
PLT LSystem Presentation

Ethan Hann
Jervis Muindi
Michael Eng
Timothy Sun

Lsystem: Introduction
● Short for Lindenmayer systems
● Grammar containing:

○ Alphabet of symbols
○ Initial string
○ Production rules

● Example- Koch Curve
○ Variables: F
○ Constants: + -
○ Initial string: F
○ Rules: F → F+F-F-F+F
○ F = “draw forward”, + = “Turn left 90 degrees”, - =

“Turn right 90 degrees”

Example iterative expansion

● n = 0
○ F

● n = 1
○ F+F-F-F+F

● n = 2:
○ F+F−F−F+F + F+F−F−F+F − F+F−F−F+F − F+F−F−F+F +

F+F−F−F+F
● n = 3:

○ F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−
F+F
+F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F
−F+F
−F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F
−F+F
−F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F
−F+F
+F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F
−F+F

L-system language goals

● Intuitive
○ Simple syntax, short programs to display L-

systems
● Customizable

○ Can manually map terminals/variables to
drawing commands

● Portable
○ Once fully constructed, compiler only needs

JDK and JRE to compile intermediate Java
files into class files and execute them

Language Tutorial

● http://ethanhann.github.com/Lsystem-
Compiler/

http://ethanhann.github.com/Lsystem-Compiler/
http://ethanhann.github.com/Lsystem-Compiler/

Language Implementation
● Scanner recognizes

language tokens
● Parser consumes

tokens and validates
program in
syntactically correct.

● AST is generated in
conjunction with
parsing

● Semantic Analysis
done on AST

Code Generation
● A program consists

of compute
functions and draw
functions.

● Translate Compute
Functions

● Translate Draw
Functions

● Output java source
code

● Compile to Java

Lessons Learned
● functional programming is slick
● SVN (google-code)

○ > git
● Testing with the compiler, not after
● Keep things simple

○ more restrictive syntax -> more semantic
analysis

● not something to be done overnight
○ had to do it little by little

Advice for future teams
● start early,designate tasks

○ even the final report
○ get used to O'Caml

● microC is your go-to reference
● process should be enjoyable

○ like the language you make
■ doesn't have to be the final product you envisioned

● coding standard
○ (silly whitespace)

● Nibble at it
○ one feature at a time
○ try to look at the code regularly

Thank You !

