YAPPL

Yet Another Probabilisitic
Programming Language

David Hu
Jonathan Huggins
Hans Hyttinen
Harley McGrew

Columbia University

December, 2011

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Introduction

Inspiration: functional, probabilistic programming languages
@ Church: PPL based on pure subset of Scheme
@ HANSEI: PPL based on Ocaml
@ OCaml: inspiration for syntax
Church and HANSEI code can be difficult to read and understand

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Probabilistic Programming

What is probabilistic programming about?
@ allows for the concise definition of complex statistical models

@ in particular, we are interested in defining generative
Bayesian models and conditionally sampling from them

@ to accomplish these goals, use conditional evaluation and
memoization

@ a memoized function remembers what value it returned for
previously evaluated argument values and always returns the
same value in the future given those arguments

@ memoization is useful because it lets you have "infinite”
things (like lists or matrices), but only lazily generate items
from the list

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Goals

Improving on HANSEI and Church by...

@ implementing a functional, natively probabilistic programming
language with modern, Ocaml-like syntax

@ build conditional evaluation and memoization directly into the
language

@ making syntax cleaner and more readable

Hu, Huggins, Hyttinen, & McGrew YAPPL



tutorials/add.ypl

fun int:add int:a int:b =
a+b

in
~print_line ~add 1 2

Hu, Huggins, Hyttinen, & McGrew YAPPL



tutorials/geom_cond.yp

~seed;
fun int:geom float:q =
fun int:geom_helper float:orig_q int:i =
if ~rand < orig_q then i
else ~geom_helper orig_q (i+1)
in
~geom_helper q 1
in

Hu, Huggins, Hyttinen, & McGrew YAPPL



fun int:try_g = ~geom 0.1 given $ > 100 in
~print_line ~try_g;
~print_line ~try_g;
~print_line ~try_g;
~print_line ~try_g;
~print_line ~try_g;

fun int:try_g2 = ~geom 0.1 given $ > 10 in
~print_line ~try_g2;
~print_line ~try_g2;
~print_line ~try_g2;
~print_line ~try_g2;
~print_line ~try_g2

Hu, Huggins, Hyttinen, & McGrew YAPPL



Block Diagram

yappl file

|

Scanner / Lexer / AST

Parser

Compiler / Translator

|

.ml file

Hu, Huggins, Hyttinen, & McGrew YAPPL



YAPPL code conversion to AST

fun int:tl int:a =
a+ 3

in

“print_line “tl1 2

Hu, Huggins, Hyttinen, & McGrew YAPPL



YAPPL code conversion to AST

FuncBindings
FuncBind =
FuncDecl(tl, ValType(Int), Decl(a, ValType(Int))
Binop +
Id a
IntLit 3
Eval print_line
Eval t1
Intlit 2
Noexpr
Noexpr

Hu, Huggins, Hyttinen, & McGrew YAPPL



Code Generation

Important steps

@ Generate symbol table

o tracks identifiers and type
@ can point to parent symbol table for scoping

@ expr_to_string

e main function for evaluation of ast
o resolves reserved identifiers before using symtable

@ Compile OCaml to executable
o links with builtin (includes functions like rand)

Hu, Huggins, Hyttinen, & McGrew YAPPL



@ Yet Another Probabilisitic Programming Language, but

o Cleaner syntax
e Built-in constructs: memoization, conditionals

@ .ypl — translation — .ml — execution
o Condensed: ./yapplc program.ypl ; ./program

Hu, Huggins, Hyttinen, & McGrew YAPPL



Lessons learned
@ Start early
@ Parallelize work structure

@ Project scope

e Big: potential to do cool stuff
o Small: it will probably actually work

Unit testing

Learn debug tools

o OCAMLRUNPARAMS
e ocamlyacc -v

Hu, Huggins, Hyttinen, & McGrew YAPPL



