
Final Report

PLT (Fall 2011)

Team Members:

Jervis Muindi (jjm2190)

Ethan Hann (eh2413)

Michael Eng (mse2124)

Timothy Sun (ts2578)

12/22/2011

 LSystem Fractal Language

Section 1: Introduction LSystem

1 | P a g e

Table of Contents
Section 1: Introduction ... 4

1.1 Project Overview ... 4

1.2 Background ... 4

1.3 Related Work .. 5

1.4 Goals of the language ... 6

1.4.1 Customizable .. 6

1.4.2 Intuitive .. 6

1.4.3 Portable .. 6

Section 2: Language Tutorial ... 7

2.1 Getting Started with the Compiler ... 7

2.1.1 Compiler Requirements ... 7

2.1.2 Installing the Compiler ... 7

2.2 A First Example: The Hilbert Curve ... 7

2.2.1 The Main Function ... 7

2.2.2 The Draw Function ... 8

2.2.3 Compiling the Hilbert Program .. 9

2.2.4 Running the Hilbert Program ... 10

2.3 Additional Examples ... 10

2.3.1 Dragon Curve ... 10

2.3.2 Hilbert Curve Derivation .. 12

2.3.3 Koch Curve ... 13

2.3.4 Lévy C Curve ... 14

2.3.5 Sierpinski Triangle and Derivation ... 15

Section 3: Language Manual ... 17

3.1 Program Definition.. 17

3.2 Lexical Conventions .. 18

3.2.1 Comments .. 18

3.2.2 Identifiers ... 18

3.2.3 Keywords .. 18

3.2.4 Constants and literals .. 18

3.2.5 Operators ... 20

3.2.6 Punctuators .. 21

3.3 Meaning of Identifiers .. 21

3.3.1 Scoping ... 21

3.3.2 Object types ... 22

3.4 Type Conversions .. 23

3.4.1 Conversion from int to double ... 23

3.5 Expressions and Operators ... 24

3.5.1 Precedence and Associativity Rules ... 24

3.5.2 Primary expressions ... 25

3.5.3 Function calls ... 26

3.5.4 Arithmetic operators ... 27

Section 1: Introduction LSystem

2 | P a g e

3.5.5 Relational operators .. 28

3.5.6 Equality operators .. 29

3.5.7 Boolean operators ... 29

3.5.8 Assignment operator ... 30

3.5.9 Constant expressions ... 30

3.6 Declarations .. 30

3.6.1 Function declarations .. 30

3.6.2 Variable declarations ... 32

3.7 Statements .. 33

3.7.1 Expression statement .. 33

3.7.2 If statement .. 33

3.7.3 While loops .. 33

3.7.4 Return statements ... 33

3.8 System functions ... 34

3.8.1 Turtle Functions ... 34

3.8.2 Input / Output .. 35

Section 4: Project Plan .. 36

4.1 Team Responsibilities ... 36

4.2 Software Development Environment ... 36

4.3 Project Processes .. 38

4.3.1 Planning.. 38

4.3.2 Specification ... 38

4.3.3 Development.. 38

4.3.4 Testing .. 38

4.4 Programming Style Guide ... 39

4.4.1 General Principles .. 39

4.4.2 Documentation Comments .. 39

4.5 Project timeline ... 39

4.6 Project Log .. 40

4.6.1 Scanner/Parser/AST ... 40

4.6.2 Command-Line Interface ... 40

4.6.3 Code Generation .. 40

4.6.4 Standard Library ... 41

4.6.5 Testing .. 41

4.6.6 Semantic Analysis... 41

4.6.7 Commit Statistics ... 42

Section 5: Architectural Design ... 43

5.1 High Level Architectural Design .. 43

5.2 Component Interface Interaction ... 44

5.2.1 Command Line Interface (lsystem.ml - Author: Ethan Hann) 44

5.2.2 Scanner (scanner.mll - Author: Jervis Muindi) ... 45

5.2.3 Parser (parser.mly - Author: Jervis Muindi) ... 45

5.2.4 AST (ast.ml - Author: Jervis Muindi) .. 45

Section 1: Introduction LSystem

3 | P a g e

5.2.5 Semantic Analyzer (semantic.ml - Author: Jervis Muindi) ... 45

5.2.6 LSystem Standard Library (lsystemstd.ml - Author: Timothy Sun) 45

5.2.7 Java Code Generator (compiler.ml - Author: Ethan Hann) .. 45

Section 6: Test Plan ... 46

6.1 Phase 1: Rudimentary Compiler ... 46

6.2 Phase 2: L-system Drawing ... 46

6.3 Phase 3: Semantic Analysis ... 46

6.4 Tools .. 47

6.5 Implementation .. 47

6.5.1 Implementation Phase 1 .. 47

6.5.2 Implementation Phase 2 .. 47

6.5.3 Implementation Phase 3 .. 49

6.6 Automation: .. 50

Section 7: Lessons Learned ... 51

7.1 Jervis.. 51

7.1.1 Lessons Learned ... 51

7.1.2 Advice for Future Teams .. 51

7.2 Ethan ... 52

7.2.1 Lessons Learned ... 52

7.2.2 Advice for Future Teams .. 53

7.3 Michael.. 53

7.3.1 Lessons Learned ... 53

7.3.2 Advice for Future Teams .. 53

7.4 Timothy ... 53

7.4.1 Lessons Learned ... 53

7.4.2 Advice for Future Teams .. 54

Appendix A: Code Listing .. 55

lsystem.ml ... 55

scanner.mll .. 56

parser.mly ... 57

ast.ml .. 61

semantic.ml ... 65

compile.ml .. 85

lsystemstd.ml .. 87

Makefile .. 92

test.sh.. 93

Section 1: Introduction LSystem

4 | P a g e

Section 1: Introduction

1.1 Project Overview
The language we have designed is an L-system based fractal drawing language. L-

systems use a variant of context-free grammars to generate fractals and other iterative
sequences. Our language is translated from a set of rules to turtle graphics procedures in Java,
which will in turn be directly used to display the iterative sequence specified on screen. The
language is intended to allow users to quickly model and visualize L-systems on-screen.

Thus, using our language, it will be very easy for a user familiar with L-system grammars

to code and draw an L-system in our language, as the logistical details of creating a window and

actually drawing the L-system will be automatically handled once the source program is

compiled.

Ideally, we would like to minimize the amount of parsing required from a given program.

 As such, we have Java classes that provide drawing and computational functionality that would

execute alongside the outputted code from our compiler. This standard library is added into each

program file when it is compiled into a Java file. The net result is a programming language that

is accessible to mathematicians having little familiarity with programming.

1.2 Background
L-systems, short for Lindenmayer Systems, are a type of formal grammar. An L-system

consists of an alphabet of symbols, an initial sequence of symbols (a string) used to begin a

construction, a set of production rules that expand individual symbols into strings, and a set of

rules that match terminal symbols to drawing functions in order to translate generated strings into

geometric structures. To construct an L-system, the production rules are iteratively applied,

starting from the initial string. In each iteration all rules are applied in parallel.

More formally, an L-system is defined as a tuple:

G = (V, w, P)

…where, V is the alphabet, the set of symbols containing variables, or replaceable elements;
w is the start or axiom, the string consisting of symbols from V, representing the initial state of
the system. P is the set of production rules that define how variables can be replaced by
combinations of constants and other variables. A given production rule takes the form p → s,
where p and s are both strings. For any symbol X in V which does not appear as p in a
production rule in P, the rule X→ X is assumed, and X is defined as a constant or terminal
symbol.

Section 1: Introduction LSystem

5 | P a g e

An example L-system representing the Koch Curve follows:

variables : F

constants : + −

start : F

rules : (F → F+F−F−F+F)

F translates to “draw forward”, + translates to “turn left 90 degrees”, and - translates to “turn
right 90 degrees”
Example iterative expansions, where n is the number of iterations to carry out:

n = 0:
F
n = 1:
F+F-F-F+F
n = 2:
F+F−F−F+F + F+F−F−F+F − F+F−F−F+F − F+F−F−F+F + F+F−F−F+F
n = 3:
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F +
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F −
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F −
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F +
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F

1.3 Related Work
There are a number of L-system generator applications available online. They range

from applications that create modeling scripts that are used to generate 3-D L-system models in
applications like Maya or 3D Studio MAX, to applets that allow for users to input the number of
iterations, a single angle degree value, an initial state, and production rules for a single L-system
that is then drawn in the browser. A particularly popular L-system generator application is the
L-Systems Explorer, available at http://www.generation5.org/content/2002/lse.asp. It allows
the user to enter in rules, the number of iterations, an angle value, and a draw distance value.
 LPFG is a programming language (detailed at http://algorithmicbotany.org/lstudio/LPFGman.pdf) that
allows users to create L-systems, and is based around a C++ and OpenGL environment.

Our L-system language aims to provide the customizability possible only through a full
programming language while remaining syntactically intuitive enough to allow users to quickly
and easily create and model L-systems.

http://algorithmicbotany.org/lstudio/LPFGman.pdf

Section 1: Introduction LSystem

6 | P a g e

1.4 Goals of the language
Our L-System language aims to be customizable, intuitive, and portable. It serves as a

simple and powerful means of creating and modeling L-systems.

1.4.1 Customizable

Most L-system applications only allow for users to specify fields in an L-system
structure- the fields consisting of the system’s production rules, initial state, number of
iterations, and an angle value. In our language, it is possible for users to map multiple terminals
to different angle values (e.g. z = turn(20) and y = turn(40)) and to different draw distances (e.g.
z = forward(30) and y = forward(15)). There is a higher level of customizability that comes from
creating a programming language instead of an application- users can determine their own
parameters instead of merely filling in blanks in a pre-set structure.

1.4.2 Intuitive

Our language has a syntax that is very similar to Java’s syntax. The syntax for creating L-
system drawing methods is very easy to grasp if the user is familiar with constructing an L-
system grammar. Users can easily create and model L-systems without needing to deal with
creating a GUI window, instantiating a panel, creating a drawing class, and so on. A perfectly
valid program can have an L-system drawing method and a line in the main method that calls
the drawing method. As long as a user is familiar with L-systems and their underlying structure,
they will be able to use our language to create and model L-systems.

1.4.3 Portable

The L-system language only requires that the user have the Java Development Kit and
the Java Runtime Environment on their machine, in order to compile compiled L-system
programs from their intermediate Java source code states into class files and to execute those
class files. The compiler takes in L-system input files and outputs Java source code. In essence,
the language can be used on any machine that has a Java compiler on it.

Section 2: Language Tutorial LSystem

7 | P a g e

Section 2: Language Tutorial

2.1 Getting Started with the Compiler

2.1.1 Compiler Requirements

 The LSystem compiler can generate intermediate Java source code without the Java
compiler installed. In order for the LSystem compiler to create a runnable program a Java
compiler of at least version 1.6 needs to be available in the path of the user compiling the
LSystem program. The Java compiler is packaged with the Java Development Kit (JDK). To run a
compiled LSystem program the Java Run-time Environment (JRE) must be installed.

2.1.2 Installing the Compiler

 The LSystem language compiler needs to be copied into a directory that is in your path
environment variable, such as /usr/bin/. To check if the compiler is accessible from the
command line after you have copied it simply attempt to run it, as in Figure 2.1.2.1. Usage
instructions will be displayed if the compiler is accessible, with an “InvalidArgument” warning
message.

$ lsystem

InvalidArgument

 Usage: lsystem [-a|-s|-c] SOURCE_FILE [-t|-v]

Figure 2.1.2.1 – Get Compiler Usage Instructions

2.2 A First Example: The Hilbert Curve

2.2.1 The Main Function

Every LSystem program has a main function. This function serves as a main entry point
into the application, as shown in figure 2.2.1.1.

def compute main()

{

}

Figure 2.2.1.1 – Get Compiler Usage Instructions

Section 2: Language Tutorial LSystem

8 | P a g e

2.2.2 The Draw Function

As the name implies, draw functions draw images. These types of functions define an L-
system, which is essentially a list of rules that are used to generate an image. What this means
will become clearer as you progress through the tutorial.

We will start with an explanation of the draw function signature. Draw functions always
have the same function signature, with the exception of the name of the function which can be
different. The def keyword indicates that a function is being defined. The draw keyword
indicates that the function is a draw function, i.e. that it will contain an L-system. The name of
the particular draw function given below is hilbertCurve. The level argument passed into the
hilbertCurve function refers to the number of times the L-system rule set is applied.

def draw hilbertCurve(int level)

Figure 2.2.2.1 – Draw Function Signature

When the name of a rule sequence (e.g. A or B in the example below) is encountered on
the right hand side of the rule, the rule sequence is reapplied. The maximum depth of this
recursive process is the value passed in for the level argument.

In the example L-system rule set, the l constant means "turn left" by 90 degrees, and r
constant means "turn right" by negative 90 degrees. In terms of the underlying drawing system,
the turn radius refers to the degree by which the drawing cursor turns when an l or r constant is
encountered. The f constant means “draw forward" by some integer increment.

alphabet: (A,B); # The rules in the l-system.

rules:{

 lambda -> A; # The first rule to call.

 A -> l B f r A f A r f B l; # the A rule sequence

 B -> r A f l B f B l f A r; # the B rule sequence

 f = forward(1);

 r = turn(-90);

 l = turn(90);

}

Figure 2.2.2.2 – Example L-system Alphabet and Rule Set

Combining these concepts together we get a program that draws a Hilbert curve, i.e. the
“Hello, World” program of the LSystem language. The image that this program produces is
shown in the next section, after the full program is compiled.

Section 2: Language Tutorial LSystem

9 | P a g e

def draw hilbertCurve (int level){

 alphabet: (A,B);

 rules: {

 lambda -> A;

 A -> l B f r A f A r f B l;

 B -> r A f l B f B l f A r;

 f = forward(1);

 r = turn(-90);

 l = turn(90);

 }

}

def compute main()

{

 hilbertCurve(5);

}

Figure 2.2.2.3 – Hilbert Curve Code

2.2.3 Compiling the Hilbert Program

The output of the program will be a file called “hilbert.class” that contains the Java
bytecode representation of the LSystem program. Follow the following steps to compile the
Hilbert example program.

1. Create a text file called “hilbert.ls” (sans quotes).
2. Open the text file with your favorite text editor.
3. Copy the example program into the file, then save the file.
4. Enter the following command into the command line.

$ lsystem -c hilbert.ls

Figure 2.2.3.1 – Hilbert Compilation Command

Section 2: Language Tutorial LSystem

10 | P a g e

2.2.4 Running the Hilbert Program

 The LSystem language compiles to a Java program. To run the example program, you
will need to have the Java JRE installed. After compiling the Hilbert example program, to run
the Java program enter the following command.

$ java Hilbert

Figure 2.2.4.1 – Hilbert Run Command

Figure 2.2.4.2 – The Running Hilbert Program

2.3 Additional Examples

 This section includes additional drawing examples, with notes that explain why they are
interesting. An image of the running program is included, without the text printing area. The
code for each program is also included.

2.3.1 Dragon Curve

 The code for the dragon curve example, shown in figure 2.3.1.1, is very similar in format
to the Hilbert curve code, shown in figure 2.2.2.3. The difference of interest is that the dragon
curve example has a different L-system. The other change, the draw function being called
“dragonCurve” instead of “hilbertCurve,” is irrelevant to the output of the program.

There are two interesting concepts to note about this example: rules are not reflections
of each other as in the Hilbert curve example, in fact the Z rule is only used once, and there are
no drawing constants defined. Though self-similar, the dragon curve is not symmetrical like the
Hilbert curve. This is due to the rules not being symmetrical. The l, r, and f drawing constants,
when not explicitly defined, have default values of turn(90), turn(-90), and forward(1),
respectively.

Section 2: Language Tutorial LSystem

11 | P a g e

def draw dragonCurve(int level){

 alphabet: (X,Y,Z);

 rules:{

 lambda -> Z;

 Z -> f X;

 X -> X l Y f;

 Y -> f X r Y;

 }

}

def compute main(){

 dragonCurve(12);

}

Figure 2.3.1.1 – Dragon Curve Code

Figure 2.3.1.2 – Dragon Curve Program

Section 2: Language Tutorial LSystem

12 | P a g e

2.3.2 Hilbert Curve Derivation

 The Hilbert curve derivation is a fractal created by Ethan Hann. The L-system rules that
define it, shown in figure 2.3.2.1, are similar to the Hilbert curve, hence the name “Hilbert
Derivation.” It demonstrates that with those few rule changes, and the angle of the turn
constants changed to 80 degrees, a very different fractal is created, as shown in figure 2.3.2.2.

def draw hilbertDerivation(int level){

 alphabet: (A,B);

 rules:{

 lambda -> A;

 A -> l B f r A f A r f B l;

 B -> r C f l B f B l f C r;

 C -> l D f r C f C r f D l;

 D -> r A f l D f D l f A r;

 l = turn(-80);

 r = turn(80);

 }

}

def compute main()

{

 hilbertDerivation(7);

}

Figure 2.3.2.1 – Hilbert Curve Derivation Code

Figure 2.3.2.2 – Hilbert Curve Derivation Code

Section 2: Language Tutorial LSystem

13 | P a g e

2.3.3 Koch Curve

 The interesting thing about the Koch curve example, shown in figure 2.3.3.1, is that its L-
system contains only one rule. The LSystem language is extremely powerful in that a small
amount of code can produce a very complex image. This is due to the language providing an
almost identical representation of the mathematical notation for L-systems in its syntax.

def draw kochCurve(int level){

 alphabet: (X,f,r,l);

 rules:{

 lambda -> X;

 X -> f X l f X r f X r f X l f X;

 }

}

def compute main(){

 kochCurve(5);

}

Figure 2.3.3.1 – Koch Curve Code

Figure 2.3.1.2 – Koch Curve Program

Section 2: Language Tutorial LSystem

14 | P a g e

2.3.4 Lévy C Curve

 At high levels of recursion, i.e. setting the level argument to greater than 20, the Lévy C
curve program shown in figure 2.3.3.1, compiles correctly, but it crashes the Java virtual
machine. The Lévy C curve is very ornate and requires a lot of heap memory. This highlights a
very important limitation of the LSystem compiler: LSystem programs can easily reach
hardware limits.

def draw levycCurve(int level){

 alphabet: (X);

 rules:{

 lambda -> X;

 X -> r f X l l f X r;

 l = turn(-45);

 r = turn(45);

 }

}

def compute main(){

 levycCurve(20);

}

Figure 2.3.3.1 – Lévy C Curve Code

Figure 2.3.1.2 – Lévy C Curve Program

 LSystem

15 | P a g e

2.3.5 Sierpinski Triangle and Derivation

 Changing the value of the forward constant to something other than 1 can have
interesting effects on the programs output. The L-system shown in the Sierpinski triangle
example, figure 2.3.5.1, is identical to those of the Sierpinski derivation L-system (not shown),
except that the A forward rule has a value of -1 and the B forward rule has a value of -10. The
image generated by the Sierpinski derivation, figure 2.3.5.2, is a horizontal reflection of the
original, figure 2.3.5.1, due to the sign being flipped. Also, some of the inner triangles are
smaller in the derivation due to the A and B rules not having the same value.

 Notice that the f constant is not used. It is not needed as the A and B rules serve a dual
role: rule and constant. This feature was added to the language to make rule sets even more
flexible. This feature allows for rules to not merely inform the shape of the generated fractal, as
with the other examples, but they are directly responsible for creating it.

def draw sierpinskiDerivation(int level){

 alphabet: (A,B);

 rules:{

 lambda -> A;

 A -> B l A l B;

 B -> A r B r A;

 A = forward(-1);

 B = forward(-10);

 l = turn(-60);

 r = turn(60);

 }

}

def compute main(){

 sierpinskiDerivation(8);

}

Figure 2.3.5.1 – Sierpinski Derivation Code

 LSystem

16 | P a g e

Figure 2.3.5.2 – Sierpinski Triangle Program

Figure 2.3.5.3 –Sierpinski Derivation Program

Section 3: Language Manual LSystem

17 | P a g e

Section 3: Language Manual

3.1 Program Definition
A program in our language is made up of statements which consist of function

declarations, function implementations and expression statements. A program in our language
is to be written in a single source file, and combining different source files is not currently
supported. Thus, the structure of the program in the source file is as follows:

<<function declarations and implementations in source file>>

That is both function declaration and implementation happen at the same time. Also
note that one of the function declarations must be a main compute function as this is the
function that serves as the entry point of the program.

Currently, it is not possible to pass in user supplied command-line level arguments and
so the main function should have the following signature:

def compute main()

{

}

Also, any user defined functions that are used must have been previously declared at
the time of use. It is illegal to refer to functions that have not yet been declared and
implemented even if their implementation comes on later. An example of a simple program is
given below:

def compute sqrt(double x){ # computes square root of x

 x = x^(0.5);

 return x;

}

def compute main() { # main function

 double x = 25;

 double root = 0;

 root = sqrt(25);

 print(root);

}

Section 3: Language Manual LSystem

18 | P a g e

3.2 Lexical Conventions

3.2.1 Comments

Comments are single-line and are prefaced by the # symbol. Comments are in effect
until the end of the line.

#This is a comment.

def draw hilbert(double s) #This is also a comment

3.2.2 Identifiers

An identifier is a sequence of letters, numbers and underscores (_) in which the first
character is not a number. An identifier can consist of both upper and lower case letters. The
language is case-sensitive and as such will differentiate identifiers with identical letters but
have different cases.

3.2.3 Keywords

The following terms are a list of reserved keywords and built-in functions in the
language and cannot be used for any other purpose:

Reserved Words Functions
alphabet

boolean

compute

def

double

else

false

if

int

lambda

print

return

rules

string

true

while

print

forward

turn

up

down

setX

setY

3.2.4 Constants and literals

Our language provides functionality for literals (also known as constants) of type int,
double, string, and boolean. If any of these literals are assigned to a variable, that variable’s
declared type must match up with the literal’s type - no automatic conversion will occur except
in the case of up-converting from an int to a double.

Section 3: Language Manual LSystem

19 | P a g e

Integer constants

An integer constant consists of a sequence of numbers without a decimal point. In the
example below 45 is the integer constant. We do not provide support for octal or hexadecimal
representation of integers.

int x = 45;

String constants

A string constant is enclosed in double quotation marks, such as “x”. We provide
support for the following escape sequences within string constants:

Character name Escape sequence

Newline \n

Horizontal tab \t

Double quotation marks \”

Backslash \\

As such, examples of the use of string constants include:

string s = "string\n";

print("|column 1 \t column 2 \t column 3 \t |\n");

Note that string concatenation is currently not natively supported in our language.

Double-precision floating point constants

A double constant consists of a sequence of numbers and a decimal point. At least one
number must appear before the decimal point. Examples of valid double constants include:

0.345

0.0

1.0793211

3.141592654

Section 3: Language Manual LSystem

20 | P a g e

…but do not include sequences like:

.314

.010

0.0.0

..0

.02.2

2..9

Floating numbers can also be written in the standard scientific form using e notation.
For example 6.023e23 is a valid floating constant.

Boolean constants

Boolean constants consist of the keywords true and false. A valid example of their use is:

boolean b = true;

if(b==true)

{

#code

}

3.2.5 Operators
An operator is a symbol that denotes a specific operation that is to be performed. Below is a list

of operators supported:

Symbol Explanation

+ Performs addition operation

- Performs subtraction operation

* Performs multiplication operation

^ Performs exponeniation

/ Performs division operation

= Performs value assignment

Section 3: Language Manual LSystem

21 | P a g e

3.2.6 Punctuators

A punctuator is a symbol that does not specify a specific operation to be performed. A
punctuator is primarily used in formatting code and so it does have a special meaning (i.e.
significance). A punctuator can be only one of the symbols below:

Symbol Explanation

: Used in defining a section in a draw function

; Statement terminator

{ } Used for grouping code, example in function declarations.

3.3 Meaning of Identifiers

3.3.1 Scoping

The region of a program in which a certain identifier is visible and thus accessible, is
called its scope. The scoping in our language is local only and no global scope exists. That is, all
identifiers declared are visible only in that specific function and nowhere else. Also, identifiers
become visible only after being declared and thus, it is illegal to refer to identifiers that have
not yet been declared. For example, the following is not allowed and the compiler will produce
error messages in such cases:

int foo = 5;

int bar = 10;

int x = 25;

int sum = 0;

sum = foo + bar + x + y; # This is illegal. You cannot access undeclared

value y.

int y = 15;

Section 3: Language Manual LSystem

22 | P a g e

Function Scope

Similar to the scoping of identifiers, you cannot refer to a function that has not yet been
seen. For example:

def compute sqrt(double x) {

 ...

}

def compute twice_square_root(double x) {

 double root = 0;

 root = sqrt(x);

 # This is illegal. Add(…) must be declared before it’s used.

 return add(root, root);

}

def compute add(double x, double y){

 ...

}

3.3.2 Object types

Our language supports only the following four fundamental types of objects:

1. integers
2. floating point numbers
3. strings
4. booleans

Character Types

The only supported character type is the string type. This can store a string of potentially
unlimited length and does not have an upper bound limit. The length is only limited by the
amount of computing resources (such as memory) available.

Integer and Floating Point types

The only supported integer type is int which can store 32-bits worth of data and the only
supported floating point type is double which can store 64-bits of data. Both of these data
types are signed.

Boolean Type

This data type is essentially a truth value and can only store a single bit of information.
Specifically, it may only take a value of either “true” or “false”.

Section 3: Language Manual LSystem

23 | P a g e

3.4 Type Conversions

3.4.1 Conversion from int to double

Integer typed variables (also known as ints) can be converted into double-typed
variables with automatic casting. Note that the reverse operation is not (and cannot be)
performed as this can potentially result in a loss of information. The way to invoke this
automated conversion is simply like so:

int x = 45;

double y = x; # convert x from int type to double type

Note that the converted variable must have a different identifying name than the
original variable. So writing the following will cause an error:

int x = 45;

double x = x;

The automated conversion from int to double is the only type of casting that is
permitted and specifically it is not possible to manually convert any one data type to another.
For example, the following will cause an error:

double x = 45.0;

int y = (int) x;

Section 3: Language Manual LSystem

24 | P a g e

3.5 Expressions and Operators

3.5.1 Precedence and Associativity Rules

 The language follows classical mathematical order of operations, prioritizing
multiplication and division over addition and subtraction. The logical AND operator takes
precedence over the logical OR operator. Also, expressions inside parentheses have top
precedence and are therefore evaluated first.

Expression Results Comments

3 + 2 * 6 15 Multiplication occurs before addition

3 + (2 * 6) 15 Expression within parentheses is evaluated first, though
the answer doesn’t change from the above expression

(3+2) * 6 30 Expression within parentheses is evaluated first

FALSE || TRUE && FALSE FALSE The logical AND operator takes precedence over the
logical OR operator.

(FALSE || TRUE) && TRUE TRUE The expression within the parentheses is evaluated first.

FALSE || (TRUE && FALSE) FALSE The expression within the parentheses is evaluated first.

Section 3: Language Manual LSystem

25 | P a g e

The following table is a list of operator precedence and associativity for our
computational functions, adapted from the C language reference manual.

Tokens (from high to low priority) Operators Class Associativity

Identifiers, constants, string literal,
parenthesized expression

Primary expression Primary

() Function calls Postfix L-R

^ Exponentiation Binary R-L

* / Multiplicative Binary L-R

+ - Additive Binary L-R

< <= >= > Relational
comparisons

Binary L-R

== != Equality
comparisons

Binary L-R

&& Logical AND Binary L-R

|| Logical OR Binary L-R

= Assignment Binary R-L

, Comma Binary L-R

3.5.2 Primary expressions
Identifiers

An identifier refers to either a variable or a function. An example is int x or def

draw hilbert, where x and hilbert are the respective identifiers.

Constants

A constant’s type is defined by its form and value. See section 2d for examples of the
use of constants.

String literal

Section 3: Language Manual LSystem

26 | P a g e

String literals are translated directly to Java strings by our compiler, and are treated
accordingly.

Parenthesized expressions

A parenthesized expression’s type and value are equal to those of the un-parenthesized
expression. The presence of parentheses is used to identify an expression’s precedence and its
evaluation priority.

3.5.3 Function calls

Our language supports two kinds of functions: Compute Functions and Drawing
Functions. To be able to call a function, it must have been declared and implemented before.
That is, it is a syntax error to call a function which has not yet been seen by the compiler. Also,
recursive function calls are not supported at the moment.

The call to a compute function must match and agree with the signature of a previously
declared compute function. The syntax of a compute function call is:

def compute Function_Name(Argument_Parameter_List);

The grammar for the compute function call, where here identifier refers to the name of

a user-defined function, is:

identifier (argument-expression-list)
argument-expression-list: argument-expression
 argument-expression-list, argument-expression

Example :

Assume there is a compute function with the signature below:

def compute sum(int a, int b) { … }

It can be called like so:

sum(1,3);

On the other hand, the drawing function can only take a single parameter that is an integer.

Example:

Assume there is a draw function with the signature below:

def draw DragonCurve (int level) {...}

Section 3: Language Manual LSystem

27 | P a g e

It must be called like so:

DragonCurve(10);

The purpose of a draw function is to paint an L-System onscreen. All draw functions take
a single integer parameter which describes how many times the L-system rules will be applied
in painting the system.

The grammar for the draw function call is:

identifier (argument-expression)

Note, that the argument-expression here should be exactly a single integer. The
semantic analysis section of the compiler will check this and compilation will fail if that actual
parameter is not an integer.

3.5.4 Arithmetic operators

Arithmetic operators involve manipulating arithmetic expressions. The grammar that
defines what is an arithmetic expression is given below:

arithmetic expression : NumberLiteral

 VariableIdentifier

The operators * (multiply), / (divide) are what we call multiplicative operators and they
group from left to right. The ^ operator is also part of this group but it is right-associative.
These operators form what we call multiplicative expressions.

The grammar for these expressions is:
multiplicative expression : arithmetic expression

 multiplicative-expression * arithmetic expression

 multiplicative-expression / arithmetic expression

 multiplicative-expression ^ arithmetic expression

The * operator performs arithmetic multiplication and its operands must have
arithmetic type (i.e. be numbers of either type int or double)

The ^ operator performs arithmetic exponentiation and thus its operands must have
arithmetic type of either int or double. The result of this operation is a double.

The / operator performs arithmetic division and its operands must also have arithmetic
type.The result of this operation is similar to the type of the operands. E.g. if both the operands

Section 3: Language Manual LSystem

28 | P a g e

are integers, then so is the result. If they both, doubles, then so is the result. If the types don’t
match up, the result is a double.

The operators + and - are known as additive operators and they associate from left to
right. The grammar syntax for additive operators is given below :

additive-expression: multiplicative-expression

 additive-expression + multiplicative-expression

 additive-expression - multiplicative expression

The operator + performs arithmetic addition and so the operands must have arithmetic
type. The value returned by this operator is the sum of the operands. Note that it is not
possible to use the + operator to perform string concatenation.

Similarly, the operator - performs arithmetic subtraction and so the operands must also
have arithmetic type. The value returned by this operator is the difference between the two
operands.

3.5.5 Relational operators

Relational operators are used to compare variables to one another in relational
expressions. The two variables on either side of a relational operator must be of a numeric
type - for instance, “I don’t know” < 3 would cause a compiler error. A relational
expression will evaluate to a boolean constant- that is, to true or false. Thus, only ints and
doubles are the valid types for comparison when using this type of operator. Specifically, if a

and b are number variables, a < b checks to see if a is smaller than b; a > b checks to see if
a is bigger than b; a <= b checks if a is less than or equal to b, and a >= b checks whether

a is greater or equal to b. The relational expression returns true if the condition specified holds
and false if it does not.

Relational expression:

 Variable rel_operator variable

Variable:

 Arithmetic expression

 constant or literal (e.g., previously instantiated int d, 6)

Rel_operator:

 <

 <=

 >

 >=

Section 3: Language Manual LSystem

29 | P a g e

3.5.6 Equality operators

The equality operators work the same way as the relational operators - however, they
check to see if a variable is equal or not equal to another variable. Again, the two variables in
an equality expression must be of numeric type. Thus, Ints and doubles are the only data types
that can be used with these operators.

Equality expression:

 Variable eq_operator variable

Variable:

 Arithmetic expression

 constant expression (see below section on Constant Expressions)

Eq_operator:

 ==

 !=

3.5.7 Boolean operators

The language features support for the logical AND and logical OR operations. For logical
AND, if both values being ANDed together are true, then the expression evaluates to true.
Otherwise, the expression evaluates to false. For logical OR, if one or both values being ORed
together is true, the expression evaluates to true. Otherwise, the expression evaluates to false.

A boolean expression takes the form of (boolean boolean_operator boolean). The
expressions on each side of the boolean_operator (&& or ||) must evaluate to a boolean type.
As a result, the expressions on each side of the boolean operator must be boolean constants
(true or false), relational expressions (a < b), or equality expressions (g == h).

Boolean expression:

 Boolean expression && Boolean expression

 Boolean expression || Boolean expression

 Boolean

Boolean:

 Equality expression

 Relational expression

 Boolean_constant

Boolean_constant:

 true

 false

Section 3: Language Manual LSystem

30 | P a g e

3.5.8 Assignment operator

The assignment operator, =, is used to associate an identifier with a value. For instance,

the following statement will cause the identifier d to be associated with a value of 4, and to
have the type int.

int d = 4;

As such, the next time d is used in an expression, it will evaluate to 4. The type declared
on the left hand side of the assignment must match the expression on the right hand side of the
expression. For example, an identifier declared as a boolean cannot be assigned a value that is
a double literal.

3.5.9 Constant expressions

Constant expressions are expressions that evaluate to string and number literals. For

instance, “test”, 4, and 4.266 are all constant expressions. Note that constant expressions
are a subset of primary expressions. Constant expressions can be assigned to variables in a
variable declaration. For instance:

int d = 4; # 4 is a constant expression and it’s been assigned to d

string s = “hi”; # hi is a const expression and it’s been saved in s

3.6 Declarations

3.6.1 Function declarations

Our language supports two kinds of functions: Compute Functions and Drawing

Functions. All functions must be preceded with a def keyword. Functions are both declared and

implemented at the same time. Thus if one compute function calls another compute function,

for example, then that other function must have been declared and implemented before.

Otherwise, this is a compile-time error.

Compute Functions

Compute functions are your normal functions and they typically do some kind of
computation like finding the square root of a number. All compute functions must have the
“compute” specifier after the “def” specifier and they must return a value of type double (i.e.
there is no need to specify a return type). If a function does not need to return any specific
value, then it may simply return the value 0 to indicate that it has completed successfully.
Compute function can have any number of named argument parameters. The argument

Section 3: Language Manual LSystem

31 | P a g e

parameter passing mechanism in our language is always pass-by-value. An example of a
compute function declaration and implementation is below :

def compute sum (int a , int b){

 int sum = 0;

 sum = a + b;

 return sum ;

}

Note that all variable declarations in a compute function must occur first at the top of
the function implementation. For example, the following is illegal and causes a compile time
error.

def compute avg (int a , int b, int c){

 int tot = 0;

 tot = a + b + c;

 double avg = tot / 3; # compile time error

}

Drawing Functions

Drawing Functions are the functions that specify the structure of an L system that will be

eventually be drawn. These functions only take in a single parameter that is an integer. This

parameter specifies how many times the L system rules will be applied in drawing the L system.

The structure of the body of a drawing function is as follows :

alphabet : (List of Alphabet Letters separated by commas);

lambda -> (start letters);

Rules of how to transform or expand a certain alphabet character.

The syntax for the rules is:

Alphabet_Letter -> Result_of_Transformation

Alphabet_Letter = draw_function_call

The letters ‘r’ ‘l’ ‘f’ by default have the meaning, turn right by 90 degress, turn left by 90
degrees and move forward by a unit amount respectively. However, these defaults can be
overriden like the example below shows.

Section 3: Language Manual LSystem

32 | P a g e

An Example of a drawing function:

def draw hilbert(int n){

 alphabet: (A,B;f,r,l,s);

 rules:{

 lambda -> A;

 A -> l B f r A f A r f B l;

 B -> r A f l B f B l f B r;

 A = ;

 B = ;

 f = forward(15);

 r = rotate(-60);

 l = rotate(60);

 }

}

3.6.2 Variable declarations

Variable declarations are used to initial variables equal to constant values. The type
used in a declaration must match with the type that the expression on the right hand side of
the assignment operator returns. A variable declaration consists of the following grammar:

Variable declaration:
 Type identifier = variable_expr

Type:

 int

 double

 bool

 string

variable_expr:

 string_literal

 number_literal

 bool_value

Variable declarations are only permitted in compute functions and cannot be used in
draw functions. Also, as previously mentioned, all variable declarations in a compute function
must occur first at the top of the function.

Lastly, the variable declaration only support and allow for simple literals/constants to be
assigned and any more complex expressions such as function calls are not supported at the
moment.

def compute sum(int a, int b){...}

def compute test() {

 int x = sum (1,2); # not allowed.

}

Section 3: Language Manual LSystem

33 | P a g e

3.7 Statements

3.7.1 Expression statement
An expression statement is composed of primary statements with a semicolon at the

end of the line.

3.7.2 If statement
If statements come in the following two varieties:

if (expression)
 statement1

and

 if (expression)
 statement1
 else
 statement2

For both if statements, “expression” must be of Boolean type, and statement1 executes
if expression evaluates to true, while statement2 in the second variety executes if expression
evaluates to false.

3.7.3 While loops

The While loop control flow construct allows for executing a statement any number of
times.

 while (expression) statement

As with if statements, “expression” must be of boolean type, and statement executes
until the expression evaluates to false. The evaluation of expression comes before the
execution of the statement.

3.7.4 Return statements

A compute function must return a value to the caller through return statements. The

only exception is the “main” function which does not return anything.

return number

Section 3: Language Manual LSystem

34 | P a g e

The value returned by a function, “number” in this instance, must be of double type. In
the case where no specific value needs to be returned, a value of 0 can be specified to indicate
that the function ran correctly.

3.8 System functions

3.8.1 Turtle Functions

For L-system drawings, we use turtle graphics, which draws images based on a user
supplying relative positioning commands on a cursor. One can imagine the cursor being a turtle
with a pen on its tail, and the user telling the turtle to go forward, turn, or lift its tail. In the
following functions, r, theta, x, and y are all of double type. Furthermore, let X, Y, and Theta be
the position and orientation of the cursor, respectively, and let “down” be the current state of
the “tail.”

forward(r)

The turtle moves “forward” by r pixels. Formally, the change in X and Y is cos(Theta)r
and sin(Theta)r, respectively. If “down” is set to true, then the line between (X,Y) and
(X+cos(Theta)r,Y+sin(Theta)r) is drawn.

turn(theta)

The turtle turns counterclockwise by theta (in degrees). Formally, the change in Theta is
theta.

up() - pen up

This function sets pen “down” to false.

down()

This function sets “down” to true.

setx(x)

 This function sets X:=x

sety(y)

 This function sets Y:=y

Section 3: Language Manual LSystem

35 | P a g e

3.8.2 Input / Output

At the moment, user input, such as command line arguments, are not supported but it is
still possible to print out to a JTextArea using a builtin library command print. Print supports
taking as input all 4 data types in the language. These are namely boolean, int, double and
strings.

For example:

def compute test() {

 int i = 0;

 while (i< 10){

 print(i); # prints numbers 0 through 9

 i = i + 1;

}

Section 4: Project Plan LSystem

36 | P a g e

Section 4: Project Plan

4.1 Team Responsibilities

Figure 4.1.1 summarizes the distribution of responsibilities for the project. Though there
was some overlap with the compiler modules, each team member created the vast majority of
the compiler components listed next to their name. Aside from Ethan attempting to provide a
consistent format style across the document and typo fixes, there was no overlap in the
creation of the with the final report sections. Section 7 is the only exception to this as each
member obviously wrote their own lessons learned and advice for future teams. Section 7 is
not listed in figure 4.1.1 for this reason.

Team Member Compiler Final Report

Jervis Scanner

Parser

AST Generation

Semantic Analysis

Section 3: Language Reference Manual

Michael Test Script and Cases Section 1: Language White Paper

Section 6: Test Plan

Timothy Standard Library

Optimization

Standardization of Formatting

Ethan Command Line Interface

Code Generation

Standard Library

Section 2: Language Tutorial

Section 4: Project Plan

Section 5: Architectural Design

Section 8: Appendix

Editing, formatting, and polishing.

Figure 4.1.1 – Team Member Responsibilities

4.2 Software Development Environment
The LSystem compiler is written in O’Caml on Linux and Mac. Though the compiler itself

is written in O’Caml, it requires the Java JDK 1.6 to compile the intermediate Java code, and
thus to test the compiler during development. Team members used the VIM text editor and the
Eclipse (with the OcaIDE plugin) integrated development environment. Though a makefile has
been included with the compiler source code, some of our team members found it easier to

Section 4: Project Plan LSystem

37 | P a g e

develop using the ocamlbuild tool as it, combined with OcaIDE, provided for automatic
compiling when source files were modified and saved.

The compiler was tested with a custom shell script, called test.sh, and a collection of
LSystem source files. The source code for the compiler was managed in a subversion repository
on Google code: http://code.google.com/p/plt-lsystem/.

http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/

Section 4: Project Plan LSystem

38 | P a g e

4.3 Project Processes

4.3.1 Planning

After submitting the language reference manual the team met each Sunday to discuss
the project, assess our progress, and decide what tasks to perform during the upcoming week.
This method worked pretty. It kept the team on track. As a result almost all of the functionality
originally specified in the language reference manual was included in the compiler.

4.3.2 Specification

During the Sunday group meeting, immediately following the Wednesday the LRM was
due, the group discussed how to build the compiler given the LRM and the example MicroC
compiler. The specification of the compiler changed as we realized the difficulty of
implementing certain features given the allotted amount of time. These changes have been
noted in section 3 of this document.

4.3.3 Development

 Initially we imagined an iterative approach to development where the team added a
feature tested it, then added another feature and tested it, and so on. What actually happened
was the scanner, parser, and AST modules were created before the code generation module
was created. The code generation module was intern fully functional by the time the semantic
analysis module was started. Testing did happen incrementally, by feature. That went as
originally planned.

The semantic analysis module was the last major component to be created. It was
created and tested during about the last 2 weeks of the semester. Our initial assumption was
that it would be difficult to do semantic analysis with a partially complete AST module. This
proved to be true, as it was easier to implement the semantic analysis module after the rest of
the compiler front-end (i.e. scanner, parser, and AST modules) was close to being complete. In
hindsight, the insight we gained while doing the semantic analysis would have informed the
development of the rest of the compiler had it been created in tandem with the other
components.

4.3.4 Testing

 The testing process was managed by Michael. Test case files were written by Michael,
and contributed by other team members, as features were implemented. The testing process is
described in greater detail in section 6 of this document.

Section 4: Project Plan LSystem

39 | P a g e

4.4 Programming Style Guide

4.4.1 General Principles

The team had a very informal approach to programming style. We attempted to follow
the coding style of the example Microc compiler provided during the course of the term. This
worked well at first as we divided up the modules very cleanly. We learned during the last few
weeks of the semester that this informal approach was a mistake. We began to trip over each
when more fully testing and patching the modules. The largest problem was that each team
member was using a different text editor or IDE with different settings. The tab width in one
team members editor might have been eight whitespace characters, in another two whitespace
characters, and another a one four character wide tab. This caused a huge formatting headache
and could have been avoided if we had standardized our tab width to start with.

4.4.2 Documentation Comments

 We found that the Professor Edwards thoughts regarding commenting O’Caml code
held true throughout the development of the compiler. Namely that O’Caml’s succinct syntax
makes it very understandable, and thus a large quantity of verbose comments was not needed
to explain the functionality of the various modules.

4.5 Project timeline
The following target dates were set to for the various project milestones

Date Milestone

09-28-2011 Language proposal, with core language feature complete

10-31-2011 The language reference manual complete

11-13-2011 Compiler 0 – Able to print “Hello, World!”

11-19-2011 Scanner and Parser complete

11-26-2011 Code generation complete

12-16-2011 Semantic analysis complete

12-18-2011 Compiler fully complete

Section 4: Project Plan LSystem

40 | P a g e

4.6 Project Log
 The project log, shown below, is essentially the milestones and highlights from the
project’s Subversion repository commit log. It has been rearranged by feature, and then sorted
chronologically. Minor commits and bugfixes were left out, as well as those lacking sufficient
detail to discern the purpose of the commit. The full commit log can be viewed at:
http://code.google.com/p/plt-lsystem/source/list

4.6.1 Scanner/Parser/AST
Date Team Member Milestone/Feature

11/6 Jervis Implemented a basic working scanner & parser based on MicroC.

11/14 Jervis Added the compute functions. Implemented the type double and
boolean in parser and AST.

11/15 Jervis Completed implementing the def_draw function that's used to
describe lsystem. Tested out with hilbert function described in LRF to
make sure that the program is parsed successfully.

11/16 Jervis
Added the POW (^) operator and updated make file to produce
verbose output when parser is compiled.

4.6.2 Command-Line Interface
Date Team Member Milestone/Feature

11/13 Ethan Create basic top-level based on Microc.

11/14 Jervis Added a -a switch for AST printing.

11/20 Ethan Top-level has been converted to a command line interface. Added
improvements such as usage instructions as well as exception handling
for invalid arguments.

12/4 Jervis Added a -s option do that the semantic analysis stage can be run.

12/18 Ethan Added a -t switch for "testmode"

12/19 Jervis Reconfigured the CLI so that the semantic analysis stage runs before
the code generation stage, and not indepedantly.

4.6.3 Code Generation
Date Team Member Milestone/Feature

11/13 Ethan Compiler 0: The compiler produces compilable Java source code that
prints “Hello, World!” to the console. Main and other compute
functions are translated.

11/27 Ethan Draw function code generation complete. Compiler able to produce
Java code that renders images from L-systems.

12/14 Ethan Compiler now produces Java bytecode (not just Java source code) with
the –c command.

12/17 Ethan The start rule of a draw function comes from its lambda rule, and not a
function argument.

http://code.google.com/p/plt-lsystem/source/list

Section 4: Project Plan LSystem

41 | P a g e

12/17 Ethan Added slider that scales the rendered L-system image.

12/18 Timothy Made standard library functions assignable to constants in L-system.
Broke slider control. Image no longer scales.

4.6.4 Standard Library
Date Team Member Milestone/Feature

11/6 Timothy Created Java Turtle class.

11/14 Ethan Standard library module created. Java code integrated.

12/17 Ethan Added slider that scales the rendered L-system image.

12/18 Timothy Made standard library functions assignable to constants in L-system.

12/18 Timothy Made the image scale with Java program resizable.

12/19 Timothy The -t flag now outputs a bitstring of the rendered image to a text file
for testing.

4.6.5 Testing
Date Team Member Milestone/Feature

11/6 Michael Created arithmetic tests.

11/20 Michael Updated test.sh bash script to iterate through all test cases with
updated syntax, listing test cases that failed at the end of execution.

12/4 Michael Updated test.sh bash script to attempt to compile all test cases from .ls
to java byte code (.ls -> .java -> .class).

12/15 Michael Began adding semantic tests.

12/15 Ethan Added a variety of draw tests.

12/19 Michael Finished testing to validate drawing programs. Test script should
essentially be finished. Added a directory with expected bitstring
result files for each drawing test file.

4.6.6 Semantic Analysis
Date Team Member Milestone/Feature

12/4 Jervis Outlined basic functions that will be used to semantic analysis.

12/14 Jervis Implemented data type checking.

12/17 Jervis Added checks for compute functions, control flow functions, and other
constructs

12/19 Jervis Completed semantic analysis for draw functions.

12/19 Jervis Connecting semantic analysis with the normal compilation process.

http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/

Section 4: Project Plan LSystem

42 | P a g e

4.6.7 Commit Statistics

The graphic in figure 4.6.0.1 depicts the commit statistics for the life time of the project.
It was generated using project management software called Redmine. In the graphs, Revisions
refers to a count of repository commits and is displayed in reddish/orange. Changes refers to a
count of the number of files that have changed overall and is displayed in blue. Note that
“engiskahn09” refers to Michael in the lower graph.

The commit statistics highlight that even though we began developing the compiler in
early November, and worked on it steadily, more commits were done in December. This is due
to the bug fixes and code reformatting that took place at the end of the project.

Figure 4.6.0.1 – Subversion Repository Commit Statistics

Section 5: Architectural Design LSystem

43 | P a g e

Section 5: Architectural Design

5.1 High Level Architectural Design
 The LSystem compiler consists of seven modules. The modules are depicted in figure
5.1.1, and their purposes are explained in the subsequent subsections of section 5.

Figure 5.1.1 – Compiler Architecture and Related Components

Section 5: Architectural Design LSystem

44 | P a g e

5.2 Component Interface Interaction

5.2.1 Command Line Interface (lsystem.ml - Author: Ethan Hann)

The LSystem CLI evolved out of the Microc top-level. It, however, is not a top-level, but a
switch-centric command line interface for the LSystem compiler. The CLI is used to invoke the
various stages of the compiler. The ordered list of these stages includes:

1. AST generation
2. Semantic analysis checking
3. Intermediate (Java) code generation

This list is ordered to indicate that each stage requires that the previous stages in the list
are invoked in sequence before the desired stage is itself invoked. For example, if the -s switch
is passed to the CLI (see “CLI Usage” below) to perform semantic analysis, stage 1 (AST
generation) is executed before stage 2 (semantic analysis). This is logical, as semantic analysis
cannot be performed unless the AST has been generated.

The compiler accepts a switch that corresponds to a stage in the above list as its first
argument. This is either -a (AST generation), -s (semantic analysis), -c (generate Java
code/program). The second argument is the file system location of the target LSystem source
file. The third argument is either –t (test mode), or –v (verbose mode). More complete
explanations of these arguments are contained in figure 5.2.1.2.

Switch Explanation

-a Generates the AST and prints an exact copy of the input source file if AST
generation was successful.

-s Performs semantic analysis on the AST, generated from the input source file.

-c Generates an intermediate representation of the source file in the form of Java
code from the AST.

SOURCE_FILE The file path of the target LSystem source file.

-v Verbose option. Prints intermediate code, and other information useful for
debugging.

-t Test mode option. Allows the compiler to perform additional testing of draw
functions.

Figure 5.2.1.2 – CLI Argument Descriptions

lsystem [-a|-s|-c] SOURCE_FILE [-t|-v]

Figure 5.2.1.1 CLI Usage

Section 5: Architectural Design LSystem

45 | P a g e

 5.2.2 Scanner (scanner.mll - Author: Jervis Muindi)

The purpose of the scanner is to specify what tokens are recognizable in our language.
That is, the scanner goes through the source file and transforms the stream of character that
are present in the source into a stream of token which are specified in this. This process is
necessary in reject all source programs that do not use the syntax of our language.

5.2.3 Parser (parser.mly - Author: Jervis Muindi)

The role of the Parser is to take the stream of tokens obtained from the scanner and try
to deduce whether they are in the language specified by the context-free grammar. The
context-free grammar, in our case was written in the parser.mly file. In the process of parsing
the source file, an abstract syntax is also generated.

5.2.4 AST (ast.ml - Author: Jervis Muindi)

The abstract syntax tree defines the core structure of a program in a language and this
file (ast.ml) contains the precision definition of the structure of our abstract syntax tree for our
language. The parser.mly file references the ast.ml file so that during the process of parsing the
program, the abstract syntax tree is also generated.

5.2.5 Semantic Analyzer (semantic.ml - Author: Jervis Muindi)

 The semantic analyzer examines the abstract syntax tree structure produced by the AST
module. If it completes its analysis without throwing any exceptions the compiler proceeds to
the code generation phase of the compilation process.

5.2.6 LSystem Standard Library (lsystemstd.ml - Author: Timothy Sun)

 The LSystem standard library (STL) functions are written in Java. They are concatenated
to the intermediate Java code produced by the compiler in the Java Code Generator
component. It provides the Java drawing and console output functions. It also dynamically
scales the rendered image so that it fits on screen.

5.2.7 Java Code Generator (compiler.ml - Author: Ethan Hann)

 The code generator transforms the AST into Java source code and combines it with the
Java code in the LSystem standard library (STL). The resultant code is written to a Java source
file that shares the same name as the LSystem source file. For example, if the LSystem source
file is called “hilbert.ls” (sans quotes) then the Java source code file would be called
“hilbert.java” (again, sans quotes). After producing the intermediate Java source file the code
generator then attempts to compile the intermediate Java code into a Java bytecode program
by using an external Java compiler located in the user’s path.

Section 6: Test Plan LSystem

46 | P a g e

Section 6: Test Plan
Formal testing began as soon as a rudimentary compiler was constructed. The test suite

on this project was designed to be built alongside the L-system compiler. As soon as features
were implemented in the compiler, corresponding test classes were created to verify that these
features were in working order. This agile approach allowed for features to be tested
immediately, leading to quick verification and easing any necessary debugging. Furthermore,
these tests were carried over from build to build, constructing a suite of regression tests. This
further reinforced build integrity, as the test suite could be executed with each new build to
ensure that new changes did not break any existing functionality. The net result was a project
developed with no emergency code rollbacks and a very fast quality assurance process.

The test suite can be divided into three parts that reflect the three main phases of
development experienced by the project. Owing to the agile nature of testing, these parts were
developed in parallel with their corresponding phases.

6.1 Phase 1: Rudimentary Compiler
Phase 1 of the development process was the initial development phase, where a

rudimentary compiler had been created. The development goal at the end of this phase was to
have a compiler that could handle purely computational programs. As such, functions such as
arithmetic, printing, and basic program structure were tested during this phase.

6.2 Phase 2: L-system Drawing
Phase 2 of the development process corresponded to the development of portions of

the compiler dedicated to handling L-system drawing programs, the main objective of the
project. The goal at the end of this phase was to have a compiler that could handle drawing
and computational programs, outputting a visual representation of L-systems on-screen in the
case of the former. All functionality pertaining to creating L-system drawing programs, such as
defining custom terminal variables or customizing the number of iterations to use in expanding
an L-system grammar, were tested during this phase.

6.3 Phase 3: Semantic Analysis
Phase 3 of the development process corresponded to the construction of the semantic

analyzer, designed to catch syntactic and programmatic errors in files before beginning formal
compilation into intermediate Java source code. The goal at the end of this phase was to
develop functionality to catch errors in input programs that would trigger errors or warnings
from the Java compiler if the intermediate Java source code were to be compiled, in addition to
catching syntactic errors pertaining to the L-system grammar itself. Common errors and edge
cases, such as defining a non-boolean condition in a conditional statement, attempting to

Section 6: Test Plan LSystem

47 | P a g e

create a program without a main method, and incorrectly instantiating variables were tested
during this phase.

6.4 Tools
A bash shell script was used to automate the execution of all tests from each phase.

Individual test programs were written in the L-system programming language.

6.5 Implementation

6.5.1 Implementation Phase 1

Since this phase was concerned with processing computational programs, test programs
were created to test basic computational functionality. Each of these test programs would
focus on a piece of functionality- for instance, a test program was created to test the
subtraction of two integers, and another test program was used to test the subtraction of two
floating-point doubles. The common thread amongst the tests in this phase was that they all
were expected to run successfully with a specific end result, akin to making an assertion during
unit testing that a manipulated piece of data in a test method was in fact manipulated as
expected. To that end, a data file was created with values of expected output for each test file
made during this phase. When testing automation was implemented, each of these programs
was compiled and executed, with the output being checked against the corresponding expected
output in the data file.

An example test program from phase 1:

def compute test(double a, double b)

{

 return (a + b);

}

def compute main()

{

 int x = 3;

 double y = 2.0;

 double r = 0;

 r = test(x, y); # int can be used in a place of a double.

 print(r);

}

Figure 6.5.1.1 - validcall1.ls test

6.5.2 Implementation Phase 2

The goal in this phase was to ensure that drawing programs would be executed correctly
and could be customized according to the specifications laid out in the language reference

Section 6: Test Plan LSystem

48 | P a g e

manual. The test programs created during this phase can be divided into two subgroups- one
consisting of well-known L-systems that are likely to be programmed in the language, allowing
for easy visual verification of correctness, and the other consisting of programs that customize
some aspect of the L-system grammar- for instance, a program that explicitly maps all of an L-
system’s terminal symbols to specific drawing functions.

Image data from the visual representation of the L-systems was utilized to verify the test

programs in this phase. Automation implementation of this phase was similar to phase 1; an

image for each test program was produced that was known to be correct. This image was then

transformed into pixel data, consisting of a bit for every pixel in the image that determined

whether the pixel was black or white. This pixel data effectively formed a large bitstring that

was stored in a data file, one for each test program. When a test program was executed in

subsequent builds, the image bitstring was extracted from its generated image and compared

to the corresponding data file to verify image correctness.

Section 6: Test Plan LSystem

49 | P a g e

An example test program from phase 2:

def draw levycCurve(int level){

 alphabet: (X);

 rules:{

 lambda -> X;

 X -> r f X l l f X r;

 l = turn(-45); #Mapping custom variables to built-in drawing methods

 r = turn(45);

 }

}

def compute main(){

 levycCurve(12);

}

Figure 6.5.2.1 – levyc.ls test

6.5.3 Implementation Phase 3

This phase centered around ferreting out issues that could arise from improperly coded
programs- for instance, rejecting an input L-system program if the user did not define a main
method in the program body. The goal was to ensure that programs not adhering to the syntax
laid out in the language reference manual would be appropriately rejected by the compiler
before compilation was actually attempted. Automation of this process focused on ensuring
that for each test program, the compiler prematurely exited due to an error in the program and
did not generate an intermediate Java source code file.

Due to time constraints, the determination of which errors to check during this phase
was based mostly on what the developers believed would be common mistakes or likely
attempts at breaking the built-in grammar.

Section 6: Test Plan LSystem

50 | P a g e

An example test program from phase 3:

def draw hilbertDerivation(int level){

 alphabet: (A , B, C, D);

 rules:{

 lambda -> A;

 A -> l B f r A f A r f B l;

 B -> r C f l B f B l f C r;

 C -> l D f r C f C r f D l;

 D -> r A f l D f D l f A r;

 f = forward(1);

 l = turn(-80);

 r = turn(80);

 }

}

def compute main()

{

 hilbertDerivation(7, 3);

}

Figure 6.5.3.1 – toomanydrawfunctionparameters.ls

6.6 Automation:
As previously stated, a bash shell script was written to automate all testing. For the

computational and drawing groups of test programs, the tests were compiled, the script
verified that compilation from the L-system language to Java occurred and that compilation
from Java to a Java class file occurred, and then the programs were executed and their output
compared appropriately to expected values, as detailed above. For the semantic group of test
programs, the programs were fed into the compiler, and the script verified that no intermediate
Java file was generated for each test, indicating that the compilation had failed due to an error
present in each test.

Section 7: Lessons Learned LSystem

51 | P a g e

Section 7: Lessons Learned

7.1 Jervis

7.1.1 Lessons Learned

Taking this PLT class has been a lot of fun and I have learned so much. I had previously
approached compilers as black boxes that magically did their work. However, after taking this
class, I have come to know that there is actually no black magic and that the process of
compilation is well structured one that involves stages of scanning, parsing and eventual code
generation. For example, the simplicity of the Donald Knuth algorithm to build a LR(0)
automaton which is in turn used to build the SLR parsing table is something that I find to be
amazing.

Additionally, I have also come around to the functional paradigm of programming. In
particular, when I first starting learning OCaml, I was annoyed with how picky the compiler was
- it seemed to me that it would complain even about the slightest of problems. However, in
writing the compiler in OCaml, I have grown to actually appreciate the error checking that the
compiler does. In every single case where I got an error message, it was to an actual problem in
the code. The benefit of this strict error checking by the compiler is that when it compiles
actually successfully, it will always work.

Moreover, working and collaborating together in a group has been a good learning
experience. I got to see the usefulness of using code control tools such as SVN in code
management as well as the importance of having a good plan of division of labor. In particular,
in my group, we are able to divide the tasks in way that we were all able to work on different
parts of the compiler simultaneously. We did this as much as possible to avoid the problem of
having to wait on a certain team member to complete a certain module before work on
another could begin.

Furthermore, in developing the compiler, I also saw how useful and crucial it is to
integrate testing as part of the development process. Having a good testing suite helped ensure
that as we added more features to the compiler or perhaps after rectifying a known bug, we did
not inadvertently introduce extra bugs in the process.

Lastly, I have tremendously enjoyed the class lectures which were always interesting
and educative. Of particular note are discussions on different language paradigms such as logic
programming and lambda calculus. It was very refreshing to see the mathematical and
theoretical underpinnings on which functional programming languages such as OCaml are
actually built upon.

7.1.2 Advice for Future Teams

Section 7: Lessons Learned LSystem

52 | P a g e

My advice to future team is to first choose your team members well since you will need
to collaborate very closely with them over the course of the semester. It is also important to
figure out your working style and how you are going to work. Of crucial importance, is having
weekly progress meeting so that you can track your progress and discuss future goals for the
coming week. If you’re in a team where you’re unable to agree and adhere on a weekly meeting
time, I’d strongly suggest joining another team.

My second piece of advice is to start learning OCaml early on especially if it is the first
time that you are encountering functional paradigm of programming. Yes, it will be challenging
and difficult at first – which is why you should start early – but the final compiler has to be
written in OCaml and not having a good grasp of OCaml by the time you actually need to start
implement the compiler is a situation you would not want to be in.

While still on the topic of OCaml, I should mention that in OCaml, there are only two
possible types of errors that you can get : syntax errors and type-mismatch errors. You are will
be seeing and dealing with these a lot so it’s also important to understand how to read and
resolve the errors. When starting out you may feel that the OCaml compiler very picky – I
certainly did – but rest assured that the error messages are valid ones. Indeed, every single
time I have had to resolve such errors, there was indeed a problem with the code. What this
means, is that when you are able to get your code to compile successfully, it really is going to
work.

Also, I know everyone says this (and you probably already know it yourself) but I feel
that it is important enough that it bears repeating again: You should start your work early.
Actually, don’t start early, start earlier. Seriously, you should figure out your project as soon as
possible so that this way you can get more time to work on it. Starting early also gives you the
nice luxury of having some buffer time should you even need it.

With regards to actually implementing the compiler an excellent starting point is the
MicroC compiler that Professor Edwards puts up on the website. Note that if your language
deviates significantly from a C-style syntax then, it would probably be best to start from scratch.
That said, it is still a good idea to look at the MicroC compiler for nothing else than seeing how
the various parts of a compiler can be built using OCaml.

7.2 Ethan

7.2.1 Lessons Learned

 The most important lesson I learned was that adding constraints to the syntax of the
language in order to simplify the compiler often makes implementing the compiler more
difficult than it would otherwise be. For example, specifying that the language has a main
function and that function has to be the last function defined in a source file means that you
have to add extra semantic test cases to make sure that the main function is actually the last
function defined in a source file. If the order of the functions does not matter (and it should
not, as the code generation module can work however you want it to… reordering the

Section 7: Lessons Learned LSystem

53 | P a g e

generated code as it needs for instance) during intermediate code generation, then that extra
work is a waste of time.

7.2.2 Advice for Future Teams

 Working steadily on the project over time is beneficial. It is good to start early, but
continuing to work on the project steadily every week over the course of the semester is better
than having marathon coding sessions every three weeks. This goes for the final report as well.
Thankfully my group started the final report right after the LRM was due. This made the last
few weeks of the semester a lot easier.

 Write your coding standard before you start coding. We had team members using
Eclipse, vim, or gedit at any given time with all different tab settings. This caused formatting
problems. Standardize the tab width among team members at least.

7.3 Michael

7.3.1 Lessons Learned

Building up a test suite as the compiler is developed is optimal- it saves time in the long
run and serves as a suite of regression tests that can be used to ensure that new builds didn’t
break any existing functionality.

There’s a reason why version control systems are used in virtually all corporate software
development projects, especially since a lot of them have built-in bug tracking systems. Having
everything integrated into one application like that makes the development process a lot faster
and easier.

7.3.2 Advice for Future Teams

Start early! At the very least, plan out how you’re going to grow your project- figure out
what to get working first, and then build off of that. Having that sequence of things to
implement makes the process a lot smoother.

Start the report early as well- even if you just copy/paste the outline and fill in bullet
points as you go. Memories of stuff you did on a given day will be fresher and reports will be
more accurate the sooner you log what you did.

7.4 Timothy

7.4.1 Lessons Learned

Working on the code regularly allowed me to actually know what was going on. I didn’t
understand all of the code my teammates wrote all at once, but had I not looked at the code
periodically, I would not have really gotten anywhere with the code.

Section 7: Lessons Learned LSystem

54 | P a g e

Functional programming is cool. As a math-oriented person, a lot of it made a lot of
intuitive sense after I figured out the syntax. I can’t imagine having to write a parser in Java.
Higher-order functions and list-manipulating functions were probably the best features for me.

I have no idea how we would have gotten through the semester without SVN. “svn
update” is so much easier than e-mails, etc.

7.4.2 Advice for Future Teams

Make sure you’ll enjoy whatever language you’re working on. Even though it might not
turn out exactly as you wanted it to (our language is missing some features I had envisioned at
the beginning), but trust me: seeing something close to the final product is a great feeling.
When we had just finished the drawing code generation, I was plugging in every L-system
specification I could find online just so I could see the program spit out some beautiful fractal.

Starting early. Even though some people might work better under pressure, you still
want to spread everything out. We probably missed all our projected milestones, but oh well.

Get used to reading/writing O’Caml code. It’s perhaps not as immediately accessible as
languages like Java or Python, but it’s a surprisingly clean language to work in. Agree on coding
conventions early on; it’s hard to read different styles.

On a less serious note: don’t use Eclipse. I have never seen more random whitespace in
my life.

Appendix A: Code Listing LSystem

55 | P a g e

Appendix A: Code Listing

lsystem.ml

(* Primary Author: Ethan Hann (eh2413) *)

(* Command Line Interface *)

(* Possible actions for the compiler. *)

type action = Ast | Compile | SA

(* Custom exceptions. *)

exception NoInputFile

exception InvalidArgument

(* Compiler usage instructions. *)

let usage = Printf.sprintf "Usage: lsystem [-a|-s|-c] SOURCE_FILE [-t|-v]"

(* Get the name of the program from the file name. *)

let get_prog_name source_file_path =

 let split_path = (Str.split (Str.regexp_string "/") source_file_path)

in

 let file_name = List.nth split_path ((List.length split_path) - 1) in

 let split_name = (Str.split (Str.regexp_string ".") file_name) in

 List.nth split_name ((List.length split_name) - 2)

(* Main entry point *)

let _ =

 try

 let action = if Array.length Sys.argv > 1 then

 match Sys.argv.(1) with

 | "-a" -> Ast

 | "-s" -> SA (*semantic analysis testing*)

 | "-c" -> Compile

 | _ -> raise InvalidArgument

 else raise InvalidArgument in

 let prog_name =

 if Array.length Sys.argv > 2 then

 get_prog_name Sys.argv.(2)

 else raise NoInputFile in

 let verbose =

 if Array.length Sys.argv > 3 then

 match Sys.argv.(3) with

 | "-v" -> true

 | _ -> false

 else false in

 let testmode =

 if Array.length Sys.argv > 3 then

 match Sys.argv.(3) with

 | "-t" -> true

 | _ -> false

 else false in

 let input_chan = open_in Sys.argv.(2) in

 let lexbuf = Lexing.from_channel input_chan in

Appendix A: Code Listing LSystem

56 | P a g e

 let reversed_program = Parser.program Scanner.token lexbuf in

 let program = List.rev reversed_program in

 match action with

 | Ast -> let listing = Ast.string_of_program program in

print_string listing

 | SA -> ignore (Semantic.check_program program);

 | Compile -> if Semantic.check_program program then

 let listing = Compile.translate

program prog_name verbose testmode in

 print_string listing

 else raise(Failure("\nInvalid

program.\n"))

 with

 | InvalidArgument -> ignore (Printf.printf "InvalidArgument\n

%s\n" usage)

 | NoInputFile -> ignore (Printf.printf "The second argument must

be the name of an l-system file\n %s\n" usage)

scanner.mll

(* Primary Author: Jervis Muindi (jjm2190) *)

{ open Parser }

let letter = ['a'-'z' 'A'-'Z']

let digit = ['0'-'9']

let punc = ['~' '`' '!' '@' '#' '$' '%' '^' '&' '*' '(' ')' '-' '+' '=' ','

'.' '?' '/' '<' '>' ':' ''' ';' '{' '}' '[' ']' '|' ' ']

(*Escape character sequences

 "\\\"" -> "[\"]" -> a single double quote

 "\\\\" -> '\\' -> a backslash

 "\\n" -> \n -> new line

 "\\t" -> \t -> tab char

*)

let esp = "\\\"" | "\\\\" | "\\n" | "\\t" (*Escape characters : see comment

above*)

let exp = 'e'('+'|'-')?['0'-'9']+

let float = '-'? (digit)+ ('.' (digit)* exp?|exp)

let stringlit = '"' (letter | digit | punc | esp)* '"'

let negative_int = '-'(digit)+

rule token = parse

 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| '#' { comment lexbuf } (* Comments *)

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ',' { COMMA }

| ':' { COLON }

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

Appendix A: Code Listing LSystem

57 | P a g e

| '=' { ASSIGN }

| "&&" { AND }

| "||" { OR }

| '^' { POW }

| "==" { EQ }

| "!=" { NEQ }

| '<' { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

| "->" { ARROW }

| "alphabet" { ALPHABET }

| "boolean" { BOOLEAN }

| "def" { DEF }

| "compute" { COMPUTE }

| "draw" { DRAW }

| "double" { DOUBLE }

| "false" { FALSE }

| "true" { TRUE }

| "if" { IF }

| "else" { ELSE }

| "int" { INT }

| "lambda" { LAMBDA}

| "return" { RETURN }

| "rules" { RULES }

| "string" { STRING }

| "while" { WHILE }

| (digit)+ as lxm { LITERAL(int_of_string lxm) }

| negative_int as lxm { LITERAL(int_of_string lxm) } (*negative integer*)

| letter as lxm { LETTER(String.make 1 lxm) } (*converts lxm to a string*)

| letter (letter | digit | '_')* as lxm { ID(lxm) }

| float as lxm { FLOAT(float_of_string lxm) }

| stringlit as lxm { STRINGLIT(lxm) }

| eof { EOF }

| _ as char { raise (Failure("Illegal character: " ^ Char.escaped char)) }

and comment = parse

 '\n' { token lexbuf } (*Comments are in effect until the end of the line*)

| _ { comment lexbuf }

parser.mly
%{

(* Primary Author: Jervis Muindi (jjm2190) *)

open Ast

let parse_error s = (* Called by the parser function on error *)

 print_endline s;

 flush stdout

%}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA COLON

%token PLUS MINUS TIMES DIVIDE POW ASSIGN

%token EQ NEQ LT LEQ GT GEQ

%token AND OR

Appendix A: Code Listing LSystem

58 | P a g e

%token BOOLEAN DOUBLE STRING INT

%token FALSE TRUE

%token ALPHABET LAMBDA RULES

%token RETURN IF ELSE WHILE

%token DEF COMPUTE DRAW

%token ARROW

%token LETTER

%token <int> LITERAL

%token <float> FLOAT

%token <string> STRINGLIT

%token <string> ID

%token <string> LETTER

%token EOF

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE

%right POW

%start program

%type <Ast.program> program

%%

program:

 /* nothing */ { [] }

 | program fdecl { ($2 :: $1) }

fdecl:

 DEF COMPUTE id LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list

RBRACE

 {

 CFunc({

 fname = $3;

 formals = $5;

 locals = List.rev $8;

 body = List.rev $9

 })

 }

 | DEF DRAW id LPAREN formals_opt RPAREN LBRACE rules RBRACE

 {

 DFunc({

 name = $3;

 formal = $5;

 rules = $8;

 })

 }

id:

Appendix A: Code Listing LSystem

59 | P a g e

 ID { $1 }

 | LETTER { $1 }

alphabet_list:

 LETTER { [$1] }

 | alphabet_list COMMA LETTER { $3 :: $1 }

alphabet:

 ALPHABET COLON LPAREN alphabet_list RPAREN SEMI { Alphabet($4) }

production_list: /*the RHS of a production rule*/

 LETTER { [$1] }

 | production_list LETTER { $2 :: $1 }

turtle_func_paramlist_opt:

 /* nothing */ { [] }

 | turtle_func_paramlist { List.rev $1 }

turtle_func_paramlist:

 expr { [$1] }

 | turtle_func_paramlist COMMA expr { $3 :: $1 }

erule: /*expansion rule*/

 LETTER ARROW production_list SEMI { ERule($1, List.rev $3) } /*Reverse

it so that we read in list in the right order going from left to right*/

frule: /*rule that specifies */

 LETTER ASSIGN SEMI {

EmptyFRule($1) } /*the empty rule. e.g A = ;*/

 | LETTER ASSIGN ID LPAREN turtle_func_paramlist_opt RPAREN SEMI {

FRule($1, $3, $5) }

lambdarule:

 LAMBDA ARROW production_list SEMI {Lambda(List.rev $3) } /*Reverse it

so that we read in list in the right order going from left to right*/

rule:

 erule { $1 }

 | frule { $1}

rule_list:

 rule { [$1] }

 | rule_list rule { $2 :: $1 }

rules:

 alphabet RULES COLON LBRACE lambdarule rule_list RBRACE { LSystem($1,

$5, List.rev $6) } /*Apply List.rev so that the rules are printed in the

right order going from top to bottom as they were originally entered.*/

datatype:

 BOOLEAN { BooleanType }

 | INT { IntType }

 | DOUBLE { DoubleType }

 | STRING { StringType }

formals_opt:

Appendix A: Code Listing LSystem

60 | P a g e

 /* nothing */ { [] }

 | formal_list { List.rev $1 }

formal_list:

 datatype id { [FParam($1, $2)] }

 | formal_list COMMA datatype id { FParam($3, $4) :: $1 }

vdecl_list:

 /* nothing */ { [] }

 | vdecl_list vdecl { $2 :: $1 }

vdecl:

 datatype id ASSIGN expr SEMI { VDecl($1, $2, string_of_expr $4) }

stmt_list:

 /* No empty block allowed */ { [] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 expr SEMI { Expr($1) }

 | RETURN expr SEMI { Return($2) }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr: /*a primary expression*/

 LITERAL { Literal($1) }

 | STRINGLIT { String($1) }

 | FLOAT { Float($1) }

 | id { Id($1) }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr POW expr { Binop($1, Pow, $3) }

/* Boolean expression part*/

 | TRUE { BVal(True) }

 | FALSE { BVal(False) }

 | expr EQ expr { EExpr($1, BEqual, $3) }

 | expr NEQ expr { EExpr($1, BNeq, $3) }

 | expr GT expr { RExpr($1, BGreater, $3) }

 | expr GEQ expr { RExpr($1, BGeq, $3) }

 | expr LT expr { RExpr($1, BLess, $3) }

 | expr LEQ expr { RExpr($1, BLeq, $3) }

 | expr AND expr { BExpr($1, And, $3) }

 | expr OR expr { BExpr($1, Or, $3) }

 | id ASSIGN expr { Assign($1, $3) }

 | id LPAREN actuals_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { Bracket($2) }

actuals_opt:

 /* nothing */ { [] }

 | actuals_list { List.rev $1 }

actuals_list:

Appendix A: Code Listing LSystem

61 | P a g e

 expr { [$1] }

 | actuals_list COMMA expr { $3 :: $1 }

ast.ml

(* Primary Author: Jervis Muindi (jjm2190) *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |

Pow

type nop = NAdd | NSub | NMult | NDiv (*the four normal operators*)

type bv = True | False

type bop = And| Or

type eop = BEqual | BNeq

type rop = BLess | BLeq | BGreater | BGeq

type mop = MTimes | MDivide | MMod (*multiplicative expr ops*)

type aop = AAdd | ASub (*additve expr ops*)

type vop = VAdd | VSub | VMult | VDiv

type dt = StringType | DoubleType | IntType | BooleanType (*Data types in our

language*)

type fparam = FParam of dt * string (*Type to hold a Formal parameter, e.g.

int x*)

type vdecl = VDecl of dt * string * string (*DataType, Name, Value*)

type arithexpr = (*key*)

 | ALiteral of int

 | AId of string

 | AFloat of float

type varexpr = (*key*)

 | VLiteral of int

 | VId of string

 | VFloat of float

 | VStringLit of string

 | VBoolLit of bool

 | VBinop of varexpr * vop * varexpr

type expr =

 Literal of int

 | Float of float

 | Boolean of bool

 | String of string

 | Id of string

 | Bracket of expr

 | Binop of expr * op * expr

 | Assign of string * expr

 | Call of string * expr list

 | Noexpr

 | BVal of bv (*boolean value : true/false*)

 | RExpr of expr * rop * expr (*relational expresion : < <= > >=*)

Appendix A: Code Listing LSystem

62 | P a g e

 | EExpr of expr * eop * expr (*equality expression : == !=*)

 | BExpr of expr * bop * expr (*boolean compound expression : && || *)

type stmt =

 Block of stmt list

 | Expr of expr

 (*| Decl of dt * string * string*)

 | Return of expr

 | If of expr * stmt * stmt

 | For of expr * expr * expr * stmt

 | While of expr * stmt

type alphabet =

 | Alphabet of string list

type turtle_param =

 TurtleParam of varexpr

type rule =

 | Lambda of string list (*start rule: lambda -> production_rule *)

 | ERule of string * string list (*Expansion rule : alphabet_symbol ->

Expansion.*)

 | FRule of string * string * expr list (*Function rule : name | turtle

function name | parameters. E.g f = turtle_move(100)*)

 | EmptyFRule of string (*the empty function rule. E.g. A = ;*)

type lsystem =

 LSystem of alphabet * rule * rule list (*Alphabet | Lambda rule | The

other rules*)

type lfunc_decl = {

 name : string;

 formal : fparam list;

 rules : lsystem;

}

type func_decl = {

 fname : string;

 formals : fparam list;

 locals : vdecl list;

 body : stmt list;

}

type func =

 | CFunc of func_decl (*compute function*)

 | DFunc of lfunc_decl (*draw function*)

type program = func list

let string_of_var_dec (a,b,c) = a ^ b ^ c

let string_of_vop = function

 | VAdd -> "+"

 | VSub -> "-"

 | VMult-> "*"

 | VDiv -> "/"

Appendix A: Code Listing LSystem

63 | P a g e

let string_of_arithexpr = function

 | ALiteral(i) -> string_of_int i

 | AId(s) -> s

 | AFloat(f) -> string_of_float f

let rec string_of_varexpr = function

 | VLiteral(i) -> string_of_int i

 | VId(s) -> s

 | VFloat(f) -> string_of_float f

 | VStringLit(s) -> s

 | VBoolLit(b) -> string_of_bool b

 | VBinop(v1,op,v2) -> string_of_varexpr v1 ^ " " ^ string_of_vop op ^ "

" ^ string_of_varexpr v2

let string_of_dt = function

 StringType -> "string"

 | DoubleType -> "double"

 | IntType -> "int"

 | BooleanType -> "boolean"

let string_of_bop = function

 | And -> "&&"

 | Or -> "||"

let string_of_rop = function

 | BLess -> "<"

 | BLeq -> "<="

 | BGreater -> ">"

 | BGeq -> ">="

let string_of_eop = function

 | BEqual -> "=="

 | BNeq -> "!="

let string_of_bv = function

 | True -> "true"

 | False -> "false"

let string_of_op = function

 Add -> "+"

 | Sub -> "-"

 | Mult -> "*"

 | Div -> "/"

 | Equal -> "=="

 | Neq -> "!="

 | Less -> "<"

 | Leq -> "<="

 | Greater -> ">"

 | Geq -> ">="

 | Pow -> "^"

let rec string_of_expr = function

 Literal(l) -> string_of_int l

 | Boolean(b) -> string_of_bool b

 | Float(f) -> string_of_float f

Appendix A: Code Listing LSystem

64 | P a g e

 | String(s) -> s

 | Id(s) -> s

 | Binop(e1, o, e2) ->

 begin

 match o with

 | Pow -> "Math.pow(" ^ string_of_expr e1 ^ " , " ^ string_of_expr e2

^ ")"

 | _ -> string_of_expr e1 ^ " " ^

 (match o with

 Add -> "+"

 | Sub -> "-"

 | Mult -> "*"

 | Div -> "/"

 | Equal -> "=="

 | Neq -> "!="

 | Less -> "<"

 | Leq -> "<="

 | Greater -> ">"

 | Geq -> ">="

 | Pow -> "^")

 ^ " " ^ string_of_expr e2

 end

 | Assign(v, e) -> v ^ " = " ^ string_of_expr e

 | Call(f, el) -> f ^ "(" ^ String.concat ", " (List.map string_of_expr

el) ^ ")"

 | Noexpr -> ""

 | BVal(v) -> string_of_bv v

 | RExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_rop o ^ " " ^

string_of_expr e2

 | EExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_eop o ^ " " ^

string_of_expr e2

 | BExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_bop o ^ " " ^

string_of_expr e2

 | Bracket(e1) -> " (" ^ string_of_expr e1 ^ ") "

let rec string_of_stmt = function

 Block(stmts) -> "{\n" ^ String.concat "" (List.map string_of_stmt

stmts) ^ "}\n"

 | Expr(expr) -> string_of_expr expr ^ ";\n";

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt

s1 ^ "else\n" ^ string_of_stmt s2

 | For(e1, e2, e3, s) -> "for (" ^ string_of_expr e1 ^ " ; " ^

string_of_expr e2 ^ " ; " ^ string_of_expr e3 ^ ") " ^ string_of_stmt s

 | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

let string_of_vdecl = function

 VDecl(dtt, nm, v) -> string_of_dt dtt ^ " " ^ nm ^ " = " ^ v ^ ";\n"

let string_of_alphabet = function

 Alphabet(string_list) -> String.concat " " string_list

let string_of_lambdarule = function

 | Lambda(string_list) -> "lambda -> " ^ String.concat " " string_list

Appendix A: Code Listing LSystem

65 | P a g e

 | _ -> "" (*output nothing if not a lambda rule*)

let string_of_lambdarule_value = function

 | Lambda(string_list) -> String.concat " " string_list

 | _ -> "" (*output nothing if not a lambda rule*)

let string_of_rule = function

 | Lambda(string_list) -> "lambda -> " ^ String.concat " " string_list

 | ERule(name, string_list) -> name ^ " -> " ^ String.concat " "

string_list ^ "\n"

 | FRule(name, fname, params) -> name ^ " = " ^ fname ^ "(" ^

String.concat "," (List.map string_of_expr params) ^ ")" ^ "\n"

 | EmptyFRule(s) -> s ^ " = " ^ "\n"

let string_of_fparam = function

 FParam(dt,s) -> string_of_dt dt ^ " " ^ s

let string_of_lsystem = function

 LSystem(a,s,rl) -> string_of_alphabet a ^ "\n" ^string_of_lambdarule

s ^ "\n" ^ String.concat "" (List.map string_of_rule rl)

let string_of_dfunc (func) =

 "Function name : " ^ func.name ^ "\n" ^

 "Formal Parameter(s) : " ^ String.concat "," (List.map string_of_fparam

func.formal) ^ "\n" ^

 "LSystem: " ^ "\n" ^ string_of_lsystem func.rules

let string_of_fdecl = function

 | CFunc(fdecl) ->

 "\ndef compute " ^ fdecl.fname ^ "(" ^ String.concat ", "

(List.map string_of_fparam fdecl.formals) ^ ") {\n" ^

 String.concat "" (List.map string_of_vdecl fdecl.locals) ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 "}\n"

 | DFunc(fdecl) -> "\ndef draw " ^ fdecl.name ^ "(" ^ String.concat ", "

(List.map string_of_fparam fdecl.formal) ^ ") {\n" ^

 string_of_lsystem fdecl.rules ^ "}\n"

let string_of_program (funcs) = String.concat "\n" (List.map string_of_fdecl

funcs)

semantic.ml
open Ast

open Str

open LSystemstd

type var_table = {

 variables : Ast.vdecl list;

 }

type env = {

 mutable functions : func list ;

 variables : vdecl list;

Appendix A: Code Listing LSystem

66 | P a g e

}

(*determines if the given function exists*)

let exists_function func env =

 match func with

 DFunc(func) -> begin

 try

 let _ = List.find (fun(f) ->

 match f with

 | DFunc(f) -> f.name = func.name

 | CFunc(f) -> f.fname = func.name) env.functions in

 let e = "Duplicate function name : " ^ func.name ^ "\n" in

 (*throw error on duplicate func.*)

 raise(Failure e) with Not_found -> false

 end

 | CFunc(func) -> try let _ =

 List.find (fun(f) ->

 match f with

 | DFunc(f) -> f.name = func.fname

 | CFunc(f) -> f.fname = func.fname) env.functions in

 let e = "Duplicate function name : " ^ func.fname ^ "\n" in

 (*throw error on duplicate func.*)

 raise(Failure e) with Not_found -> false

let print_function_list flist =

 List.map(fun(f) ->

 match f with

 | DFunc(f) -> let nm = f.name in

print_endline ("DFunc:" ^nm)

 | CFunc(f) -> let nm = f.fname in

print_endline ("CFunc:" ^nm)

) flist

(*Determine if a function with given name exists*)

let exists_function_name name env =

 try

 let _ = List.find (fun(f) -> match f with

 | DFunc(f) -> f.name = name

 | CFunc(f) -> f.fname = name

) env.functions in

 true (*Found a function with name like that*)

 with Not_found -> false

(*Returns the function that has the given name*)

let get_function_name name env =

 try

 let afunc = List.find (fun(f) -> match f with

 | DFunc(f) -> f.name = name

 | CFunc(f) -> f.fname = name

) env.functions in

 afunc (*Found a function with name like that*)

 with Not_found -> raise(Failure("Function " ^ name ^ "has not yet been

declared"))

(*Exists function when func == CFunc *)

let cexists_function func env =

Appendix A: Code Listing LSystem

67 | P a g e

 try

 let _ = List.find (fun(f) -> match f with

 | DFunc(f) -> f.name = func.fname

 | CFunc(f) -> f.fname = func.fname

) env.functions in

 let e = "Duplicate function name : " ^

func.fname ^ "\n" in

 raise(Failure e) (*throw

error on duplicate func.*)

 with Not_found -> false

(*Determines if a formal paramter with the given name 'fpname' exits in the

given function*)

let exists_formal_param func fpname =

 match func with

 | DFunc(func) -> false(*to be implemented*)

 | CFunc(func) -> try

 let _ =

List.find(fun(fp) -> let FParam(_,cn) = fp

 in cn

= fpname

) func.formals in

 true (*we're able to find a formal paramter*)

 with Not_found -> false (*no formal parameter found in

the function*)

(*this is for compute functions only*)

let cexists_formal_param func fpname =

 try

 let _ = List.find(fun(fp) -> let FParam(_,cn)

= fp

 in cn = fpname

) func.formals in

 true (*we're able to

find a formal paramter*)

 with Not_found -> false (*no formal parameter found in the

function*)

(*for computing functions only*)

let cexists_variable_decl func vname =

 try

 let _ = List.find(fun(fp) -> let VDecl(_,vn,_) = fp

 in vn = vname

) func.locals in

 true (*we're able to find a

variable*)

 with Not_found -> false (*no variable declaration - found in the

function*)

Appendix A: Code Listing LSystem

68 | P a g e

(*Determines if a variable declaration with the given name 'vname' exists in

the given functioin*)

let exists_variable_decl func vname =

 match func with

 | DFunc(func) -> false(*to be implemented*)

 | CFunc(func) -> try

 let _ =

List.find(fun(fp) -> let VDecl(_,vn,_) = fp

 in vn

= vname

) func.locals in

 true (*we're able to find a variable*)

 with Not_found -> false (*no variable declaration -

found in the function*)

(*this gets formal paramters for COMPUTE function*)

let get_cfparam_type func fpname =

 try

 let fparam = List.find(fun(fp) -> let FParam(_,cn) = fp

 in cn = fpname

)

func.formals in

 let FParam(dt,_) = fparam

 in dt (*return the data

type*)

 with Not_found -> raise (Failure ("Formal Parameter " ^ fpname ^ " should

exist but was not found in compute function " ^ func.fname)) (*this shouldn't

not happen*)

(*gets the variable type - only for COMPUTE functions*)

let get_var_type func vname =

 try

 let var = List.find(fun(v) -> let VDecl(_,vn,_) = v

 in vn = vname

) func.locals in

 let VDecl(dt,_,_) = var

 in dt (*return the data type*)

 with Not_found -> raise (Failure ("Variable " ^ vname ^ " should

exist but was not found in compute function " ^ func.fname)) (*this shouldn't

not happen*)

(*Returns the type of a given variable name *)

let get_type func name =

 if(cexists_variable_decl func name) (*It's a variable*)

 then get_var_type func name

 else

Appendix A: Code Listing LSystem

69 | P a g e

 if (cexists_formal_param func name) then

 get_cfparam_type func name

 else (*Variable has not been declared as it was not found*)

 let e = "Variable " ^ name ^ " is being used without

being declared in function " ^ func.fname in

 raise (Failure e)

 (* not needed

 | DFunc(func) -> let e = "function get_type called on

a draw function function " ^ func.name ^ " which is not allowed\n" in

raise (Failure e)*)

(*Determines if the given identiifier exists*)

let exists_id name func =

 if(cexists_variable_decl func name) (*It's a variable*)

 then true

 else

 if (cexists_formal_param func name) then

 true

 else (*Variable has not been declared as it was not found*)

 false

(*determines if the given compute function collides with a number of another

function*)

(*let exists_CFunction func env =

 try

 let _ = List.find (fun(f) -> match f with

 | DFunc(f) -> f.name = func.fname

 | CFunc(f) -> f.fname = func.fname

) env.functions in true (*return true on

success*)

 with Not_found -> print_endline "notfound\n"; false (*return

false on failure*)

*)

(*see if there is a function with given name "func"*)

let find_function func env =

 try

 let _ = List.find (fun(f) -> match f with

 |

DFunc(f) -> f.name = func

 |

CFunc(f) -> f.fname = func

) env.functions in true (*return true on success*)

 with Not_found -> raise Not_found

let dup_fparam func =

 match func with

 | DFunc(func) -> let length = List.length func.formal in

 if(length = 1) then (*must have 1

arguments*)

 let _isvalid = List.map(

 fun(x) -> let

Appendix A: Code Listing LSystem

70 | P a g e

FParam(t,_) = x in match t with

 | IntType -> false

 | _ ->

raise(Failure("Formal parameter type for draw function must be an int"))

) func.formal in false

 else

 raise(Failure("Draw function '"^ func.name ^"' must have only 1 formal

parameters but it has " ^ string_of_int length ^ " params"))

 | CFunc(func) -> let isdup f = List.fold_left(

 fun c x ->

 let FParam(_,my_name) = f and FParam(_,curr_name) = x

in

 if (c = 0 && my_name = curr_name) then c + 1

 else

 if (c = 1 && my_name = curr_name) then

(*found a 2nd dup match*)

 let e = "Duplicate formal parameter in

function : " ^ func.fname ^ "\n" in

 raise(Failure e) (*throw error on duplicate

formal parameter.*)

 else c

) 0 func.formals

 in let _ =

List.map(isdup) func.formals

 in false

(*This check for duplicate formal parametersin COMPUTE function*)

let cdup_fparam func =

 let isdup f = List.fold_left(

 fun c x ->

 let FParam(_,my_name) = f and FParam(_,curr_name) = x

in

 if (c = 0 && my_name = curr_name) then c + 1

Appendix A: Code Listing LSystem

71 | P a g e

 else

 if (c = 1 && my_name = curr_name) then

(*found a 2nd dup match*)

 let e = "Duplicate formal parameter in

function : " ^ func.fname ^ "\n" in

 raise(Failure e) (*throw error on duplicate

formal parameter.*)

 else c

) 0 func.formals

 in let _ = List.map(isdup) func.formals

 in false

(*checks if there is a duplicate variable declaration for COMPUTE functions*)

let dup_vdecl func =

 match func with

 | DFunc(func) -> false

 | CFunc(func)->

 let isdup var = List.fold_left(

 fun c x ->

 let VDecl(mdt,mn,_) = var

 and VDecl(tdt,tn,_) = x in

 if (c = 0 && (mn) = (tn)) then c + 1

 else

 if (c = 1 && (mn) = (tn)) then

(*found a 2nd dup match*)

 let e =

"Duplicate variable declaration '"^ mn ^"' in compute function : " ^

func.fname in

 raise(Failure e) (*throw error on

duplicate formal parameter.*)

 else c

) 0 func.locals

Appendix A: Code Listing LSystem

72 | P a g e

 (*check if

the given variable decl. name has already been declared in the formal

paramters*)

 in let _ =

List.map(

 fun(x) -> List.map(

 fun(y) ->

let FParam(_,formal_nm) = y

 and VDecl(_,varname,_) = x

 in if (formal_nm = varname) then

 let e = "Redeclaration of formal

parameter '" ^ formal_nm ^"' not allowed in function : " ^ func.fname ^"\n"

 in raise(Failure e)

 else false

)

func.formals

)

func.locals

 in

 let _ =

List.map(isdup) func.locals (*see if we have duplicate var names*)

 in false

let is_int s =

 try ignore (int_of_string s); true

 with _ -> false

let is_float s =

 try ignore (float_of_string s); true

 with _ -> false

Appendix A: Code Listing LSystem

73 | P a g e

let is_letter s =

 let regex = regexp "[A-Za-z]" in (*Make any string that starts with a

double quotes and ends with one*)

 let str = "|" ^s ^"|" in

 print_endline str; string_match regex s 0

(*Function that checks if given input is a string. Used to make sure that an

expression is indeed of type string

It does this by just checking if the first character and the last character

are all the same and that they equal

a single double quote. This check is sufficient because the parse will reject

any streams of character which do not

make a valid string literal.*)

let is_string s =

 let l = String.length s in

 let last_idx = l - 1 in

 let first_char = String.sub s 0 1 and

 last_char = String.sub s last_idx 1 in

 match first_char,last_char with

 | "\"" , "\""-> true (*check that 1st char = last char = double

quote*)

 | _ -> false

(*continue from here

let rec is_bool s =

 match s with

 | BVal(s) ->

 | RExpr(s) ->

 | EEXpr(s) ->

 | BExpr(s) ->

 | _ -> false

*)

let is_string_bool s =

 match s with

 | "true" -> true

 | "false" -> true

 | _ -> false

(*check if variable declation is valid*)

let valid_vdecl func =

 match func with

 | DFunc(func) -> false

 | CFunc(func) ->

 let _ = List.map(

 fun(v) ->

 let

VDecl(dt,nm,value) = v in

Appendix A: Code Listing LSystem

74 | P a g e

 let e = "Invalid

variable declaration for '" ^ nm ^ "' in compute function " ^ func.fname ^

"\n" in

 let be = e ^ "The

Only allowed values for initializing boolean values is 'true' or 'false' \n"

 in match dt

with

 |

StringType -> if (is_string value) then true

else raise (Failure e)

 |

DoubleType -> if ((is_float value)) then true

 else raise (Failure e)

 |

IntType -> if (is_int value) then true

else raise(Failure e)

 |

BooleanType -> if (is_string_bool value) then true

else raise (Failure be)

) func.locals

 in true

let rec is_num func expr =

 match expr with

 | Literal(i) -> true

 | Float(f) -> true

 | Id(s) -> let dt = get_type func s in

 begin

 match dt with

 | IntType -> true

 | DoubleType ->

true

 | _ -> false

 end

 | Binop(e1,op,e2) -> let b1 = is_num func e1 and

 b2 = is_num func e1 in

 b1 && b2

 | Call(name,expr) -> raise (Failure "TBI") (*to be implemented*)

 | _ -> false

Appendix A: Code Listing LSystem

75 | P a g e

let rec get_expr_type e func =

 match e with

 | String(s) -> StringType

 | Id(s) -> get_type func s

 | Literal(i) -> IntType

 | Float(f) -> DoubleType

 | Boolean(b) -> BooleanType

 | Binop(e1,op,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

match t1,t2 with

 | DoubleType,DoubleType -> DoubleType

 | DoubleType,IntType -> DoubleType (*Upconvert to double type*)

 | IntType,DoubleType -> DoubleType (*Upconvert to double type*)

 | IntType,IntType -> IntType

 | _,_ -> raise (Failure ("Invalid Types used in a binop expression"))

 end

 | Assign(id,expr) -> get_expr_type expr func

 | Call(fname,expr) -> DoubleType (*function calls return double*)

 | BVal(b) -> BooleanType

 | RExpr(e1,rop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

begin

 match t1,t2 with

 | DoubleType,DoubleType -> BooleanType

 | DoubleType,IntType -> BooleanType

 | IntType,DoubleType -> BooleanType

 | IntType,IntType -> BooleanType

 | _,_ -> raise(Failure("Invalid Types used in a relational

expression"))

 end

 | EExpr(e1,eop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

 match t1,t2 with

 | DoubleType,DoubleType -> BooleanType

 | DoubleType,IntType -> BooleanType

Appendix A: Code Listing LSystem

76 | P a g e

 | IntType,DoubleType -> BooleanType

 | IntType,IntType -> BooleanType

 | StringType,StringType -> BooleanType (*can do string

comparisons*)

 | BooleanType,BooleanType -> BooleanType (*can compare bool

values*)

 | _,_ -> raise(Failure("Invalid Types used in a equality

expression"))

 end

 | BExpr(e1,bop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

 match t1,t2 with

 | BooleanType,BooleanType -> BooleanType

 | _,_ -> raise(Failure("Invalid Types used in a boolean compound

expression"))

 end

 | _ -> IntType (*should not happen - added this to turn off compiler

warnings about incomplete matching for Noexpr*)

(*Checks if the given expression is a valid assignment / call expression*)

let is_assign_call func expr =

 match expr with

 | Assign(_,_) -> true

 | Call(_,_) -> true

 | _ -> false

(*Makes sure that the given arguments in a function call match the function

signature*)

(*fname of function being called*)

(*exprlist - list of expr in funcation call*)

(*cfucn- compute function*)

(*env - the enviroment*)

let check_types fname exprlist cfunc env =

 let func = get_function_name fname env in

 begin

 match func with

 | DFunc(func) -> 0 (*still to be implemented*)

 | CFunc(func) ->

Appendix A: Code Listing LSystem

77 | P a g e

 let arg_types = List.map(fun(e) -> get_expr_type e

cfunc) exprlist in

 if((List.length arg_types) != (List.length

func.formals)) then (*number of args don't match up*)

 raise(Failure("Number of arguments in a function call don't match up in

compute function " ^ func.fname))

 else

let check_arg c arg_type = (*c is the counter, arg_type is type of actual

parameters. meant to be used in the list.foldleft *)

 let formal_param = List.nth func.formals c in

 let FParam(formal_type,_) = formal_param in

 begin

 match formal_type,arg_type with

 | DoubleType, DoubleType -> c + 1

 |

DoubleType, IntType -> c + 1

 | IntType, IntType -> c + 1

 | StringType, StringType -> c+1

 | BooleanType, BooleanType -> c+1

 | _,_ -> raise(Failure("Types don't match in call

expression " ^ fname ^ " in the compute function " ^ cfunc.fname))

end

 in

List.fold_left (check_arg) 0 arg_types

 end

let rec valid_expr (func : Ast.func_decl) expr env =

 match expr with

 | Literal(i) -> true

 | Float(f) -> true

 | Boolean(b) -> true

 | String(s) -> true

 | Id(s) -> if(exists_id s func) then true else raise(Failure

("Undeclared identifier " ^ s ^ " is used"))

 | Binop(e1,op,e2) -> let r1 = is_num func e1

 and

r2 = is_num func e2 in

Appendix A: Code Listing LSystem

78 | P a g e

 r1

&& r2

 | Assign(id, e1) -> if(exists_id id func) then

 let dt = get_type func id and

 _ = valid_expr func e1 env and

 exprtype = get_expr_type e1 func

 in match dt,exprtype with

 | StringType,StringType -> true

 | IntType,IntType -> true

 | DoubleType,DoubleType -> true

 | DoubleType,IntType -> true (*allow int to double conversion*)

 | BooleanType,BooleanType -> true

 | IntType,DoubleType -> raise(Failure ("Cannot assign a double to

an int"))

 | _,_ -> raise(Failure ("DataTypes do not match up in an

assignment expression to variable " ^ id))

 else

 raise(Failure ("Undeclared identifier " ^ id ^ " is used"))

 (*Call check has not yet been fully implemented*)

 | Call(fname, exprlist) -> if(exists_function_name fname env)

then

 let _has_valid_exprs = List.map(fun(e) -> valid_expr func e

env) exprlist in

 let _checktypes = check_types fname exprlist func

env (*check that the types match up otherwise throws an error *)

 in

 true

 else

 (if List.mem fname LSystemstd.func_names then (*It's a

standard library function call*)

 true (*STILL TO DO: checking of std lib functions *)

 else

Appendix A: Code Listing LSystem

79 | P a g e

 raise(Failure ("Undefined function : " ^ fname ^ " is

used"))

)

 | BVal(b) -> true

 | RExpr(e1,rop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

 match t1,t2 with

 | DoubleType,DoubleType -> true

 | DoubleType,IntType -> true

 | IntType,IntType -> true

 | IntType,DoubleType -> true

 | _,_ -> raise(Failure("Invalid Types used in a relational

expression"))

 end

 | EExpr(e1,eop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

 match t1,t2 with

 | DoubleType,DoubleType -> true

 | DoubleType,IntType -> true

 | IntType,IntType -> true

 | IntType,DoubleType -> true

 | StringType,StringType -> true

 | BooleanType,BooleanType -> true

 | _,_ -> raise(Failure("Invalid Types used in an equality

expression"))

 end

 | BExpr(e1,bop,e2) -> let t1 = get_expr_type e1 func and

 t2 = get_expr_type e2 func in

 begin

 match t1,t2 with

 | BooleanType,BooleanType -> true

Appendix A: Code Listing LSystem

80 | P a g e

 | _,_ -> raise(Failure("Invalid Types used in a boolean compound

expression"))

 end

 | _ -> false(*should not happen - added this to turn off compiler

warnings about incomplete matching for Noexpr*)

(*Returns alphabet list from the draw function*)

let get_alphabet_list func =

 let LSystem(alphabet,lambda,rlist) = func.rules in

 let Alphabet(alphabet_list) = alphabet in

 alphabet_list

(*Check to make sure that alphabet has no repeating letters*)

let valid_alphabet alphabet func =

 let Alphabet(alphabet_list) = alphabet in

 let isdup letter = List.fold_left(

 fun c curr_letter ->

if (c = 0 && letter = curr_letter) then c + 1

 else

 if (c = 1 && letter = curr_letter) then

(*found a 2nd duplicate match*)

 let e = "Duplicate alphabet letters '"

^ letter ^ "' in function : " ^ func.name ^ "\n" in

 raise(Failure e)

 else c

) 0 alphabet_list

 in

 let _ensure_no_dups = List.map(isdup) alphabet_list in

 let valid_letters = List.for_all (is_letter) alphabet_list

in

 match valid_letters with

 | true -> true

 | false -> raise(Failure("Invalid letters used in

alphabet of drawing function " ^ func.name))

(*Check if given symbol exists in alphabet*)

let exists_in_alphabet letter alphabet_list =

 try

 let _ = List.find (fun(x) -> x = letter) alphabet_list in

 true

 with Not_found -> false

(*check if given symbol is in the standary library symbol of 'l r f'*)

let is_std_symbol s =

 try

 let _ = List.find (fun(x) -> x = s) LSystemstd.std_symbols in

 true

 with Not_found -> false

(*Check if the given letter exists in alphabet or is part of the 'l r f'

standard library symbols*)

let valid_symbol letter func =

 let in_alphabet = exists_in_alphabet letter (get_alphabet_list func)

Appendix A: Code Listing LSystem

81 | P a g e

and

 is_std_symbol = is_std_symbol letter in

 match in_alphabet,is_std_symbol with

 | true,_ -> true

 | _,true -> true

 | false,false -> false

let valid_rule rule func =

 match rule with

 | Lambda(string_list) -> let ok = List.for_all(fun(x) -> valid_symbol

x func) string_list in

 if(ok) then

 let _ = print_endline "lambda OKAY" in true

 else

 raise(Failure("Lambda rule has an invalid character

that has not been declared in the alphabet"))

 | ERule(name, string_list) -> if(valid_symbol name func) then

 let ok = List.for_all(fun(x)

-> valid_symbol x func) string_list in

 if(ok) then

 true

 else

 raise(Failure("ERule

'"^ name ^"' has an invalid character that has not been declared in the

alphabet"))

 else

 raise(Failure("ERule symbol '"^ name

^"' is not in the alphabet"))

 | FRule(name, fname,string_list) ->true (*to do*)

 | EmptyFRule(name) -> if (valid_symbol name func)

then

 true

 else

 raise(Failure("Empty FRule symbol '"^ name ^"' is not in the

alphabet"))

(*validates the lsystem in a draw funciton*)

let validate_lsystem func env =

 let LSystem(alphabet,lambda,rlist) = func.rules in

 let _validate_alphabet = valid_alphabet alphabet func in

 let _valid_lambda = valid_rule lambda func in

 let _valid_rules = List.map(fun(x) -> valid_rule x func) rlist

 in

 true

Appendix A: Code Listing LSystem

82 | P a g e

(*Checks the body of a compute function *)

let valid_body func env =

 match func with

 | DFunc(func) -> validate_lsystem func env

 | CFunc(func) ->

 let rec check_stmt st =

 begin

 match st with

 (*the 'block' will only occur in if and while condition

loop. *)

 | Block(st_list) -> let _ = List.map(fun(x) -> check_stmt

x) st_list (*Check statements in the block. Err will be thrown for an invalid

stmt*)

 in true

 | Expr(st) -> let vldexpr = valid_expr func st env and

(*make sure the expression is valid expression*)

 assign_call =

is_assign_call func st in

 begin

 match

vldexpr,assign_call with (*The expression MUST be valid and also an

assignment/call expression. Can't have '1;' as a stmt expr alone *)

 |

true,true -> true

 |

true,false -> raise(Failure ("Invalid expression (No var assignment) in

function " ^func.fname ^ "\n"))

 |

false,_ -> raise(Failure ("Invalid assignment expression in function "

^func.fname ^ "\n"))

 end

 | Return(st) -> let ret = get_expr_type st func in

 begin

 match ret with

Appendix A: Code Listing LSystem

83 | P a g e

 | DoubleType -> true

 | IntType -> true

 | _ -> raise(Failure("return type is not double

in compute function " ^ func.fname ^ ". It is of type :" ^ (string_of_dt

ret)))

 end

 | If(predicate,stmt1,stmt2) -> let pred_type =

get_expr_type predicate func and

 ve1 = check_stmt stmt1 and

 ve2 = check_stmt stmt2 in

 let _vpred = (*Check predicate*)

 begin

 match pred_type with

 | BooleanType -> true

 | _ ->

raise(Failure("predicate expression must be a valid boolean expression that

evaluates to true/false"))

 end

 in

 begin match ve1,ve2 with

 | true, true -> true

 | _ , _ -> raise(Failure("Invalid expression used in if

statement in compute function " ^ func.fname ^ "\n"))

Appendix A: Code Listing LSystem

84 | P a g e

 end

 | For(_,_,_,_) -> let e = "For loop are not allowed in

function" ^ func.fname ^ "\n" in

 raise (Failure e) (*don't have to worrty about this case b'se parser

will give parse error for 'for loops'.*)

 | While(pred,stmts) -> let isvalid = check_stmt stmts in

(*need to test*)

 begin

 match isvalid with

 | true -> true

 | false -> raise

(Failure ("Invalid statement found inside while loop in compute function "

^func.fname ^"\n"))

 end

 end

 in

 let _ =

List.map(check_stmt) func.body

 in true

(*Check a Compute Function. *)

(* The type of function 'f' passed however should be of type *)

(* Ast.func This is so that we can easily add functions to environment*)

(* and avoid having fields for Cfunctions and Dfunctions separately. *)

let check_cfunc f env =

 let dup_fname = exists_function f env

 in

 let dup_formals = dup_fparam f

 in

 let vlocals = (not (dup_vdecl f)) && (valid_vdecl f) (*make sure that

we've no dup variable names, and data types match up*)

 in

 let vbody = valid_body f env

 in

 let _ = env.functions <- (f) :: env.functions (*add function name to

environment *)

 in (not dup_fname) && (not dup_formals) && vlocals && vbody

Appendix A: Code Listing LSystem

85 | P a g e

let check_dfunc f env =

 let dup_fname = exists_function f env in

 let dup_formals = dup_fparam f in

 let vbody = valid_body f env in

 let _ = env.functions <- (f) :: env.functions (*add function name to

environment *)

 in

 (not dup_fname) && (not dup_formals) && vbody

let valid_func env f = match f with

 CFunc(f) -> print_endline ("checking cf:" ^ f.fname); let afunc =

CFunc(f) in check_cfunc afunc env

 | DFunc(f) -> print_endline ("checking df:"^f.name); let afunc =

DFunc(f) in check_dfunc afunc env

(*

let valid_func a b = match b with

 | CFunc(x) -> print_endline "hello\n"*)

(*Checks to make sure that the main function exists and is a compute

function*)

let exists_main env =

 if(exists_function_name "main" env) then

 let func_type = get_function_name "main" env in

 match func_type with

 | CFunc(func_type) -> true

 | DFunc(func_type) -> raise(Failure("main function must be a

compute function. "))

 else

 raise(Failure("Compute function 'main' does not exist !"))

let check_program flist =

 let (environment : env) = { functions = [] ; variables = [] } in

 let _dovalidation = List.map (fun(f) -> valid_func environment f)

flist in (*Do the semantic analysis*)

 let _mainexists = exists_main environment (*ensure that a main function

exists*)

 in

 "\nSuccess !\n"

compile.ml
(* Primary Author: Ethan Hann (eh2413) *)

open Ast

open LSystemstd

open Str

exception RedeclarationOfStandardFunctionNotAllowedError

Appendix A: Code Listing LSystem

86 | P a g e

module StringMap = Map.Make(String);;

let get_prod fname = function

 Lambda(symbols) -> " " ^ fname ^ ".addProduction(\"lambda\",

\"" ^ (String.concat "," symbols) ^ "\");\n"

 | ERule(name, symbols) -> " " ^ fname ^ ".addProduction(\"" ^

name ^ "\", \"" ^ (String.concat "," symbols) ^ "\");\n"

 | _ -> ""

let get_term fname = function

 FRule(symbol, command, param) -> " " ^ fname ^

".addTerminal(\"" ^ symbol ^ "\", new Command(" ^ (String.uppercase command)

^ ", " ^ (string_of_expr (List.hd param)) ^ "));\n"

 | _ -> ""

let translate fname rule = match rule with

 Lambda(_) -> get_prod fname rule

 | ERule(_,_) -> get_prod fname rule

 | FRule(_,_,_) -> get_term fname rule

 | _ -> ""

let draw_fdecl fdecl =

 if List.mem fdecl.name LSystemstd.func_names then

 raise RedeclarationOfStandardFunctionNotAllowedError

 else

 let fname = fdecl.name in

 let fun_sig = " Function " ^ fname ^ " = new

Function(\"" ^ fname ^ "\");\n" in

 let lsys = fdecl.rules in match lsys with

 LSystem(alphabet, lambda, rules) -> fun_sig ^

(translate fname lambda) ^ (String.concat "" (List.map (function rule ->

translate fname rule) rules))

let translate_compute_fdecl fdecl =

 if List.mem fdecl.fname LSystemstd.func_names then

 raise RedeclarationOfStandardFunctionNotAllowedError

 else

 let fun_sig =

 match fdecl.fname with

 "main" -> LSystemstd.std_render_signature

 | _ -> " public double " ^ fdecl.fname ^ "(" ^

String.concat ", " (List.map string_of_fparam fdecl.formals) ^ "){\n" in

 fun_sig ^ " " ^

 String.concat " " (List.map string_of_vdecl

fdecl.locals) ^

 String.concat " " (List.map string_of_stmt

fdecl.body) ^

 " }\n"

(* Call the appropriate translation function depending on type of function.

*)

let translate_fdecl = function

 CFunc(fdecl) -> translate_compute_fdecl fdecl

| DFunc(fdecl) -> draw_fdecl fdecl

let get_dfuncs = function DFunc(fdecl) -> draw_fdecl fdecl | _ -> ""

Appendix A: Code Listing LSystem

87 | P a g e

let get_cfuncs = function CFunc(fdecl) -> translate_compute_fdecl fdecl | _ -

> ""

let get_dcalls = function DFunc(fdecl) -> let name = fdecl.name in "

 public void " ^ name ^ "(int depth){\n" ^ " draw(\"" ^ name ^

"\", depth);\n }\n" | _ -> ""

let translate funcs prog_name verbose testmode =

 let out_chan = open_out (prog_name ^ ".java") in

 let translated_prog =

 LSystemstd.std_turtle1 ^ (if testmode then "true;" else

"false;") ^ LSystemstd.std_turtle2 ^ prog_name ^ LSystemstd.std_turtle3 ^

 "public class " ^ prog_name ^ " extends Turtle {\n" ^

global_replace (Str.regexp "CLASSNAME") prog_name LSystemstd.std_main ^

 " public " ^ prog_name ^ "(){\n" ^ String.concat ""

(List.map get_dfuncs funcs) ^ " execute();\n scale(1);\n

 }\n" ^

 String.concat "" (List.map get_cfuncs funcs) ^

 String.concat "" (List.map get_dcalls funcs) ^ "}\n"

 in

 let proc_status = ignore(Printf.fprintf out_chan "%s"

translated_prog);

 close_out out_chan;

 Sys.command (Printf.sprintf "javac %s.java"

prog_name) in

 match proc_status with

 0 -> if verbose

 then

translated_prog ^ "\nCompilation successful\n"

 else "Compilation

successful\n"

 | _ -> "\nCompilation of Java bytecode

unsuccessful!\n" ^

 Printf.sprintf "Javac Process

Return Code: %i\n" proc_status ^

 Printf.sprintf "Compilation

Command: javac %s.java\n" prog_name

lsystemstd.ml
(* Primary Author: Timothy Sun (ts2578) *)

(* I'm going to say that most of the Java code's mine. :P -Tim *)

(* Standard java functions. *)

let std_main = " public static void main(String[] args){

 JFrame j = new JFrame();

 CLASSNAME cn = new CLASSNAME();

 JScrollPane jsp = new JScrollPane(cn.jta);

 jsp.setPreferredSize(new Dimension(DEFAULT+2,100));

 j.add(cn, BorderLayout.CENTER);

 j.add(jsp, BorderLayout.PAGE_END);

Appendix A: Code Listing LSystem

88 | P a g e

 j.pack();

 j.setTitle(\"L-System: CLASSNAME\");

 j.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 j.setVisible(true);

 }

"

let std_render_signature = " public void execute(){\n"

(* Standard Turtle functions for drawing. *)

let std_turtle1 =

"import java.awt.*;

import javax.swing.*;

import java.util.*;

import java.io.*;

import java.awt.image.BufferedImage;

class Turtle extends JPanel {

 public static final int EMPTY = -1;

 public static final int FORWARD = 0;

 public static final int TURN = 1;

 public static final int DOWN = 2;

 public static final int UP = 3;

 public static final int SETX = 4;

 public static final int SETY = 5;

 public static boolean testing = "

let std_turtle2 = "

 public static int DEFAULT = testing ? 100 : 400;

 private double x = 0;

 private double y = 0;

 private int height;

 private int width;

 public JTextArea jta;

 private double angle;

 private boolean down;

 private BufferedImage bi;

 private ArrayList<double[]> lines;

 public HashMap<String, Function> functions;

 public Turtle(){

 this(DEFAULT+2,DEFAULT+2,0);

 }

 public Turtle(int w, int h, double angle){

 setPreferredSize(new Dimension(w,h));

 height = h;

 width = w;

 this.angle = angle;

 this.down = true;

 jta = new JTextArea(5,20);

 jta.setEditable(false);

 setDoubleBuffered(true);

 lines = new ArrayList<double[]>();

 functions = new HashMap<String, Function>();

 }

 public class Function {

 public Function(String name){

 functions.put(name, this);

Appendix A: Code Listing LSystem

89 | P a g e

 terms = new HashMap<String, Command>();

 prods = new HashMap<String, String[]>();

 terms.put(\"f\", new Command(FORWARD,1));

 terms.put(\"l\", new Command(TURN,-90));

 terms.put(\"r\", new Command(TURN,90));

 }

 public void addTerminal(String symbol, Command command){

 terms.put(symbol, command);

 }

 public void addProduction(String symbol, String expansion){

 prods.put(symbol, expansion.split(\",\"));

 }

 public boolean hasTerminal(String symbol){

 return terms.containsKey(symbol);

 }

 public boolean hasProduction(String symbol){

 return prods.containsKey(symbol);

 }

 public Command getTerminal(String symbol){

 return terms.get(symbol);

 }

 public String[] getProduction(String symbol){

 return prods.get(symbol);

 }

 HashMap<String, Command> terms;

 HashMap<String, String[]> prods;

 }

 public class Command {

 public Command(){

 this(EMPTY);

 }

 public Command(int command){

 this(command, 0);

 }

 public Command(int command, int param){

 this.command = command;

 this.param = param;

 }

 int command;

 double param;

 }

 public void turtle(Command c){

 switch (c.command){

 case FORWARD: forward(c.param); break;

 case TURN: turn(c.param); break;

 case DOWN: down(); break;

 case UP: up(); break;

 case SETX: setX(c.param); break;

 case SETY: setY(c.param); break;

 default: break;

 }

 }

 public double[] getDim(){

 double minx = Double.MAX_VALUE, miny = Double.MAX_VALUE;

 for (double[] line : lines){

 if (minx > line[0] || minx > line[2])

Appendix A: Code Listing LSystem

90 | P a g e

 minx = Math.min(line[0],line[2]);

 if (miny > line[1] || miny > line[3])

 miny = Math.min(line[1],line[3]);

 }

 for (double[] line : lines){

 line[0] -= minx;

 line[1] -= miny;

 line[2] -= minx;

 line[3] -= miny;

 }

 double maxx = Double.MIN_VALUE, maxy = Double.MIN_VALUE;

 for (double[] line : lines){

 if (maxx < line[0] || maxx < line[2])

 maxx = Math.max(line[0],line[2]);

 if (maxy < line[1] || maxy < line[3])

 maxy = Math.max(line[1],line[3]);

 }

 return new double[]{maxx+1, maxy+1};

 }

 public void scale(double factor){

 double[] dim = getDim();

 double trueScale = factor*Math.min(width/dim[0],height/dim[1]);

 bi = new BufferedImage(width+1, height+1,

BufferedImage.TYPE_INT_RGB);

 Graphics g = bi.getGraphics();

 g.setColor(Color.WHITE);

 g.fillRect(0, 0, width, height);

 g.setColor(Color.BLACK);

 for (double[] line : lines)

 g.drawLine((int)(line[0]*trueScale),

(int)(line[1]*trueScale), (int)(line[2]*trueScale),

(int)(line[3]*trueScale));

 if (testing){

 try {

 String output = \"\";

 for (int x = 0; x < width; x++){

 for (int y = 0; y < height; y++)

 output += bi.getRGB(x,y) == -1 ? \"1\" :

\"0\";

 output += \"\\n\";

 }

 PrintWriter pw = new PrintWriter(new File(\""

let std_turtle3 =

".txt\"));

 pw.write(output);

 pw.close();

 }

 catch (Exception e){ e.printStackTrace(); }

 System.exit(1);

 }

 }

 public void paintComponent(Graphics g){

 if (height != getHeight() || width != getWidth()){

 height = getHeight();

 width = getWidth();

Appendix A: Code Listing LSystem

91 | P a g e

 scale(1);

 }

 super.paintComponent(g);

 g.drawImage(bi, 1, 1, Color.WHITE, this);

 }

 public void draw(String name, int depth){

 draw(functions.get(name), depth, \"lambda\");

 }

 public void draw(Function f, int depth, String symbol){

 if (depth == -1){

 if (f.hasTerminal(symbol))

 turtle(f.getTerminal(symbol));

 }

 else {

 String[] production = f.getProduction(symbol);

 for (String term : production){

 if (f.hasProduction(term))

 draw(f, depth-1, term);

 else if (f.hasTerminal(term))

 turtle(f.getTerminal(term));

 }

 }

 }

 public void down(){

 down = true;

 }

 public void up(){

 down = false;

 }

 public void forward(double t){

 t = t * 10;

 double nx = x + Math.cos(angle)*t;

 double ny = y + Math.sin(angle)*t;

 if (down)

 lines.add(new double[]{x, y, nx, ny});

 x = nx;

 y = ny;

 }

 public void turn(double deg){

 angle += deg*Math.PI/180.0;

 }

 public void setX(double x){

 this.x = x;

 }

 public void setY(double y){

 this.y = y;

 }

 public void print(String args){

 jta.append(args);

 if (testing) System.out.println(args);

 }

 public void print(int args){

 print(args+\"\");

 }

 public void print(double args){

 print(args+\"\");

Appendix A: Code Listing LSystem

92 | P a g e

 }

 public void print(boolean args){

 print(args+\"\");

 }

}

"

(* A string list of reserved function names in the standard library. *)

let func_names = ["print"; "Turtle"; "down"; "up"; "forward"; "turn";

"paintComponent"; "resetPosition"; "setX"; "setY"]

let std_symbols = ["r"; "l"; "f"] (*Reserved symbols in draw functions*)

let std_lfunc = ["down"; "up"; "turn"; "forward"; "setX"; "setY"] (*Standard

drawing functions callable from draw/compute functions*)

Makefile

Primary Author: Jervis Muindi

OBJS = ast.cmo parser.cmo scanner.cmo lsystemstd.cmo semantic.cmo compile.cmo

lsystem.cmo

TESTS = \

print

TARFILES = Makefile testall.sh scanner.mll parser.mly \

 ast.ml compile.ml lsystem.ml lsystemstd.ml \

 $(TESTS:%=tests/test-%.mc) \

 $(TESTS:%=tests/test-%.out)

lsystem : $(OBJS)

 ocamlc str.cma unix.cma -o lsystem $(OBJS)

.PHONY : test

test : lsystem testall.sh

 ./testall.sh

scanner.ml : scanner.mll

 ocamllex scanner.mll

parser.ml parser.mli : parser.mly

 ocamlyacc parser.mly

%.cmo : %.ml

 ocamlc -c $<

%.cmi : %.mli

 ocamlc -c $<

lsystem.tar.gz : $(TARFILES)

 cd .. && tar czf lsystem/lsystem.tar.gz $(TARFILES:%=lsystem/%)

.PHONY : clean

clean :

 rm -f parser.ml parser.mli scanner.ml testall.log \

 *.cmo *.cmi *.out *.diff *.java *.class *.txt lsystem

Appendix A: Code Listing LSystem

93 | P a g e

Generated by ocamldep *.ml *.mli

ast.cmo:

ast.cmx:

compile.cmo: lsystemstd.cmo ast.cmo

compile.cmx: lsystemstd.cmx ast.cmx

lsystem.cmo: semantic.cmo scanner.cmo parser.cmi compile.cmo ast.cmo

lsystem.cmx: semantic.cmx scanner.cmx parser.cmx compile.cmx ast.cmx

lsystemstd.cmo:

lsystemstd.cmx:

parser.cmo: ast.cmo parser.cmi

parser.cmx: ast.cmx parser.cmi

scanner.cmo: parser.cmi

scanner.cmx: parser.cmx

semantic.cmo: lsystemstd.cmo ast.cmo

semantic.cmx: lsystemstd.cmx ast.cmx

parser.cmi: ast.cmo

test.sh

#!/bin/bash

Primary Author: Michael Eng (mse2124)

#Run this file with the command:

#bash test.sh

#Three phases: Compiles and runs computational test files in Test/, attempts

to compile erroneous test files in Test/Semantic, and compiles, runs, then

validates image output data for test files in Test/Draw.

################################

make

FILES="Test/*.ls"

ACTION="-c"

TESTACTION="-t"

EXECUTABLE="./lsystem"

finalarr=()

echo "---------"

echo "Stage 1: Compiling computational programs in Test directory to Java"

echo "---------"

arr=()

for f in $FILES #Iterate through Test/, compile each

do

 #shortname= ${f:5}

 noex=${f%.ls}

 shortname=${noex:5}

 echo -ne "Compiling $shortname.ls..." #-ne means no newline

 $EXECUTABLE $ACTION $f $TESTACTION

 wait

 if [-e "$shortname.java"]

 then

 echo ""

 else

Appendix A: Code Listing LSystem

94 | P a g e

 arr+=($f)

 finalarr+=($f)

 #echo "Adding $shortname to array"

 fi

done

fails=${#arr[@]}

if [$fails != 0]

then

 echo "${#arr[@]} test file(s) did not compile properly:" #Output list

of files that did not compile to Java as expected

 for var in "${arr[@]}"

 do

 echo "${var}"

 done

else

 echo "All test files compiled properly to Java."

fi

#Check that each output java file has a .class file#

echo "--------"

echo "Stage 2: Checking that each Java file has a corresponding class file"

echo "--------"

FILESF="./*.java" #Change to (pwd)/*.java later?

ACTION="javac "

arr2=()

for f in $FILESF

do

 shortname=${f:2}

 noex=${shortname%.java}

 echo -ne "Checking that $shortname has a corresponding .class file- "

 #$ACTION $shortname

 if [-e "$noex.class"]

 then

 echo "$noex.class exists"

 else

 arr2+=($f)

 finalarr+=($f)

 echo "Error compiling $shortname"

 fi

done

fails2=${#arr2[@]} #output list of files that did not compile from Java to

class files as expected

if [$fails2 != 0]

then

 echo "${#arr2[@]} java file(s) did not compile properly:"

 for var in "${arr2[@]}"

 do

 echo "${var}"

 done

else

 echo "All compiled ls files were compiled to Java class files."

fi

Appendix A: Code Listing LSystem

95 | P a g e

###

#############

#Execute script to start comparing compute test .class files to expected

output for each.#

###

#############

echo "--------"

echo "Stage 3: Executing computational java files and comparing against

expected output:"

echo "--------"

declare -A expected

arr3=()

while read line

do

 IFS='~' read -ra ADDR <<< "$line"

expected["${ADDR[0]}"]="${ADDR[1]}"

 expected+=(["${ADDR[0]}"]="${ADDR[1]}")

done < Test/expected.txt

for x in "${!expected[@]}"

do

 #echo "$x: ${expected["$x"]}"

 if [-e "$x.class"]

 then

 compare=${expected["$x"]}

 if [$x = "longprint"] #Hacky fix. Couldn't embed the newlines

into a line of text in the expected.txt file.

 then

 compare="

n

n

n

n

n

s

w

e

r

t

y

Hello world"

 fi

 echo "----"

 echo "Running $x, expected output is $compare"

 actual=`java $x`

 wait

 rm -f $x.txt

 if ["$actual" != "$compare"]

 then

 echo "Error comparing $x: $actual != $compare"

 arr3+=(Test/$x.ls)

 finalarr+=($x)

 else

 echo "Match for $x: $actual = $compare"

 fi

 else

 echo "$x was not successfully compiled into Java byte code,

Appendix A: Code Listing LSystem

96 | P a g e

skipping it..." #Files in this state were already added to the report in

Stage 2

 fi

done

fails3=${#arr3[@]} #Output list of files that did not execute properly

if [$fails3 != 0]

then

 echo "${#arr3[@]} java file(s) did not execute properly or did not

compile from Java into Java bytecode:"

 for var in "${arr3[@]}"

 do

 echo "${var}"

 done

else

 echo "All computational test files executed as expected."

fi

###

#Attempt to compile files in Semantic subdirectory. They should all generate

compiler errors and not create corresponding java files.#

###

SEMANTICFILES="Test/Semantic/*.ls"

echo ""

echo ""

echo "--------"

echo "Stage 4: Compiling semantic test files, these should all cause compiler

errors and fail to create Java code:"

echo "--------"

SEMANTICACTION="./lsystem -c"

semanticarr=()

for s in $SEMANTICFILES #Iterate through Test/, compile each

do

 #shortname= ${f:5}

 noex=${s%.ls}

 shortname=${noex:14}

 echo -ne "Compiling $shortname.ls..." #-ne means no newline

 $SEMANTICACTION $s

 wait

 if [-e "$shortname.java"]

 then

 echo ""

 echo "$shortname.java exists- test program did not fail as

expected"

 echo ""

 semanticarr+=($s)

 finalarr+=($s)

 else

 echo "Compiler error encountered, program fails as expected."

 #echo "Adding $shortname to array"

 fi

 echo ""

done

Appendix A: Code Listing LSystem

97 | P a g e

semanticfails=${#semanticarr[@]} #Output list of files that did not fail to

compile as expected

if [$semanticfails != 0]

then

 echo "${#semanticarr[@]} test file(s) did not fail properly:"

 for var in "${semanticarr[@]}"

 do

 echo "${var}"

 done

else

 echo "All files failed as expected."

fi

#Clean out generated java and class files

CLEAN="rm *.java"

$CLEAN

CLEAN="rm *.class"

$CLEAN

#Compile files in Draw subdirectory.

#Then run each, get its resulting image bitstring.

#Then compare to an expected bitstring (get from file in subdirectory).#

echo "----------"

echo "Stage 5: Compile and run drawing test classes, compare resulting image

data to expected results"

echo "----------"

FILESF="Test/Draw/*.ls"

arr5=()

arr6=()

arr7=()

for f in $FILESF

do

 shortname=${f:10}

 noex=${shortname%.ls}

 echo "Compiling $shortname..."

 ./lsystem -c $f -t

 wait

 if [-e "$noex.java"]

 then

 echo "$shortname compiled successfully to Java file"

 else

 echo "$shortname failed to compile to a Java file"

 arr5+=($f)

 fi

 if [-e "$noex.class"]

 then

 echo "$shortname compiled successfully to an executable class

file"

 else

 echo "$shortname failed to compile into a class file"

 arr6+=($f)

 fi

Appendix A: Code Listing LSystem

98 | P a g e

 java $noex

 wait

 if [-e "$noex.txt"]

 then

 echo "Image bitstring output file generated, comparing to

expected result..."

 DIFF=$(diff -q $noex.txt Test/Draw/Expected/$noex.txt)

 wait

 if ["$DIFF" != ""]

 then

 echo "Error- differences found in image data. Recompile

$noex.ls without the -t flag and run to visually verify correctness"

 arr7+=($f)

 else

 echo "Image bitstring output matches for $noex"

 fi

 else

 echo "An error has occurred and the bitstring output file

couldn't be found"

 arr7+=($f)

 fi

 wait

 rm $noex.txt

 echo ""

done

drawfails=${#arr5[@]} #List of drawing files that failed to compile to Java

let "drawfails += ${#arr6[@]}" #List of drawing files that failed to compile

from Java to a class file

let "drawfails += ${#arr7[@]}" #List of drawing files that ran and output

different image output than expected

if [$drawfails != 0]

then

 echo "$drawfails test file(s) did not behave as expected in this

stage:"

 for var in "${arr5[@]}"

 do

 finalarr+=($var)

 echo "${var}"

 done

 for var in "${arr6[@]}"

 do

 finalarr+=($var)

 echo "${var}"

 done

 for var in "${arr7[@]}"

 do

 finalarr+=($var)

 echo "${var}"

 done

else

 echo "All draw test files compiled and ran as expected."

fi

Appendix A: Code Listing LSystem

99 | P a g e

numfails=${#finalarr[@]}

if [$numfails == 0]

then

 echo "-------------"

 echo "All test cases passed."

else

 echo "-------------"

 echo "The following test cases did not perform as expected:"

 echo "-------------"

 for var in "${arr[@]}"

 do

 echo "$var failed to compile into a Java file."

 done

 for var in "${arr2[@]}"

 do

 echo "$var failed to compile from a Java file into a class file."

 done

 for var in "${arr3[@]}"

 do

 echo "$var did not execute as expected (either the output result

was wrong or a runtime error occurred)."

 done

 for var in "${semanticarr[@]}"

 do

 echo "$var did not fail to compile, as expected."

 done

 for var in "${arr5[@]}"

 do

 echo "$var, a drawing test program, did not compile into a Java

file."

 done

 for var in "${arr6[@]}"

 do

 echo "$var, a drawing test program, did not compile from a Java

file into a class file."

 done

 for var in "${arr7[@]}"

 do

 echo "$var did not draw the expected output image, please

recompile it without the -t flag and run to visually verify image integrity."

 done

fi

######################################

#Clean generated java and class files#

######################################

CLEAN="rm *.java"

$CLEAN

CLEAN="rm *.class"

$CLEAN

CLEAN="rm *.txt"

$CLEAN

wait

	cover-page
	PLT-FinalReport

