run()
{
 print_int(3);
}

return1.tbc

retr()
{
 return(R:{100 100 200 200});
}
run()
{
 rectangle r;
 r = retr();
 print(r);
 halt(5000);
}

return2.tbc

12/22/11 11:55 PMFinal Report of PLT

Page 31 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

retr()
{
 return(R:{100 100 200 200});
}

rete()
{
 return(E:{100 200 50 50});
}

retl()
{
 return(L:{200 200 50 50});
}

reti()
{
 return(9);
}
run()
{
 rectangle r;
 r = retr();
 print(r);
 print(rete());
 print(retl());
 print_int(reti());
 halt(5000);
}

return3.tbc

returni(int i)
{
 return (i * 2);
}
run()
{
 print_int(returni(7));
}

shape.tbc

run()
{
 rectangle r;
 ellipse e;
 line l;
 r = R:{ 100 200 30 40 };
 e = E:{ 100 200 20 40 };
 l = L:{ 200 10 200 300 };
 print(e);
 print(r);
 print(l);
 halt(5000);
}

string-test.tbc

12/22/11 11:55 PMFinal Report of PLT

Page 32 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

run()
{
 string s;
 rectangle r;
 r = R:{ 100 100 100 100 };
 s = S:{ 100 200 "hi hi hi" };
 halt(1000);

 print(s);
 halt(1000);
 s=> {50 50};
 print(s);

 halt(5000);

}

while.tbc

run()
{
 int i;
 i = 0;
 while(i<5)
 {
 print_int(i);
 i = i + 1;
 }

}

8. Appendix
Source code:

ast.ml:
type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |
Greater | Geq

type shape = Rect | Ellipse | Line | Undef

type expr =
 Literal of int
 | String of string
 | Rectangle of string
 | Ellipse of string
 | Line of string
 | Shape of string
 | Id of string
 | Binop of expr * op * expr
 | Assign of string * expr
 | Call of string * expr list
 | Moveto of string * expr * expr
 | Moveby of string * expr * expr
 | Noexpr
 | GetV1 of string
 | GetV2 of string
 | GetV3 of string

12/22/11 11:55 PMFinal Report of PLT

Page 33 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | GetV4 of string
 | Aid of string * expr
 | AAssign of string * expr * expr
 | REvaluation of expr * expr * expr * expr
 | EEvaluation of expr * expr * expr * expr
 | LEvaluation of expr * expr * expr * expr

type stmt =
 Block of stmt list
 | Expr of expr
 | Return of expr
 | If of expr * stmt * stmt
 | For of expr * expr * expr * stmt
 | While of expr * stmt

type vari_decl = {
 vtype : string;
 vsize : int;
 name : string;
 }

type vari_value = {
 ltype : string;
 value : string;
 }

type func_decl = {
 fname : string;
 formals : (vari_decl) list;
 locals : (vari_decl) list;
 body : stmt list;
 }

type program = (vari_decl) list * func_decl list

bytecode.ml:
type bstmt =
 (*push commands*)
 Litin of int (* Push a literal *)
 | Litst of string (*push string*)
 | Litsh of string (*push string*)

 | Drp (* Discard a value the bytecode interpreter will
handle the different types that can be dropped*)

 | Bin of Ast.op (* Perform arithmetic on top of stack *)

 (*copy of global with id of int to stack top*)
 | Lod of int (* puts global variable on top of stack *)

 (*store stack object in global variables given id*)
 | Str of int (* create global variable from top of stack *)

 (*these stay the same from micro C*)
 | Lfp of int (* Load frame pointer relative *)
 | Sfp of int (* Store frame pointer relative *)
 | Jsr of int (* Call function by absolute address *)
 | Ent of int (* Push FP, FP -> SP, SP += i *)
 | Rts of int (* Restore FP, SP, consume formals, push result
*)
 | Beq of int (* Branch relative if topofstack is zero *)
 | Bne of int (* Branch relative if topofstackis nonzero*)
 | Bra of int (* Branch relative *)

12/22/11 11:55 PMFinal Report of PLT

Page 34 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | Lfpa of int (* This is the start index of this array variable.
Index is evaluated and
 put on top of stack in an
int structure. *)
 | Sfpa of int
 | Loda of int
 | Stra of int
 | Hlt (* Terminate *)

 (*these are added for graphic functions*)
 | Sgraph (*create empty graph*)
 | Egraph (* Erase the whole graph *)
 (*freeze and move commands*)
 | Susp (* Freeze for int milliseconds specified on top of
stack*)
 | Movby (* move object on top of stack by the x and y
ammounts specified by the two integers on teh stack above it*)
 | Movto
 (*get specfic value of object*)
 | GetC (*get value specified by int on top of stack *)
 | MakeS (* Take top 5 ints and then make a new shape. from
top to bottom: type, v1, v2, v3, v4 *)

type prog = {
 size_globals : int; (* Number of global variables *)
 text : bstmt array; (* Code for all the functions *)
}

let string_of_stmt = function
 Litin(i) -> "Litin " ^ string_of_int i
 | Drp -> "Drp"
 | Bin(Ast.Add) -> "Add"
 | Bin(Ast.Sub) -> "Sub"
 | Bin(Ast.Mult) -> "Mult"
 | Bin(Ast.Div) -> "Div"
 | Bin(Ast.Equal) -> "Equal"
 | Bin(Ast.Neq) -> "Neq"
 | Bin(Ast.Less) -> "Less"
 | Bin(Ast.Leq) -> "Leq"
 | Bin(Ast.Geq) -> "Geq"
 | Bin(Ast.Greater) -> "Greater"
 | Lod(i) -> "Lod " ^ string_of_int i
 | Str(i) -> "Str " ^ string_of_int i
 | Lfp(i) -> "Lfp " ^ string_of_int i
 | Sfp(i) -> "Sfp " ^ string_of_int i
 | Jsr(i) -> "Jsr " ^ string_of_int i
 | Ent(i) -> "Ent " ^ string_of_int i
 | Rts(i) -> "Rts " ^ string_of_int i
 | Bne(i) -> "Bne " ^ string_of_int i
 | Beq(i) -> "Beq " ^ string_of_int i
 | Bra(i) -> "Bra " ^ string_of_int i
 | Litsh(i) -> "Litsh" ^ i
 | Litst(i) -> "Litst" ^ i
 | Egraph -> "Egraph"
 | Sgraph -> "Sgraph"
 | Hlt -> "Hlt"
 | Movto -> "Movto"
 | Movby -> "Movby"
 | Susp -> "Susp"
 | GetC -> "GetC"
 | MakeS -> "MakeS"
 | Loda(i) -> "Loda " ^ string_of_int i

12/22/11 11:55 PMFinal Report of PLT

Page 35 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | Stra(i) -> "Stra " ^ string_of_int i
 | Lfpa(i) -> "Lfpa " ^ string_of_int i
 | Sfpa(i) -> "Sfpa " ^ string_of_int i

let string_of_prog p =
 string_of_int p.size_globals ^ " slots to store global
variables\n" ^
 let funca = Array.mapi
 (fun i s -> string_of_int i ^ " " ^ string_of_stmt
s) p.text
 in String.concat "\n" (Array.to_list funca)
compile.ml
(* Compile: Convert predefined functions into bytecode series. *)
open Ast
open Bytecode

module StringMap = Map.Make(String)

(* Symbol table: Information about all the names in scope *)
type env = {
 function_index : int StringMap.t; (* Index for each function *)
 global_index : int StringMap.t; (* "Address" for global
variables *)
 local_index : int StringMap.t; (* FP offset for args, locals
*)
 }

(* val enum : int -> 'a list -> (int * 'a) list *)
let rec enum stride n = function (*Change here: this func maps
variable name to offsets. *)
 [] -> []
 | hd::tl -> (* hd is the vari_decl *)
 if stride > 0 then
 match hd.vtype with
 "int" -> (* Allocate global storage space
for an int *)
 (n + 1, hd.name) :: enum stride
(n+stride * 2) tl
 | "string" -> (* Here's the question: how
many slots need to be allocated to string? *)
 (* To make it
simpler, allocate 30 slots for it *)
 (n + 29, hd.name) :: enum stride
(n+stride * 30) tl
 | "line" ->
 (n + 4, hd.name) :: enum stride
(n+stride * 5) tl
 | "rect" ->
 (n + 4, hd.name) :: enum stride
(n+stride * 5) tl
 | "ellipse" ->
 (n + 4, hd.name) :: enum stride
(n+stride * 5) tl
 | "shape" ->
 (n + 4, hd.name) :: enum stride
(n+stride * 5) tl
 | "arrayi" ->
 (n + 2*hd.vsize-1, hd.name) :: enum
stride (n+stride * 2 * hd.vsize) tl
 | "arrayr" ->
 (n + 5*hd.vsize-1, hd.name) :: enum
stride (n+stride * 5 * hd.vsize) tl

12/22/11 11:55 PMFinal Report of PLT

Page 36 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | "arraye" ->
 (n + 5*hd.vsize-1, hd.name) :: enum
stride (n+stride * 5 * hd.vsize) tl
 | "arrayl" ->
 (n + 5*hd.vsize-1, hd.name) :: enum
stride (n+stride * 5 * hd.vsize) tl
 | "arrays" ->
 (n + 5*hd.vsize-1, hd.name) :: enum
stride (n+stride * 5 * hd.vsize) tl
 | "bind" ->
 (* so the problem is
with bind: allocate 100 slots. *)
 (n + 99, hd.name) :: enum stride
(n+stride * 100) tl
 | _ -> raise(Failure ("Undefined type with
variable" ^ hd.name))
 else
 match hd.vtype with
 "int" -> (* Allocate global storage space
for an int *)
 (n, hd.name) :: enum stride
(n+stride * 2) tl
 | "string" -> (* Here's the question: how
many slots need to be allocated to string? *)
 (* To make it
simpler, allocate 30 slots for it *)
 (n, hd.name) :: enum stride
(n+stride * 30) tl
 | "line" ->
 (n, hd.name) :: enum stride
(n+stride * 5) tl
 | "rect" ->
 (n, hd.name) :: enum stride
(n+stride * 5) tl
 | "ellipse" ->
 (n, hd.name) :: enum stride
(n+stride * 5) tl
 | "shape" ->
 (n, hd.name) :: enum stride
(n+stride * 5) tl
 | "arrayi" ->
 (n, hd.name) :: enum stride
(n+stride * 2 * hd.vsize) tl
 | "arrayr" ->
 (n, hd.name) :: enum stride
(n+stride * 5 * hd.vsize) tl
 | "arraye" ->
 (n, hd.name) :: enum stride
(n+stride * 5 * hd.vsize) tl
 | "arrayl" ->
 (n, hd.name) :: enum stride
(n+stride * 5 * hd.vsize) tl
 | "arrays" ->
 (n, hd.name) :: enum stride
(n+stride * 5 * hd.vsize) tl
 | _ -> raise(Failure ("Undefined type with
variable " ^ hd.name))

(* val enum : int -> 'a list -> (int * 'a) list *)
let rec enum_func stride n = function
 [] -> []
 | hd::tl -> (n, hd) :: enum_func stride (n+stride) tl

12/22/11 11:55 PMFinal Report of PLT

Page 37 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

let get_vari_size a vlist =
 List.fold_left (fun a b -> a + (match b.vtype with
 "int"
-> 2
 |
 "string" -> 30
 |
 "rect" -> 5
 |
 "ellipse" -> 5
 |
 "line" -> 5
 |
 "shape" -> 5
 |
 "bind" -> 100
 |
 "arrayi" -> b.vsize*2
 |
 "arrayr" -> b.vsize*5
 |
 "arraye" -> b.vsize*5
 |
 "arrayl" -> b.vsize*5
 |
 "arrays" -> b.vsize*5
 |
 _ -> raise(Failure("Error in get_vari_size !!"))
))
0 vlist

(* val string_map_pairs StringMap 'a -> (int * 'a) list -> StringMap
'a *)
let string_map_pairs map pairs =
 List.fold_left (fun m (i, n) -> StringMap.add n i m) map pairs (*
Add (var_name, offset) pairs *)

(** Translate a program in AST form into a bytecode program. Throw
an
 exception if something is wrong, e.g., a reference to an unknown
 variable or function *)
(* The input of translate are two lists: one for global, one for
function. Compiler
 takes the two lists, which is generated by parser, to be bytecode
stuff. *)
let translate (globals, functions) = (* globals has the form of
vari_decl *)

 (* Allocate "addresses" and storing place for each global variable
*)
 let global_indexes = string_map_pairs StringMap.empty (enum 1 0
globals) in

 (* Assign indexes to function names; built-ins are special *)
 let built_in_functions = StringMap.add "print" (-1)
StringMap.empty in
 let built_in_functions = StringMap.add "halt" (-2)
built_in_functions in
 (* -3 maps to MakeBind which is deleted *)
 let built_in_functions = StringMap.add "printarray" (-3)
built_in_functions in
 let built_in_functions = StringMap.add "print_int" (-4)

12/22/11 11:55 PMFinal Report of PLT

Page 38 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

built_in_functions in
 let built_in_functions = StringMap.add "dumpstack" (-5)
built_in_functions in
 let function_indexes = string_map_pairs built_in_functions
 (enum_func 1 1 (List.map (fun f -> f.fname) functions)) in

 (* Translate a function in AST form into a list of bytecode
statements *)
 let translate env fdecl =
 (* Bookkeeping: FP offsets for locals and arguments *)
 let size_formals = get_vari_size 0 fdecl.formals
 and size_locals = get_vari_size 0 fdecl.locals
 and local_offsets = enum 1 1 fdecl.locals (* This is list of
pair (#, local_name) *)
 and formal_offsets = enum (-1) (-2) fdecl.formals in (* The 1
and -2 in this and last line means the first variable's address, if
any. *)
 let env = { env with local_index = string_map_pairs (* Not quite
understand this line. *)
 StringMap.empty (local_offsets @ formal_offsets) }
in

 let rec expr = function (* Try to implement built-in functions
here. *)
 Literal i -> [Litin i] (* Give input as an int. *)
 | String s -> (let s2 = String.sub s 3 (String.length s - 4)
 in [Litst s2])
 | Rectangle r -> let r2 = String.sub r 3 (String.length r - 4)
(* No need of type check. Done in parser. *)
 in [Litsh ("3 " ^ r2)]
 | Ellipse e -> let e2 = String.sub e 3 (String.length e - 4)
 in [Litsh ("4 " ^ e2)]
 | Line l -> let l2 = String.sub l 3 (String.length l - 4)
 in [Litsh ("5 " ^ l2)]
 | Shape s -> let s2 = String.sub s 3 (String.length s - 4)
 in [Litsh ("6 " ^ s2)]
 | Id s -> (* fetch variables according to id. put this on top
of stack. *)
 (try [Lfp (StringMap.find s env.local_index)]
 with Not_found -> try [Lod (StringMap.find s
env.global_index)]
 with Not_found -> raise (Failure ("undeclared variable " ^
s)))
 | Binop (e1, op, e2) -> expr e1 @ expr e2 @ [Bin op] (* Take
care + might be overloaded to binds. *)
 | Assign (s, e) -> expr e @
 (try [Sfp (StringMap.find s env.local_index)]
 with Not_found -> try [Str (StringMap.find s
env.global_index)]
 with Not_found -> raise (Failure ("undeclared variable " ^
s)))
 | Call (fname, actuals) -> (try (* How about the special
functions about opengraph, close graph, halt,? *)
 (List.concat (List.map expr (List.rev actuals))) @
 [Jsr (StringMap.find fname env.function_index)]
 with Not_found -> raise (Failure ("undefined function " ^
fname)))
 | Noexpr -> []
 | Moveby(id, e1, e2) -> (* Move only handles with
numbers*)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id

12/22/11 11:55 PMFinal Report of PLT

Page 39 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ expr e2 @ expr e1 @ [Movby] @ [Drp] @ [Drp] @
 (try [Sfp (StringMap.find id env.local_index)]
 with Not_found -> try[Str (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))

 | Moveto(id, e1, e2) -> (* Move only handles with
numbers*)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ expr e2 @ expr e1 @ [Movto] @ [Drp] @ [Drp] @
 (try [Sfp (StringMap.find id env.local_index)]
 with Not_found -> try[Str (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))

 | GetV1(id) -> (* Get first value of object *)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ [Litin 1] @ [GetC]

 | GetV2(id) -> (* Get second value of object *)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ [Litin 2] @ [GetC]

 | GetV3(id) -> (* Get third value of object *)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ [Litin 3] @ [GetC]

 | GetV4(id) -> (* Get fourth value of object *)
 (try [Lfp (StringMap.find id env.local_index)]
 with Not_found -> try[Lod (StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undeclared variable " ^ id)))
 @ [Litin 4] @ [GetC]

 | Aid(id, e) -> (* Retrieve Array value on top of stack *)
 expr e @ (try [Lfpa(StringMap.find id
env.local_index)]
 with Not_found -> try[Loda (StringMap.find
id env.global_index)]
 with Not_found -> raise (Failure

12/22/11 11:55 PMFinal Report of PLT

Page 40 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

("undeclared variable" ^ id)))

 | AAssign(id, e1, e2) -> (* Assign value to an array
element. *)
 expr e2 @ expr e1 @ (try [Sfpa(StringMap.find id
env.local_index)]
 with Not_found -> try[Stra(StringMap.find id
env.global_index)]
 with Not_found -> raise (Failure
("undelcared variable" ^ id)))

 | REvaluation(v1, v2, v3, v4) -> (* Evaluate every
variable in a rectangle*)
 expr v4 @ expr v3 @ expr v2 @ expr v1 @ [Litin 3] @
[MakeS]

 | EEvaluation(v1, v2, v3, v4) -> (* Evaluate every
variable in a rectangle*)
 expr v4 @ expr v3 @ expr v2 @ expr v1 @ [Litin 4] @
[MakeS]

 | LEvaluation(v1, v2, v3, v4) -> (* Evaluate every
variable in a rectangle*)
 expr v4 @ expr v3 @ expr v2 @ expr v1 @ [Litin 5] @
[MakeS]

 in let rec stmt = function
 Block sl -> List.concat (List.map stmt sl)
 | Expr e -> expr e @ [Drp]
 | Return e -> expr e @ [Rts size_formals]
 | If (p, t, f) -> let t' = stmt t and f' = stmt f in
 expr p @ [Beq(2 + List.length t')] @
 t' @ [Bra(1 + List.length f')] @ f'
 | For (e1, e2, e3, b) ->
 stmt (Block([Expr(e1); While(e2, Block([b; Expr(e3)]))]))
 | While (e, b) ->
 let b' = stmt b and e' = expr e in
 [Bra (1+ List.length b')] @ b' @ e' @
 [Bne (-(List.length b' + List.length e'))]

 in [Ent size_locals] @ (* Entry: allocate space for locals.
Need to change as each variable has different size. *)
 stmt (Block fdecl.body) @ (* Body *)
 [Litin 0; Rts size_formals] (* Default = return 0 *)

 in let env = { function_index = function_indexes;
 global_index = global_indexes;
 local_index = StringMap.empty } in

 (* Code executed to start the program: Jsr run; halt *)
 let entry_function = try
 [Sgraph; Jsr (StringMap.find "run" function_indexes); Hlt]
 with Not_found -> raise (Failure ("no \"run\" function"))
 in

 (* Compile the functions *)
 let func_bodies = entry_function :: List.map (translate env)
functions in

 (* Calculate function entry points by adding their lengths *)
 let (fun_offset_list, _) = List.fold_left
 (fun (l,i) f -> (i :: l, (i + List.length f))) ([],0)
func_bodies in

12/22/11 11:55 PMFinal Report of PLT

Page 41 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 let func_offset = Array.of_list (List.rev fun_offset_list) in

(* This is what compiler generates: *)
 { size_globals = get_vari_size 0 globals; (* This globals must be
a complete layout of global var. *)
 (* Concatenate the compiled functions and replace the function
 indexes in Jsr statements with PC values *)
 text = Array.of_list (List.map (function
 Jsr i when i > 0 -> Jsr func_offset.(i)
 | _ as s -> s) (List.concat func_bodies))
 }

Execute.ml
open Ast
open Bytecode
open Thread

exception IllegalPrint;;
exception IllegalMove;;

let trim s =
 let s' = Str.replace_first (Str.regexp "^[\t\n]+") "" s in
 Str.replace_first (Str.regexp "[\t\n]+$") "" s';;

let explode s =
 let rec f acc = function
 | -1 -> acc
 | k -> f (s.[k] :: acc) (k - 1)
 in f [] (String.length s - 1) ;;

(*execute the program*)
let execute_prog prog =
 let stack = Array.make 8192 0
 and globals = Array.make prog.size_globals 0 in

 (*exec runs op at stack position
 fp is frame pointer
 sp is stack pointer
 pc is program counter *)

 let rec exec fp sp pc = match prog.text.(pc) with

 (*lits will push values on stack*)
 (*int: type 1 and value*)
 Litin i -> stack.(sp) <- i; stack.(sp+1) <- 1; exec
fp (sp+2) (pc+1)

 (* string: type 2, x, y, # of char, chars -- total
size is automatically 30*)
 | Litst str ->
 let trimmed = trim str in
 let split_trim = Str.split(Str.regexp "\"") trimmed
 in
 let ascii_list = List.rev (List.map Char.code
(explode (List.nth(split_trim)(1)))) in
 let length = List.length ascii_list in
 let diff = 26 - length in
 let coord_list = Str.split(Str.regexp "[\t]+")
(List.nth(split_trim)(0)) in
 let rec fill_string remaining = if (remaining
> 0) then (stack.(sp+diff-remaining) <- 0;
 fill_string
(remaining-1)) else exec fp (sp+30) (pc+1) in

12/22/11 11:55 PMFinal Report of PLT

Page 42 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 let rec push_elements list index = if
List.length list > 0
 then (stack.(sp+diff+index)
<- (List.hd list);
 push_elements
(List.tl list) (index+1))
 else (stack.(sp+26) <-
length;
 stack.(sp+27)
<- int_of_string (List.nth(coord_list)(1));
 stack.(sp+28)
<- int_of_string (List.nth(coord_list)(0));
 stack.(sp+29)
<- 2;
 fill_string
diff)
 in
 push_elements ascii_list
0

 (* shape: type , push x1, push y1, push x2, push
y2*)
 | Litsh shp ->
 let s_value = Str.split(Str.regexp("[\t]+"))(shp)
in
 stack.(sp+4) <- int_of_string
(List.nth(s_value)(0));
 stack.(sp+3) <- int_of_string
(List.nth(s_value)(1));
 stack.(sp+2) <- int_of_string
(List.nth(s_value)(2));
 stack.(sp+1) <- int_of_string
(List.nth(s_value)(3));
 stack.(sp) <- int_of_string
(List.nth(s_value)(4));
 exec fp (sp+5) (pc+1)

 (*whatever is stored on top of stack*)
 | Drp ->
 let obj_id = stack.(sp-1) in
 (
 match obj_id with
 1 -> exec fp (sp-2) (pc+1)
 | 2 -> exec fp (sp-30) (pc+1)
 | 3 -> exec fp (sp-5) (pc+1)
 | 4 -> exec fp (sp-5) (pc+1)
 | 5 -> exec fp (sp-5) (pc+1)
 | 6 -> exec fp (sp-5) (pc+1)
 | _ -> raise(Failure("Unmatched type!!")))

 (*binary operation*)
 | Bin op -> let op1 = stack.(sp-4) and op2 = stack.(sp-2) in

 stack.(sp-4) <- (let boolean i = if i then 1 else 0 in
 match op with
 Add -> op1 + op2
 | Sub -> op1 - op2
 | Mult -> op1 * op2
 | Div -> op1 / op2
 | Equal -> boolean (op1 = op2)
 | Neq -> boolean (op1 != op2)
 | Less -> boolean (op1 < op2)

12/22/11 11:55 PMFinal Report of PLT

Page 43 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | Leq -> boolean (op1 <= op2)
 | Greater -> boolean (op1 > op2)
 | Geq -> boolean (op1 >= op2)) ;
 exec fp (sp-2) (pc+1)

 (*copy global variable onto stack
 this is passed the first index on the array of globals
that will hold the identifier*)
 | Lod index -> (* Fetch global variable *)
 let obj_id = globals.(index) in
 (
 match obj_id with
 1 ->
 stack.(sp) <- globals.
(index-1);
 stack.(sp+1) <- globals.
(index);
 exec fp (sp+2) (pc+1)

 | 2 ->
 for i=0 to 29 do
 stack.(sp+i) <-
globals.(index-29+i)
 done;
 exec fp (sp+30) (pc+1)

 | 3 ->
 stack.(sp) <- globals.
(index-4);
 stack.(sp+1) <- globals.
(index-3);
 stack.(sp+2) <- globals.
(index-2);
 stack.(sp+3) <- globals.
(index-1);
 stack.(sp+4) <- globals.
(index);
 exec fp (sp+5) (pc+1)
 | 4 ->
 stack.(sp) <- globals.
(index-4);
 stack.(sp+1) <- globals.
(index-3);
 stack.(sp+2) <- globals.
(index-2);
 stack.(sp+3) <- globals.
(index-1);
 stack.(sp+4) <- globals.
(index);
 exec fp (sp+5) (pc+1)
 | 5 ->
 stack.(sp) <- globals.
(index-4);
 stack.(sp+1) <- globals.
(index-3);
 stack.(sp+2) <- globals.
(index-2);
 stack.(sp+3) <- globals.
(index-1);
 stack.(sp+4) <- globals.
(index);
 exec fp (sp+5) (pc+1)

12/22/11 11:55 PMFinal Report of PLT

Page 44 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | 6 ->
 stack.(sp) <- globals.
(index-4);
 stack.(sp+1) <- globals.
(index-3);
 stack.(sp+2) <- globals.
(index-2);
 stack.(sp+3) <- globals.
(index-1);
 stack.(sp+4) <- globals.
(index);
 exec fp (sp+5) (pc+1)

 | _ -> raise(Failure("Unmatched type!!"))
)
 | Loda index -> (* Fetch global array variable *)
 if (stack.(sp-1) <> 1) then raise(Failure("Array
type check failure!")) else
 let loffset = stack.(sp-2) in
 let obj_id = globals.(index) in
 let lsize = (match obj_id with
 1 -> 2
 | 2 -> raise(Failure("No
support of string array!"))
 | 3 -> 5
 | 4 -> 5
 | 5 -> 5
 | 6 -> 5
 | _ ->
(ignore(print_endline(string_of_int(globals.(index))));
raise(Failure("TTType check error!"))))
 in
 (
 match obj_id with
 1 ->
 stack.(sp) <- globals.
(index-1-lsize*loffset);
 stack.(sp+1) <- globals.
(index-lsize*loffset);
 exec fp (sp+2) (pc+1)

 | 2 ->
 for i=0 to 29 do
 stack.(sp+i) <-
globals.(index-29+i)
 done;
 exec fp (sp+30) (pc+1)

 | 3 ->
 stack.(sp) <- globals.
(index-4-lsize*loffset);
 stack.(sp+1) <- globals.
(index-3-lsize*loffset);
 stack.(sp+2) <- globals.
(index-2-lsize*loffset);
 stack.(sp+3) <- globals.
(index-1-lsize*loffset);
 stack.(sp+4) <- globals.
(index-lsize*loffset);
 exec fp (sp+5) (pc+1)
 | 4 ->
 stack.(sp) <- globals.

12/22/11 11:55 PMFinal Report of PLT

Page 45 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

(index-4-lsize*loffset);
 stack.(sp+1) <- globals.
(index-3-lsize*loffset);
 stack.(sp+2) <- globals.
(index-2-lsize*loffset);
 stack.(sp+3) <- globals.
(index-1-lsize*loffset);
 stack.(sp+4) <- globals.
(index-lsize*loffset);
 exec fp (sp+5) (pc+1)
 | 5 ->
 stack.(sp) <- globals.
(index-4-lsize*loffset);
 stack.(sp+1) <- globals.
(index-3-lsize*loffset);
 stack.(sp+2) <- globals.
(index-2-lsize*loffset);
 stack.(sp+3) <- globals.
(index-1-lsize*loffset);
 stack.(sp+4) <- globals.
(index-lsize*loffset);
 exec fp (sp+5) (pc+1)
 | 6 ->
 stack.(sp) <- globals.
(index-4-lsize*loffset);
 stack.(sp+1) <- globals.
(index-3-lsize*loffset);
 stack.(sp+2) <- globals.
(index-2-lsize*loffset);
 stack.(sp+3) <- globals.
(index-1-lsize*loffset);
 stack.(sp+4) <- globals.
(index-lsize*loffset);
 exec fp (sp+5) (pc+1)

 | _ -> raise(Failure("Unmatched type!!"))
)

 (*store stack object in global variables given id*)
 | Str index ->
 let obj_id = stack.(sp-1) in
 (
 match obj_id with
 1 ->
 globals.(index-1) <- stack.
(sp-2);
 globals.(index) <- stack.
(sp-1);
 exec fp (sp) (pc+1)
 | 2 ->

 for i=0 to 29 do
 globals.(index-29+i)
<- stack.(sp-30+i)
 done;
 exec fp (sp) (pc+1)

 | 3 ->
 globals.(index-4) <- stack.
(sp-5);
 globals.(index-3) <- stack.
(sp-4);

12/22/11 11:55 PMFinal Report of PLT

Page 46 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 globals.(index-2) <- stack.
(sp-3);
 globals.(index-1) <- stack.
(sp-2);
 globals.(index) <- stack.
(sp-1);
 exec fp (sp) (pc+1)

 | 4 ->
 globals.(index-4) <- stack.
(sp-5);
 globals.(index-3) <- stack.
(sp-4);
 globals.(index-2) <- stack.
(sp-3);
 globals.(index-1) <- stack.
(sp-2);
 globals.(index) <- stack.
(sp-1);
 exec fp (sp) (pc+1)
 | 5 ->
 globals.(index-4) <- stack.
(sp-5);
 globals.(index-3) <- stack.
(sp-4);
 globals.(index-2) <- stack.
(sp-3);
 globals.(index-1) <- stack.
(sp-2);
 globals.(index) <- stack.
(sp-1);
 exec fp (sp) (pc+1)
 | 6 ->
 globals.(index-4) <- stack.
(sp-5);
 globals.(index-3) <- stack.
(sp-4);
 globals.(index-2) <- stack.
(sp-3);
 globals.(index-1) <- stack.
(sp-2);
 globals.(index) <- stack.
(sp-1);
 exec fp (sp) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 (*store stack object in global variables given id*)
 | Stra index ->
 if (stack.(sp-1) <> 1) then raise(Failure("Array
type check failure!")) else
 let obj_id = stack.(sp-3)
 and loffset = stack.(sp-2)
 in
 (
 match obj_id with
 1 ->
 globals.(index-1-2*loffset)
<- stack.(sp-2-2);
 globals.(index-2*loffset) <-
stack.(sp-1-2);
 exec fp (sp) (pc+1)

12/22/11 11:55 PMFinal Report of PLT

Page 47 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | 2 ->

 for i=0 to 29 do
 globals.(index-29+i)
<- stack.(sp-30+i)
 done;
 exec fp (sp) (pc+1)

 | 3 ->
 globals.(index-4-5*loffset)
<- stack.(sp-5-2);
 globals.(index-3-5*loffset)
<- stack.(sp-4-2);
 globals.(index-2-5*loffset)
<- stack.(sp-3-2);
 globals.(index-1-5*loffset)
<- stack.(sp-2-2);
 globals.(index-5*loffset) <-
stack.(sp-1-2);
 exec fp (sp) (pc+1)

 | 4 ->
 globals.(index-4-5*loffset)
<- stack.(sp-5-2);
 globals.(index-3-5*loffset)
<- stack.(sp-4-2);
 globals.(index-2-5*loffset)
<- stack.(sp-3-2);
 globals.(index-1-5*loffset)
<- stack.(sp-2-2);
 globals.(index-5*loffset) <-
stack.(sp-1-2);
 exec fp (sp) (pc+1)
 | 5 ->
 globals.(index-4-5*loffset)
<- stack.(sp-5-2);
 globals.(index-3-5*loffset)
<- stack.(sp-4-2);
 globals.(index-2-5*loffset)
<- stack.(sp-3-2);
 globals.(index-1-5*loffset)
<- stack.(sp-2-2);
 globals.(index-5*loffset) <-
stack.(sp-1-2);
 exec fp (sp) (pc+1)
 | 6 ->
 globals.(index-4-5*loffset)
<- stack.(sp-5-2);
 globals.(index-3-5*loffset)
<- stack.(sp-4-2);
 globals.(index-2-5*loffset)
<- stack.(sp-3-2);
 globals.(index-1-5*loffset)
<- stack.(sp-2-2);
 globals.(index-5*loffset) <-
stack.(sp-1-2);
 exec fp (sp) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 (* same operations as in microc *)
 | Lfp i ->

12/22/11 11:55 PMFinal Report of PLT

Page 48 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 let obj_id = stack.(fp+i) in
 (
 match obj_id with
 1 ->
 stack.(sp) <- stack.(fp+i-
1);
 stack.(sp+1) <- stack.
(fp+i);
 exec fp (sp+2) (pc+1)
 | 2 ->
 for j=0 to 29 do
 stack.(sp+j) <-
stack.(fp+i-29+j)
 done;
 exec fp (sp+30) (pc+1)
 | 3 ->
 stack.(sp) <- stack.(fp+i-
4);
 stack.(sp+1) <- stack.(fp+i-
3);
 stack.(sp+2) <- stack.(fp+i-
2);
 stack.(sp+3) <- stack.(fp+i-
1);
 stack.(sp+4) <- stack.
(fp+i);
 exec fp (sp+5) (pc+1)
 | 4 ->
 stack.(sp) <- stack.(fp+i-
4);
 stack.(sp+1) <- stack.(fp+i-
3);
 stack.(sp+2) <- stack.(fp+i-
2);
 stack.(sp+3) <- stack.(fp+i-
1);
 stack.(sp+4) <- stack.
(fp+i);
 exec fp (sp+5) (pc+1)
 | 5 ->
 stack.(sp) <- stack.(fp+i-
4);
 stack.(sp+1) <- stack.(fp+i-
3);
 stack.(sp+2) <- stack.(fp+i-
2);
 stack.(sp+3) <- stack.(fp+i-
1);
 stack.(sp+4) <- stack.
(fp+i);
 exec fp (sp+5) (pc+1)
 | 6 ->
 stack.(sp) <- stack.(fp+i-
4);
 stack.(sp+1) <- stack.(fp+i-
3);
 stack.(sp+2) <- stack.(fp+i-
2);
 stack.(sp+3) <- stack.(fp+i-
1);
 stack.(sp+4) <- stack.
(fp+i);

12/22/11 11:55 PMFinal Report of PLT

Page 49 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 exec fp (sp+5) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 | Lfpa i -> (* This is the base address of array. Now, on
top of stack, it's the element offset*)
 if (stack.(sp-1) <> 1) then raise(Failure("Array
index type check failure!!")) else
 let obj_id = stack.(fp+i)
 and loffset = stack.(sp-2) in
 (
 match obj_id with
 1 ->
 stack.(sp) <- stack.(fp+i-1-
loffset*2);
 stack.(sp+1) <- stack.(fp+i-
loffset*2);
 exec fp (sp+2) (pc+1)
 | 2 ->
 for j=0 to 29 do
 stack.(sp+j) <-
stack.(fp+i-29+j)
 done;
 exec fp (sp+30) (pc+1)
 | 3 ->
 stack.(sp) <- stack.(fp+i-4-
loffset*5);
 stack.(sp+1) <- stack.(fp+i-
3-loffset*5);
 stack.(sp+2) <- stack.(fp+i-
2-loffset*5);
 stack.(sp+3) <- stack.(fp+i-
1-loffset*5);
 stack.(sp+4) <- stack.(fp+i-
loffset*5);
 exec fp (sp+5) (pc+1)
 | 4 ->
 stack.(sp) <- stack.(fp+i-4-
loffset*5);
 stack.(sp+1) <- stack.(fp+i-
3-loffset*5);
 stack.(sp+2) <- stack.(fp+i-
2-loffset*5);
 stack.(sp+3) <- stack.(fp+i-
1-loffset*5);
 stack.(sp+4) <- stack.(fp+i-
loffset*5);
 exec fp (sp+5) (pc+1)
 | 5 ->
 stack.(sp) <- stack.(fp+i-4-
loffset*5);
 stack.(sp+1) <- stack.(fp+i-
3-loffset*5);
 stack.(sp+2) <- stack.(fp+i-
2-loffset*5);
 stack.(sp+3) <- stack.(fp+i-
1-loffset*5);
 stack.(sp+4) <- stack.(fp+i-
loffset*5);
 exec fp (sp+5) (pc+1)
 | 6 ->
 stack.(sp) <- stack.(fp+i-4-

12/22/11 11:55 PMFinal Report of PLT

Page 50 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

loffset*5);
 stack.(sp+1) <- stack.(fp+i-
3-loffset*5);
 stack.(sp+2) <- stack.(fp+i-
2-loffset*5);
 stack.(sp+3) <- stack.(fp+i-
1-loffset*5);
 stack.(sp+4) <- stack.(fp+i-
loffset*5);
 exec fp (sp+5) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 | Sfp i ->
 let obj_id = stack.(sp-1) in
 (
 match obj_id with
 1 -> stack.(fp+i) <- stack.(sp-1);
stack.(fp+i-1) <- stack.(sp-2); exec fp (sp) (pc+1)

 | 2 ->
 for j=0 to 29 do
 stack.(fp+i-j) <-
stack.(sp-j-1)
 done;
 exec fp (sp) (pc+1)

 | 3 ->
 stack.(fp+i) <- stack.(sp-
1);
 stack.(fp+i-1) <- stack.(sp-
2);
 stack.(fp+i-2) <- stack.(sp-
3);
 stack.(fp+i-3) <- stack.(sp-
4);
 stack.(fp+i-4) <- stack.(sp-
5);
 exec fp (sp) (pc+1)
 | 4 ->
 stack.(fp+i) <- stack.(sp-
1);
 stack.(fp+i-1) <- stack.(sp-
2);
 stack.(fp+i-2) <- stack.(sp-
3);
 stack.(fp+i-3) <- stack.(sp-
4);
 stack.(fp+i-4) <- stack.(sp-
5);
 exec fp (sp) (pc+1)
 | 5 ->
 stack.(fp+i) <- stack.(sp-
1);
 stack.(fp+i-1) <- stack.(sp-
2);
 stack.(fp+i-2) <- stack.(sp-
3);
 stack.(fp+i-3) <- stack.(sp-
4);
 stack.(fp+i-4) <- stack.(sp-
5);

12/22/11 11:55 PMFinal Report of PLT

Page 51 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 exec fp (sp) (pc+1)
 | 6 ->
 stack.(fp+i) <- stack.(sp-
1);
 stack.(fp+i-1) <- stack.(sp-
2);
 stack.(fp+i-2) <- stack.(sp-
3);
 stack.(fp+i-3) <- stack.(sp-
4);
 stack.(fp+i-4) <- stack.(sp-
5);
 exec fp (sp) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 | Sfpa i ->
 if (stack.(sp-1) <> 1) then raise(Failure("Array
index type error in Sfpa!!")) else
 let obj_id = stack.(sp-3)
 and loffset = stack.(sp-2) in
 (
 match obj_id with
 1 -> stack.(fp+i-2*loffset) <-
stack.(sp-1-2);
 stack.(fp+i-1-2*loffset) <-
stack.(sp-2-2);
 exec fp (sp) (pc+1)
 | 2 ->
 for j=0 to 29 do
 stack.(fp+i-j) <-
stack.(sp-j-1)
 done;
 exec fp (sp) (pc+1)
 | 3 ->
 stack.(fp+i-5*loffset) <-
stack.(sp-1-2);
 stack.(fp+i-1-5*loffset) <-
stack.(sp-2-2);
 stack.(fp+i-2-5*loffset) <-
stack.(sp-3-2);
 stack.(fp+i-3-5*loffset) <-
stack.(sp-4-2);
 stack.(fp+i-4-5*loffset) <-
stack.(sp-5-2);
 exec fp (sp) (pc+1)
 | 4 ->
 stack.(fp+i-5*loffset) <-
stack.(sp-1-2);
 stack.(fp+i-1-5*loffset) <-
stack.(sp-2-2);
 stack.(fp+i-2-5*loffset) <-
stack.(sp-3-2);
 stack.(fp+i-3-5*loffset) <-
stack.(sp-4-2);
 stack.(fp+i-4-5*loffset) <-
stack.(sp-5-2);
 exec fp (sp) (pc+1)
 | 5 ->
 stack.(fp+i-5*loffset) <-
stack.(sp-1-2);
 stack.(fp+i-1-5*loffset) <-

12/22/11 11:55 PMFinal Report of PLT

Page 52 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

stack.(sp-2-2);
 stack.(fp+i-2-5*loffset) <-
stack.(sp-3-2);
 stack.(fp+i-3-5*loffset) <-
stack.(sp-4-2);
 stack.(fp+i-4-5*loffset) <-
stack.(sp-5-2);
 exec fp (sp) (pc+1)
 | 6 ->
 stack.(fp+i-5*loffset) <-
stack.(sp-1-2);
 stack.(fp+i-1-5*loffset) <-
stack.(sp-2-2);
 stack.(fp+i-2-5*loffset) <-
stack.(sp-3-2);
 stack.(fp+i-3-5*loffset) <-
stack.(sp-4-2);
 stack.(fp+i-4-5*loffset) <-
stack.(sp-5-2);
 exec fp (sp) (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 (*draw shape currently on top of stack*)
 | Jsr(-1) ->
 let obj_id = stack.(sp-1) in
 (
 match obj_id with
 1 -> raise (IllegalPrint);
 | 2 ->
 let size = stack.(sp-4) in
 let rec make_string
current_string counter = if counter < size
 then
 (make_string (current_string ^ Char.escaped(Char.chr stack.(sp-5-
counter)))(counter+1))
 else
(current_string) in
 let
this_will_work = (make_string("")(0)) in
 Graphics.moveto(stack.
(sp-2))(stack.(sp-3));
 Graphics.draw_string
(this_will_work);
 exec
fp sp (pc+1)

 | 3 ->
 Graphics.draw_rect(stack.
(sp-2)) (stack.(sp-3)) (stack.(sp-4)) (stack.(sp-5));
 exec fp sp (pc+1)
 | 4 ->
 Graphics.draw_ellipse(stack.
(sp-2)) (stack.(sp-3)) (stack.(sp-4)) (stack.(sp-5));
 exec fp sp (pc+1)
 | 5 ->
 Graphics.moveto(stack.(sp-
2)) (stack.(sp-3));
 Graphics.lineto(stack.(sp-
4)) (stack.(sp-5));
 exec fp sp (pc+1)
 | 6 -> raise (IllegalPrint)

12/22/11 11:55 PMFinal Report of PLT

Page 53 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | _ -> raise (IllegalPrint))

 (*suspend program*)
 | Jsr(-2) ->
 let duration = stack.(sp-2) in
 Thread.join(Thread.create(Thread.delay)
(float_of_int duration /. 1000.0));
 Graphics.clear_graph ();
 exec fp (sp) (pc+1)

 (*print int to command line for debug purposes*)
 | Jsr(-4) -> print_endline(string_of_int stack.(sp-2)); exec
fp sp (pc+1)

 (*dump complete stack to command line*)
 | Jsr(-5) -> Array.iter print_endline (Array.map
string_of_int stack);

 | Jsr i -> stack.(sp) <- pc+1; exec fp (sp+1) i (* stores
current pc and execute on i. *)
 | Ent i -> stack.(sp) <- fp; exec sp (sp+i+1) (pc+1)
 | Rts i ->
 let new_fp = stack.(fp) and new_pc = stack.(fp-1)
and base = fp-i-1 in
 (
 let obj_id = stack.(sp-1) in
 match obj_id with
 1 -> (stack.(base+1) <- stack.(sp-
1); (* Construct an int on top of stack*)
 stack.(base) <- stack.(sp-
2);
 exec new_fp (base+2) new_pc
)
 | 2 ->
 let sp_temp = Array.make 30
0 in
 for j=0 to 29 do
 sp_temp.(j) <-
stack.(sp+j-30)
 done;
 for j=0 to 29 do
 stack.(base+j) <-
sp_temp.(j)
 done;
 exec new_fp (base+30) new_pc

 | 3 -> let sp1 = stack.(sp-1)
 and sp2 = stack.(sp-2)
 and sp3 = stack.(sp-3)
 and sp4 = stack.(sp-4)
 and sp5 = stack.(sp-5) in
 (stack.(base+4) <- sp1; (*
Construct an int on top of stack*)
 stack.(base+3) <- sp2;
 stack.(base+2) <- sp3;
 stack.(base+1) <- sp4;
 stack.(base) <- sp5;
 exec new_fp (base+5) new_pc
)
 | 4 -> let sp1 = stack.(sp-1)
 and sp2 = stack.(sp-2)
 and sp3 = stack.(sp-3)

12/22/11 11:55 PMFinal Report of PLT

Page 54 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 and sp4 = stack.(sp-4)
 and sp5 = stack.(sp-5) in
 (stack.(base+4) <- sp1; (*
Construct an int on top of stack*)
 stack.(base+3) <- sp2;
 stack.(base+2) <- sp3;
 stack.(base+1) <- sp4;
 stack.(base) <- sp5;
 exec new_fp (base+5) new_pc
)
 | 5 -> let sp1 = stack.(sp-1)
 and sp2 = stack.(sp-2)
 and sp3 = stack.(sp-3)
 and sp4 = stack.(sp-4)
 and sp5 = stack.(sp-5) in
 (stack.(base+4) <- sp1; (*
Construct an int on top of stack*)
 stack.(base+3) <- sp2;
 stack.(base+2) <- sp3;
 stack.(base+1) <- sp4;
 stack.(base) <- sp5;
 exec new_fp (base+5) new_pc
)
 | _ -> raise(Failure("Unmatched type!!"));
);
 | Beq i -> exec fp (sp-1) (pc + if stack.(sp-2) = 0 then i
else 1)
 | Bne i -> exec fp (sp-1)(pc + if stack.(sp-2)!= 0 then i
else 1)
 | Bra i -> exec fp sp (pc+i)
 | Hlt -> ()

 (*funcitonality that differs from micro c*)
 (*create empty graph*)
 | Sgraph -> Graphics.open_graph ""; exec fp (sp) (pc+1)
 (*clear graph*)
 | Egraph -> Graphics.clear_graph (); exec fp (sp) (pc+1)

 (*move object on top of stack by ints in stack above*)
 | Movby ->
 let deltax = stack.(sp-2) in
 let deltay = stack.(sp-4) in
 let obj_id = stack.(sp-5) in
 (
 match obj_id with
 1 -> raise (IllegalMove)
 | 2 ->
 stack.(sp-6) <- (stack.(sp-
6) + deltax);
 stack.(sp-7) <- (stack.(sp-
7) + deltay);
 exec fp sp (pc+1)
 | 3 ->
 stack.(sp-6) <- (stack.(sp-
6) + deltax);
 stack.(sp-7) <- (stack.(sp-
7) + deltay);
 exec fp sp (pc+1)
 | 4 ->
 stack.(sp-6) <- (stack.(sp-
6) + deltax);
 stack.(sp-7) <- (stack.(sp-

12/22/11 11:55 PMFinal Report of PLT

Page 55 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

7) + deltay);
 exec fp sp (pc+1)
 | 5 ->
 stack.(sp-6) <- (stack.(sp-
6) + deltax);
 stack.(sp-7) <- (stack.(sp-
7) + deltay);
 stack.(sp-8) <- (stack.(sp-
8) + deltax);
 stack.(sp-9) <- (stack.(sp-
9) + deltay);
 exec fp sp (pc+1)
 | 6 ->
 stack.(sp-6) <- (stack.(sp-
6) + deltax);
 stack.(sp-7) <- (stack.(sp-
7) + deltay);
 exec fp sp (pc+1)

 | _ -> raise(Failure("Unmatched type!!")))

 (*move object on top of stack by ints in stack above*)
 | Movto ->
 let newx = stack.(sp-2) in
 let newy = stack.(sp-4) in
 let obj_id = stack.(sp-5) in
 (
 match obj_id with
 1 -> raise (IllegalMove)
 | 2 ->
 stack.(sp-6) <- newx;
 stack.(sp-7) <- newy;
 exec fp sp (pc+1)
 | 3 ->
 stack.(sp-6) <- newx;
 stack.(sp-7) <- newy;
 exec fp sp (pc+1)
 | 4 ->
 stack.(sp-6) <- newx;
 stack.(sp-7) <- newy;
 exec fp sp (pc+1)
 | 5 ->
 let deltax = (newx - stack.
(sp-6)) in
 let deltay = (newy -
stack.(sp-7)) in
 stack.(sp-6) <-
newx;
 stack.(sp-7) <-
newy;
 stack.(sp-8) <-
(stack.(sp-8) + deltax);
 stack.(sp-9) <-
(stack.(sp-9) + deltay);
 exec fp sp (pc+1)
 | 6 ->
 stack.(sp-6) <- newx;
 stack.(sp-7) <- newy;
 exec fp sp (pc+1)
 | _ -> raise(Failure("Unmatched type!!")))

 (*get coordinate of object on stack -- the type of

12/22/11 11:55 PMFinal Report of PLT

Page 56 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

coordinate is specified by the int on top of the object on teh
stack*)
 | GetC ->
 let coord_type = stack.(sp-2) in
 let coord = stack.(sp-3-coord_type) in
 stack.(sp) <- coord;
 stack.(sp+1) <- 1;
 exec fp (sp+2) (pc+1)

 | MakeS -> (* Takes the top five integers of stack and put back
a shape. *)
 let v1 = stack.(sp-1)
 and v2 = stack.(sp-3)
 and v3 = stack.(sp-5)
 and v4 = stack.(sp-7)
 and v5 = stack.(sp-9)
 in
 if ((v1 <> 1) || (v2 <> 1) || (v3 <> 1) || (v4 <> 1)
|| (v5 <> 1)) then
 raise(Failure("MakeS type check error!"))
else
 (
 stack.(sp-1) <- stack.(sp-2);
 stack.(sp-2) <- stack.(sp-4);
 stack.(sp-3) <- stack.(sp-6);
 stack.(sp-4) <- stack.(sp-8);
 stack.(sp-5) <- stack.(sp-10);
 exec fp sp (pc+1)
)
 | _ -> raise(Failure("Illegal Bytecode Operation!!"))

(*execute first line*)
in exec 0 0 0

Parser.mly
%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE RBRACKET LBRACKET COMMA
%token RTOKEN LTOKEN ETOKEN
%token STRUCT INT CHARS
%token OBJLINE OBJTRIANGLE OBJELLIPSE OBJRECTANGLE OBJSHAPE
%token V1 V2 V3 V4
%token PLUS MINUS TIMES DIVIDE ASSIGN
%token EQ NEQ LT LEQ GT GEQ
%token AND OR NOT LBRACKET RBRACKET
%token MEMBERINDEX SHIFT MOVETO SERIALIZED PARALLELIZED
%token RETURN IF ELSE FOR WHILE
%token MEMBERIN
%token <string>STRING
%token <string>RECTANGLE
%token <string>ELLIPSE
%token <string>LINE
%token <string>SHAPE
%token <int> LITERAL
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left EQ NEQ

12/22/11 11:55 PMFinal Report of PLT

Page 57 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ast.program> program

%%

program:
 /* nothing */ { [], [] }
 | program vdecl { ($2 :: fst $1), snd $1 }
 | program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
 ID LPAREN formals_opt RPAREN LBRACE vdecl_opt stmt_list RBRACE
 { { fname = $1;
 formals = $3;
 locals = List.rev $6;
 body = List.rev $7 } }

formals_opt:
 /* nothing */ { [] }
 | formal_list { List.rev $1 }

formal_list:
 formal_decl { [$1] }
 | formal_list COMMA formal_decl { $3 :: $1 }

formal_decl:
 CHARS ID { { vtype = "string"; name = $2;
vsize = 1} }
 | INT ID { { vtype = "int"; name = $2; vsize
= 1} }
 | OBJRECTANGLE ID { { vtype = "rect"; name
= $2; vsize = 1} }
 | OBJELLIPSE ID { { vtype =
"ellipse"; name = $2; vsize = 1} }
 | OBJLINE ID { { vtype =
"line"; name = $2; vsize = 1} }
 | OBJSHAPE ID { { vtype = "shape";
name = $2; vsize = 1} }

vdecl_opt:
 /* nothing */ { [] }
 | vdecl_list { List.rev $1 }

vdecl_list:
 | vdecl { [$1] }
 | vdecl_list vdecl { $2 :: $1 }

vdecl:
 CHARS ID SEMI { {vtype = "string"; name = $2;
vsize = 1} }
 | INT ID SEMI { {vtype = "int"; name = $2; vsize = 1} }
 | OBJRECTANGLE ID SEMI { {vtype = "rect"; name = $2; vsize = 1} }
 | OBJELLIPSE ID SEMI { {vtype = "ellipse"; name = $2; vsize = 1}
}
 | OBJLINE ID SEMI { {vtype = "line"; name = $2; vsize = 1} }
 | OBJSHAPE ID SEMI { {vtype = "shape"; name = $2; vsize = 1} }
 | INT ID LBRACKET LITERAL RBRACKET SEMI { { vtype = "arrayi"; name
= $2; vsize = $4} }
 | OBJRECTANGLE ID LBRACKET LITERAL RBRACKET SEMI { { vtype =

12/22/11 11:55 PMFinal Report of PLT

Page 58 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

"arrayr"; name = $2; vsize = $4} }
 | OBJELLIPSE ID LBRACKET LITERAL RBRACKET SEMI { { vtype =
"arraye"; name = $2; vsize = $4} }
 | OBJLINE ID LBRACKET LITERAL RBRACKET SEMI { { vtype = "arrayl";
name = $2; vsize = $4} }
 | OBJSHAPE ID LBRACKET LITERAL RBRACKET SEMI { { vtype = "arrays";
name = $2; vsize = $4} }

stmt_list:
 /* nothing */ { [] }
 | stmt_list stmt { $2 :: $1 }

stmt:
 expr SEMI { Expr($1) }
 | RETURN expr SEMI { Return($2) }
 | LBRACE stmt_list RBRACE { Block(List.rev $2) }
 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([]))
}
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
 | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt
 { For($3, $5, $7, $9) }
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_opt:
 /* nothing */ { Noexpr }
 | expr { $1 }

expr:
 LITERAL { Literal($1) }
 | STRING { String($1) }
 | RECTANGLE { Rectangle($1) }
 | LINE { Line($1) }
 | ELLIPSE { Ellipse($1) }
 | SHAPE { Shape($1) }
 | ID { Id($1) }
 | expr PLUS expr { Binop($1, Add, $3) }
 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr EQ expr { Binop($1, Equal, $3) }
 | expr NEQ expr { Binop($1, Neq, $3) }
 | expr LT expr { Binop($1, Less, $3) }
 | expr LEQ expr { Binop($1, Leq, $3) }
 | expr GT expr { Binop($1, Greater, $3) }
 | expr GEQ expr { Binop($1, Geq, $3) }
 | ID ASSIGN expr { Assign($1, $3) }
 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }
 | LPAREN expr RPAREN { $2 }
 | ID SHIFT LBRACE expr expr RBRACE {Moveby($1,
$4, $5)}
 | ID MOVETO LBRACE expr expr RBRACE {Moveto($1,
$4, $5)}
 | ID MEMBERIN V1 { GetV1($1) }
 | ID MEMBERIN V2 { GetV2($1) }
 | ID MEMBERIN V3 { GetV3($1) }
 | ID MEMBERIN V4 { GetV4($1) }
 | ID LBRACKET expr RBRACKET { Aid($1, $3) }
 | ID LBRACKET expr RBRACKET ASSIGN expr { AAssign($1, $3, $6) }
 | RTOKEN LBRACE expr expr expr expr RBRACE { REvaluation($3, $4,
$5, $6) }
 | ETOKEN LBRACE expr expr expr expr RBRACE { EEvaluation($3, $4,
$5, $6) }

12/22/11 11:55 PMFinal Report of PLT

Page 59 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

 | LTOKEN LBRACE expr expr expr expr RBRACE { LEvaluation($3, $4,
$5, $6) }

actuals_opt:
 /* nothing */ { [] }
 | actuals_list { List.rev $1 }

actuals_list:
 expr { [$1] }
 | actuals_list COMMA expr { $3 :: $1 }

Scanner.mll
{ open Parser }

let letter = ['a'-'z' 'A'-'Z']
let digit = ['0' - '9']
let character = ['`' '~' ' ' '!' '@' '#' '$' '%' '^' '&' '*' '(' ')'
'-' '_' '=' '+' '[' '{' ']' '}' '|' ';' ':' ''' ',' '<' '.' '>' '/'
'?']
let whitespace = ['\t' ' ' '\r' '\n']
let id = letter (letter | digit | '_')*
 (* Attention '\' are not included here. *)

rule token = parse
 whitespace { token lexbuf }
| "(:" { comment lexbuf }
| "v1" { V1 }
| "v2" { V2 }
| "v3" { V3 }
| "v4" { V4 }
| "int" { INT }
| "string" { CHARS }
| "line" { OBJLINE }
| "triangle" { OBJTRIANGLE }
| "ellipse" { OBJELLIPSE }
| "rectangle" { OBJRECTANGLE }
| "shape" { OBJSHAPE }
| "else" { ELSE }
| "while" { WHILE }
| "for" { FOR }
| "if" { IF }
| "return" { RETURN }
| id as lit { ID(lit)}
| "S:{"whitespace*(digit)+whitespace+(digit+)whitespace+'"'(letter |
digit | character)*'"'whitespace*'}' as lit { STRING(lit) }
| "R:{"whitespace*(digit)+whitespace+(digit)+whitespace+
(digit)+whitespace+(digit)+whitespace*'}' as lit { RECTANGLE(lit) }
| "E:{"whitespace*(digit)+whitespace+(digit)+whitespace+
(digit)+whitespace+(digit)+whitespace*'}' as lit { ELLIPSE(lit) }
| "L:{"whitespace*(digit)+whitespace+(digit)+whitespace+
(digit)+whitespace+(digit)+whitespace*'}' as lit { LINE(lit) }
| '-'?(digit)+ as lit { LITERAL(int_of_string lit) }
| "R:" { RTOKEN }
| "E:" { ETOKEN }
| "L:" { LTOKEN }
| "==" { EQ }
| "!=" { NEQ }
| "<=" { LEQ }
| ">=" { GEQ }
| '>' { GT }
| '<' { LT }
| '!' { NOT }
| '(' { LPAREN }

12/22/11 11:55 PMFinal Report of PLT

Page 60 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

| ')' { RPAREN }
| '{' { LBRACE }
| '}' { RBRACE }
| '[' { LBRACKET }
| ']' { RBRACKET }
| '.' { MEMBERIN }
| "=>" { SHIFT }
| "->" { MOVETO }
| ';' { SEMI }
| '=' { ASSIGN }
| ',' { COMMA }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| eof { EOF }

and comment =
 parse ":)" { token lexbuf }
 | _ {comment lexbuf}

tbc.ml
type action = Bytecode | Compile

let _ =
 let action = if Array.length Sys.argv > 1 then
 List.assoc Sys.argv.(1) [("-b", Bytecode); ("-c",
Compile)]
 else Compile in
 let lexbuf = Lexing.from_channel stdin in
 let program = Parser.program Scanner.token lexbuf in
 match action with
 | Bytecode -> let listing =
 Bytecode.string_of_prog (Compile.translate program)
 in print_endline listing
 | Compile -> ignore(Execute.execute_prog (Compile.translate
program))

Makefile:
OBJS = ast.cmo parser.cmo scanner.cmo compile.cmo bytecode.cmo
execute.cmo tbc.cmo

LIBS=$(WITHGRAPHICS) $(WITHUNIX) $(WITHTHREADS) $(WITHSTR)

CONF=-I +threads

Should be set to -custom if you use any of the libraries above
or if any C code have to be linked with your program
(irrelevant for ocamlopt)

CUSTOM=-custom

Default setting of the WITH* variables. Should be changed if your
local libraries are not found by the compiler.
WITHGRAPHICS =graphics.cma -cclib -lgraphics -cclib -L/usr/X11R6/lib
-cclib -lX11

WITHUNIX =unix.cma -cclib -lunix

WITHSTR =str.cma -cclib -lstr

WITHNUMS =nums.cma -cclib -lnums

WITHTHREADS =threads.cma -cclib -lthreads

12/22/11 11:55 PMFinal Report of PLT

Page 61 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

WITHDBM =dbm.cma -cclib -lmldbm -cclib -lndbm

tbc : $(OBJS)
 ocamlc $(CONF) -o tbc $(LIBS) $(OBJS)

scanner.ml : scanner.mll
 ocamllex scanner.mll

parser.ml parser.mli : parser.mly
 ocamlyacc parser.mly

%.cmo : %.ml
 ocamlc $(CONF) -c $<

%.cmi : %.mli
 ocamlc -c $<

.PHONY : clean
clean :
 rm -f tbc parser.ml parser.mli scanner.ml testall.log \
 *.cmo *.cmi *.out *.diff

Generated by ocamldep *.ml *.mli
ast.cmo:
ast.cmx:
bytecode.cmo: ast.cmo
bytecode.cmx: ast.cmx
compile.cmo: bytecode.cmo ast.cmo
compile.cmx: bytecode.cmx ast.cmx
execute.cmo: bytecode.cmo ast.cmo
execute.cmx: bytecode.cmx ast.cmx
tbc.cmo: scanner.cmo parser.cmi execute.cmo \
 bytecode.cmo ast.cmo
tbc.cmx: scanner.cmx parser.cmx execute.cmx \
 bytecode.cmx ast.cmx
parser.cmo: ast.cmo parser.cmi
parser.cmx: ast.cmx parser.cmi
scanner.cmo: parser.cmi
scanner.cmx: parser.cmx
parser.cmi: ast.cmo

12/22/11 11:55 PMFinal Report of PLT

Page 62 of 62file:///Users/benkornacki/Library/Mail%20Downloads/Final%20Report%20of%20PLT-1.html

