NUMLANG

Dan Aprahamian
Damien Fenske-Corbiere
Sahil Yakmi

Siddhi Mittal



Introduction

* Designed to make numerical computation easy.
* Key Features of this language:

o Allows mathematical functions to be entered as literals,
manipulated, called, and composed.

o Allows computation with matrices and other common
mathematical operations.

o Arithmetic without loss of precision.

o An innovative way of implementing a for loop using match
statements.

o The language 1s intended to be suitable for compilation as well
as interpreting. The reference implementation 1s, however, a
compiler.



Tutorial Introduction to Language

y =110, 0, 0], [0, 3, 5];
new_y = y[1];
new_y2 =y[1][1];
pop<<y>>y[1][1] = 4;
sub callMe(num x, string list y) {y[1];}
sub call2() {34;}
str2 = "hello";println<<"str2">>;
strList = ["hello", "str"];rm<<strList>>;
str2 = callMe<<4, strList>>;
w = call2<<>>;
w =43;
x = "hello";
print<<x>>;
match(w) {
cont: w - (w % 10) ? {x=1;}
loop: >22 7?7 {x= - 1;}
<=12% 4 ? pass;
done: true ? pass; }



Language Implementation

e Series of Modules
o Scanner/Parser and AST

Static Semantic Checker
Java Source Code Generation (Compiler)

O O O

Compilation to Java Byte Code

e Tools Used
o GitHub
OcamlDebug
Google Docs (Collaborative Code)
Google

O O O



QOur files

File Lines Role
Scanner.mll 124 lines Token rules
Parser.mly 220 lines CFG

Ast.ml 77 lines Types

Sast.ml 46 lines Checked types
ssc.ml 666 lines Semantic Validity
numlangc.ml 2776 lines Compiler

Total

1409 lines



Summary/Lessons Learned

* Matrix Like Language capable of
o Manipulating functions
o Retaining precision of numbers
o Making mathematical computation easier with simple syntax

* Lessons Learnt
o Value of ocamldebug
o Ocaml’s value
o Resolving reduce/reduce and shift/reduce errors for ambiguous grammar
o Importance of resolving scoping issues
o How pieces of Compiler fit together

* Time Value
o Start early



