
COLOGO: A Graph Language

Final Report

Lixing Dong ld2505@columbia.edu
Chao Song cs2994@columbia.edu

Dongyang Jiang dj2322@columbia.edu
Siyuan Lu sl3352@columbia.edu
Zhou Ma zm2167@columbia.edu

Advisor:
Stephen Edwards

December 22, 2011

1

Contents

1 Introduction 4
1.1 Description . 4
1.2 Features . 4
1.3 Objectives . 4

2 Language Tutorial 5
2.1 A Simple Example . 5
2.2 Complete Tutorial . 5

2.2.1 Variable Declaration . 5
2.2.2 Expression . 5
2.2.3 Loop . 5
2.2.4 Condition . 6
2.2.5 Drawing . 6
2.2.6 Functions . 6
2.2.7 Object . 7
2.2.8 Comment . 8

2.3 Compile COLOGO programs . 8
2.4 More colorful examples . 8

3 Language Manual 9
3.1 Introduction . 9
3.2 Lexical Conventions . 9

3.2.1 Character Set . 9
3.2.2 Identifier . 9
3.2.3 Comments . 9
3.2.4 Keyword . 9
3.2.5 Operators . 10
3.2.6 Separators . 10
3.2.7 Syntax group . 10

3.3 Lvalue . 10
3.4 Declarations . 11

3.4.1 Type Specifier . 11
3.5 Statements . 11

3.5.1 Expression Statement . 12
3.5.2 Compound Statement . 12
3.5.3 Selection-Statement . 12
3.5.4 Iteration-Statement . 13
3.5.5 Jump-Statement . 13
3.5.6 Draw Statement . 13

3.6 Scope . 14
3.7 Grammer . 14

2

4 Project Plan 18
4.1 Team Responsibilities . 18
4.2 Project Timeline . 18
4.3 Software Development Environment . 18
4.4 Project Log . 18
4.5 Programming Style . 19

5 Architectural Design 21
5.1 Architecture . 21
5.2 Work Flow . 21
5.3 Work Distribution . 21

6 Test Plan 23
6.1 A Simple Example of Test Programs . 23
6.2 Test Suite . 25

7 Lessons Learned 26

3

1 Introduction

1.1 Description

Our COLOGO language is an effective programming language for drawing 2D graphics.
The COLOGO language is designed in spirit of low threshold, which enables easy entry
by novices and yet meet the needs of high-powered users. We can use COLOGO for
education as it contains basic computer concepts appropriate for beginners. We can
also draw interesting pictures and design complicated logos with COLOGO so that the
language could be widely used for entertainment or commercial area.

1.2 Features

Euclidean COLOGO operates in a Euclidean space using relative measures and angles,
without an origin, unlike coordinate-addressed systems such as Cartisian geometry.

Functional In our COLOGO language, users can create their own functions to perform
a specific task. This help programmers to decompose the complex program to
simple steps. Also, this feature allow users to reuse the code across different
programs.

Recursive is supported in our COLOGO language. This allow users to simplify their
code by dividing a problem to subproblems of the same type.

Iridescent COLOGO support drawing lines of different colors and line width, making
your drawing experience more colorful.

1.3 Objectives

The main goal of our programming language is to provide a easy way to draw 2D graph-
ics. These graphics, and hence our language, can be used for representing mathematical
formulas, teaching geometric concepts, simple arithmetical operation and simulation of
robots routing. Also, COLOGO is a appropriate language for teaching basic program-
ming language concepts. Basic data types will be supported in our COLOGO, such as
integers, and bool. Some simple data structures like array will also be implemented in
it. By providing these, it’s relatively easy to manipulate drawing and make it much easy
to draw beautiful mathematical graphics.

4

2 Language Tutorial

COLOGO is a language using simple code to draw beautiful images.

2.1 A Simple Example

Here is a simple example program of COLOGO.

FD 5;

This will draw a line of length 5.

2.2 Complete Tutorial

The basic idea of COLOGO is the same as the LOGO. Imagine you have a pen located
at the center of the canvas at the beginning. Then the purpose of program is to move
the pen so that lines can be drawn.

Our language has most features a modern programming language should have, in-
cluding variable declarations, functions, and objects.

2.2.1 Variable Declaration

Variable declaration contains two parts, a type and a variable name. A type could be an
integer, boolean, or user defined objects. Here are some examples of variable declaration:

int a,b;

bool c;

foo d; (:foo is a object:)

int e[10]; (:array:)

2.2.2 Expression

COLOGO support various kinds of expressions. A complete list of unit expressions we
support are listed as Table 1:

We also support compound expressions. Programmers can combiner any number of
unit expressions above to generate more powerful expressions. Such as a=b+c; f(g(a)),
etc.

2.2.3 Loop

The keyword for looping in COLOGO is Loop We support two kinds of loops. If a
number is specified for a loop, say Loop(n), the statement inside the loop will run for n
times. If Loop() is used without a loop number it is considered as a infinite loop. You
will have to use break to jump out of the loop.

When inside the loop, if you want to jump out of the loop, you can use Break. Also,
if you want to skip the rest of the loop and continue the next iteration, use Goon.

Here are some example of how to use loops:

5

Name Syntax

Assignment a = b

Plus a + b

Minus a - b

Multiply a * a

Divide a / a

Not equal a != b

Equal a == b

Less than a < b

Great than a > b

less than or equal to a <= b

greater than or equal to a >= b

negative -a

not Not a

function call f(a)

Table 1: Expressions in COLOGO

Loop(10) { a = a + 1; }

Loop() { a = a + 1; Break; }

Loop(10) { a = a + 1; Goon;}

2.2.4 Condition

Our condition statement use keyword If. The syntax is If (condition) then statement
block End, or If (condition) then statement block else statement block End.
Here are some examples of how to use If statements:

If (c) { a = b; } End

If (c) { a = b; } Else { b = a; } End

2.2.5 Drawing

Drawing is the unique feature that COLOGO differs from other programming languages.
We support various number of drawing statements.

The whole supporting drawing statements are listed in table 2.

2.2.6 Functions

The syntax of our function definition is:

Func functionname(parameter list) : return type

{

function body

}

6

Statement Description

FD (int) Move forward (int) pixels
BK (int) Move back (int) pixels
LF (int) Turn left (int) degree
RT (int) Turn right (int) degree
RESET Reset pen position to center of canvas
CLS Clear screen
PU Pen up (stop drawing)
PD Pen down (start drawing)
PF Pen flip (switch drawing state)
WD (int) Set line width to (int) pixels
RGB (int), (int), (int) Set the color of drawing

Table 2: Drawing Statements in COLOGO

A example of function definition is:

Func Fibonacci(int n) : int

{

If (n < 2)

Return 1;

Else

Return Fibonacci(n-1) + Fibonacci(n-2);

End

}

2.2.7 Object

The syntax of our object definition is as follows:

Obj objectname {element list}

Note that our object do not support functions.
To declare an instance of a obj, use the following syntax:

objectname variablename;

To get a reference of a element of a object, use ‘.’. For example:

Obj foo

{

int bar;

int baz;

}

foo a;

a.baz = 2;

7

2.2.8 Comment

We use "(:" and ":)" to indicate the start and end of comments. For example:

(:this is a comment:)

2.3 Compile COLOGO programs

To compile COLOGO language files, you must first compile the compiler. Use makefile
provided in the package to install the compiler. Then, use command

./compiler -c inputFileName outputFileName

to compile source code. To print AST tree, use -a instead:

./compiler -a inputFileName > outputFileName

2.4 More colorful examples

Using our COLOGO language, programmers could bable to generate all kinds of colorful
images. Here are some more colorful examples:

8

3 Language Manual

3.1 Introduction

COLOGO language is an effective programming language for drawing 2D graphics. The
COLOGO language is designed in spirit of low threshold, which enables easy entry
by novices and yet meet the needs of high-powered users. We can use COLOGO for
education as it contains basic computer concepts appropriate for beginners. We can
also draw interesting pictures and design complicated logos with COLOGO so that the
language could be widely used for entertainment or commercial area.

3.2 Lexical Conventions

The first step to compile our language is lexical analysis. In this step, the imported files
are added in, and the program is recognized as a sequence of tokens.

3.2.1 Character Set

COLOGO supports ASCII character set.

3.2.2 Identifier

An identifier is a sequence of letters and digits. There are several rules for our identifier.
For instance, the first character of the identifier must be a letter. The underscore ‘ ’ is
also viewed as a letter. The upper and lower case letters are different in the identifier.
Identifiers may have different length, and at least the first 31 characters are significant
for the internal identifiers while for some implementations more characters are signifi-
cant. Internal identifiers include preprocessor marco names and all other names without
external linkage. Identifiers with external linkage are more restricted

3.2.3 Comments

Comments are introduced by (: and ended by :). Comments are not allowed to be nested.
When a comment starts with a (: , the comment will be ended by the next occurrence
of :).

3.2.4 Keyword

FD BK LF RT RESET
CLS PU PD PF RGB
int bool Obj Not If
Else Goon Break Return End
Func True False Loop

In general, keywords are separated into four categories:

9

Drawing functional
Logical operator
Variable type indication
Certain Statements

3.2.5 Operators

COLOGO has 6 categories of operators. They are unary, additive, multiplicative, rela-
tional, logical and object reference operator, respectively:

Unary

- !

Additive

+ -

Multiplicative

* /

Relational

== != < <= > >=

Logical

Not

Object reference operator

.

3.2.6 Separators

COLOGO recognizes three types of separators of tokens. They are space, tab, new line.
The compile considers no difference among them.

3.2.7 Syntax group

{}: Braces are delimiter of compound statement, used in the cases of statements block
and constant array initialization.
[]: Brackets are used for array index dereference.
(): Parenthesis are for expression grouping and argument express

3.3 Lvalue

Lvalue is an expression that refers to a region of storage. It is required by certain
operators. Refer to the operator part to see which operators expect an lvalue.

10

3.4 Declarations

Declarations create variables with several attributes: variable name, type, variable
value(optional).

3.4.1 Type Specifier

Primitive Types
There are two primitive types in COLOGO. They are declared as below:

int id = value;

bool id = value;

Where id is the name of variable and value is an expression or a primitive value.

Array Type
For each primitive type, COLOGO has a corresponding array container. They are:

int id[length];

bool id[length];

Where id is the name of variable and length is the number of elements contained in the
array. The above form will initialize the array as zero for int, and false for bool type.

Object Type
COLOGO allows the user to integrate multiple primitive type and form a complex object
type such that all the primitive type variables can be passed and referred to together.
The declaration are as follows:

Obj id

{

primitive-declaration-list

}

Where id stands for the name of variable and the primitive-declaration-list stands for a
list of primitive declaration in the form of primitive- declaration-1; primitive-declaration-
2; etc.

3.5 Statements

In COLOGO, statements are executed in sequence. They fall into several groups.

Statement:

expression-statement

compound-statement

selection-statement

iteration-statement

jump-statement

11

3.5.1 Expression Statement

Most statements in COLOGO are expression statements, which have the form expression-
statement:

expression-opt;

Most expression statements are assignments or function calls. All side effects from the
expression are completed before the next statement is executed. If the expression is
missing, the construction is called a null statement; it is often used to supply an empty
body to an iteration statement to place a label.

3.5.2 Compound Statement

So that several statements can be used where one is expected, the compound statement
(also called “block”) is provided. The body of a function definition is a compound
statement.

compound-statement:

{ declaration-list-opt statement-list-opt }

declaration-list:

declaration-list

declaration

statement-list:

statement-list

statement

If an identifier in the declaration-list was in scope outside the block, the outer declaration
is suspended within the block, after which it resumes its force. An identifier may be
declared only once in the same block. These rules apply to identifiers in the same
name space; identifiers in different name spaces are treated as distinct. Initialization of
automatic objects is performed each time the block is entered at the top and proceeds
in the order of the declarators. If a jump into the block is executed, these initializations
are not performed. Initialization of static objects is performed only once, before the
program begins execution.

3.5.3 Selection-Statement

Selection statements choose one of several flows of control.

selection-statement:

If (expression) statement End

If (expression) statement Else statement End

12

In both forms of the If statement, the expression, which must have arithmetic or pointer
type, is evaluated, including all side effects, and if it compares unequal to false, the first
substatement is executed. In the second form, the second substatement is executed if
the expression is false. The else ambiguity is resolved by introducing keyword End

3.5.4 Iteration-Statement

Iteration statements specify looping.
iteration-statement:

Loop (expression(opt)) statement

In the LOOP statement, the parameter expression must have BOOL type; it is evaluated
before each iteration, and if it becomes equal to 0, the LOOP is terminated. Side-effects
from each expression are completed immediately after its evaluation.

3.5.5 Jump-Statement

A GOON statement may appear only within an iteration statement. It causes control
to pass to the loop-continuation portion of the smallest enclosing such statement. More
precisely, within each of the statements

Loop (...) { ...; Goon; }

A Break statement may appear only in an iteration statement or, and terminates execu-
tion of the smallest enclosing such statement; control passes to the statement following
the terminated statement.
A function returns to its caller by the Return statement. When Return is followed by
an expression, the value is returned to the caller of the function. The expression is con-
verted, as by assignment, to the type returned by the function in which it appears.
Running to the end of a function is equivalent to a return with no expression. In either
case, the returned value is undefined.

3.5.6 Draw Statement

Draw statements include operations for the turtle, which provide the drawing function-
ality. We have 9 kinds of drawing statements.

FD expression; : Turtle move forward expression distance.

BK expression; : Turtle move backward expression distance.

LF expression; : Turtle turn left expression degree.

RT expression; : Turtle turn right expression degree.

RESET; :Reset the turtle to original position.

CLS; : Clear the screen.

PF; : Pen flip.

PD; : Pen down.

PU; : Pen up

13

3.6 Scope

A program need not all be compiled at one time: the source text may be kept in several
files containing translation units. Communication among the functions of a program may
be carried out both through calls and through manipulation of external data. In our
language the only one scope to consider is the lexical scope of an identifier which is the
region of the program text within which the identifier’s characteristics are understood;
Identifiers fall into several name spaces that do not interfere with one another; the same
identifier may be used for different purposes, even in the same scope, if the uses are in
different name spaces. The scope of a parameter of a function definition begins at the
start of the block defining the function and persists through the function; the scope of
a parameter in a function declaration ends at the end of the declarator. The scope of
an identifier declared at the head of a block begins at the end of its declarator, and
persists to the end of the block. The scope of a structure, union, or enumeration tag,
or an enumeration constant, begins at its appearance in a type specifier, and persists
to the end of a translation unit (for declarations at the external level) or to the end of
the block (for declarations within a function). If an identifier is explicitly declared at
the head of a block, including the block constituting a function, any declaration of the
identifier outside the block is suspended until the end of the block.

3.7 Grammer

1 program :

2 | free_sentence program

3 free_sentence : function_definition

4 | obj_definition

5 | statement

6 function_definition : FUNC function_declarator COLON cltype LBRACE in_func_sentence_list RBRACE

7 | FUNC function_declarator LBRACE in_func_sentence_list RBRACE

8 function_declarator : ID LPAREN parameter_list RPAREN

9 | ID LPAREN RPAREN

10 parameter_list : parameter

11 | parameter COMMA parameter_list

12 parameter : cltype ID

13 in_func_sentence_list : in_func_sentence

14 | in_func_sentence in_func_sentence_list

15 in_func_sentence : statement

14

16 obj_definition : OBJ ID LBRACE in_obj_sentence_list RBRACE

17 in_obj_sentence_list : in_obj_sentence

18 | in_obj_sentence in_obj_sentence_list

19 in_obj_sentence : variable_declaration

20 variable_declaration : cltype declarator_list SEMI

21 declarator_list : declarator

22 | declarator COMMA declarator_list

23 cltype : INT

24 | REAL

25 | ID

26 | BOOL

27 declarator : ID

28 | ID LBRACK RBRACK

29 | ID LBRACK constant_expression RBRACK

30 statement : variable_declaration

31 | expression_statement

32 | draw_statement

33 | iteration_statement

34 | selection_statement

35 | jump_statement

36 expression_statement : expression SEMI

37 | expression error

38 draw_statement : FD expression SEMI

39 | BK expression SEMI

40 | LF expression SEMI

41 | RT expression SEMI

42 | RESET SEMI

43 | CLS SEMI

44 | PF SEMI

45 | PD SEMI

46 | PU SEMI

47 | WD expression SEMI

48 | RGB expression COMMA expression COMMA expression SEMI

15

49 | RGB error SEMI

50 selection_statement : IF LPAREN expression RPAREN statement_list END

51 | IF LPAREN expression RPAREN statement_list ELSE statement_list END

52 | IF LPAREN expression RPAREN error

53 | IF LPAREN expression RPAREN statement_list ELSE error

54 statement_list : statement

55 | statement statement_list

56 iteration_statement : LOOP LPAREN expression RPAREN LBRACE statement_list RBRACE

57 | LOOP LPAREN RPAREN LBRACE statement_list RBRACE

58 | LOOP LPAREN RPAREN LBRACE error

59 jump_statement : GOON SEMI

60 | BREAK SEMI

61 | RETURN expression SEMI

62 | RETURN SEMI

63 expression : constant_expression

64 | LPAREN expression RPAREN

65 | LPAREN error

66 | primary

67 | lvalue ASSIGN expression

68 | expression PLUS expression

69 | expression MINUS expression

70 | expression TIMES expression

71 | expression DIVIDE expression

72 | expression NEQ expression

73 | expression EQ expression

74 | expression LT expression

75 | expression GT expression

76 | expression LEQ expression

77 | expression GEQ expression

78 | MINUS expression

79 | NOT expression

80 | ID LPAREN argument_expression_list RPAREN

81 identifier : ID

82 | ID DOT identifier

83 primary : identifier

84 | identifier LBRACK expression RBRACK

16

85 | identifier LBRACK error

86 lvalue : identifier

87 | identifier LBRACK expression RBRACK

88 | identifier LBRACK error

89 argument_expression_list : expression

90 | expression COMMA argument_expression_list

91 constant_expression : INTV

92 | REALV

93 | TRUE

94 | FALSE

17

4 Project Plan

4.1 Team Responsibilities

Every team member will be given primary responsibility for certain project goals, clear
and definite roles will make sure that every team member pull his own weight. The
fundamental tasks of each team member are shown in Table 3.

Lixing Dong Scanner, parser, and code generator

Chao Song Semantic analysis

Dongyang Jiang Test and code coverage

Siyuan Lu AST printer

Zhou Ma Error Recovery

Table 3: Project Responsibilities

4.2 Project Timeline

The deadlines were set for key project development goals as Table 4 shows

09-12-2011 Language whitepaper, core language features defined

09-28-2011 Language proposal, core language features defined

10-31-2011 Language reference manul, grammar complete

11-07-2011 Scanner, parser complete

11-14-2011 Code generation complete

11-31-2011 Semantic Analysis complete

12-10-2011 Error recovery complete

12-17-2011 Code freeze, project feature complete

Table 4: Project Timeline

4.3 Software Development Environment

This project is developed on Mac using Ocaml 3.11.0. The parser will be developed using
ocalmlyacc and the scanner is developed using ocamllex. The whole project is tested
using bisect to test the code coverage. Source code is controlled using a distributed
revision control system, Git. Makefiles is created in source directory. No files will be
checked in to Git unless it makes without error. The proposal, reference manual, and the
final report will be written in Google docs by all the members. Final report is generated
by latex.

4.4 Project Log

The actual lists of significant project milestones are shown as Table 5.

18

09-12-2011 Project initiated
09-28-2011 Language white paper complete
10-07-2011 Code conventions, first draft
10-10-2011 Development environment configured
10-20-2011 Grammar first draft
10-28-2011 Language reference manual
11-10-2011 Scanner, parser complete
11-21-2011 Code generator finished
11-28-2011 Semantic analysis finished
12-10-2011 Error Recovery finished
12-22-2011 Final report complete

Table 5: Project Log

4.5 Programming Style

The programming style guide is modified based on here:
http://www.seas.upenn.edu/ cis341/programming style.html

File Submission Requirements:
Code must compile
80 column limit

Commenting:
Comments go above the code they reference
Avoid useless comments
Avoid over-commenting
Line breaks
Proper multi-line commenting

Naming and Declarations:
Use meaningful names
Naming conventions

Indentation:
Indenting nested let expressions
Indenting match expressions
Indenting if expressions
Indenting comments

Using Parentheses:
Parenthesize to help indentation
Wrap match expressions with parenthesis

19

Over parenthesizing

Pattern Matching:
No incomplete pattern matches
Pattern match in the function arguments when possible
Function arguments should not use values for patterns
Avoid using too many projections
Pattern match with as few match expressions as necessary

Code Factoring:
Don’t let expressions take up multiple lines
Breakup large functions into smaller functions
Over-factoring code

Verbosity:
Don’t rewrite existing code
Misusing if expressions
Misusing match expressions
Other common misuses
Avoid computing values twice

20

5 Architectural Design

5.1 Architecture

The Cologo compiler consists of several major blocks which are common in compiler
designs: abstract syntax tree, scanner, parser, printer, semantics, code generator. The
relationship between these components is demonstrated in Figure 1. The input to the
compiler are Pencil specification files (which have, by convention, the suffix .cl) and the
final output from the compiler is translated HTML code. The compiler takes one cologo
file once a time, and translates it to HTML. The scanner is implemented in OCamllex,
a version of lex for Ocaml. The parser is generated by ocamlyacc, a version of yacc for
Ocaml.

Figure 1

5.2 Work Flow

When compiling a COLOGO program, scanner will first read the code and turn them
into tokens. Then parser will parse the token and convert them to AST. Then semantic
analysis is applied to AST to check whether the code is semantically correct. Finally,
code generator is used to generate target code from AST. Or, if ‘-a’ is used, then instead
of generating html code, the structure of AST will be printed. Figure 2 shows how our
compiler works.

5.3 Work Distribution

The actual work distribution of our project is similar to the states in chapter 4, table 6
shows the details of it.

21

Figure 2

Scanner.mll Implemented by Lixing Dong

Parser.mly
Originally implemented by Lixing Dong
Zhou Ma add some work to support naive code recovery

semantic.ml Implemented by Chao Song
ast.ml Discussed by all team member, modified as project progresses
astprinter.ml Implemented by Siyuan Lu
generator.ml Implemented by Lixing Dong
Test cases Contributed by Lixing Dong, Chao Song and Dongyang Jiang
Code coverage Implemented by Dongyang Jiang

Table 6: Distribution

22

6 Test Plan

We designed a variety of test cases to test our compiler. These test cases are located in
/test/ folder. And we have a shell script to compile them together.

6.1 A Simple Example of Test Programs

First let’s see a simple example of our test program.
This is a very simple program to draw a line of length 5.

int a;

FD 5;

The following is its corresponding HTML code. Between the start point and the end
point are the javascript translation code of our COLOGO language. Other lines could
be considered as headers and tails.

<!DOCTYPE HTML>

<html>

<head>

<style>

body {

margin: 0px;

padding: 0px;

}

#myCanvas {

position: absolute;

}

</style>

<script src="http://code.jquery.com/jquery-latest.js"></script>

</head>

<body onmousedown="return false;">

<canvas id="myCanvas">

</canvas>

<script>

var _canvas = document.getElementById("myCanvas");

var _context = _canvas.getContext("2d");

var _stack = new Array;

ResizeCanvas();

_context.lineWidth = 2;

var _currx = document.width / 2;

var _curry = document.height / 2;

23

var _tmp, _tmpx, _tmpy, _tmps, _i;

var _r;

var _g;

var _b;

var _bDraw = true;

// in degree

var _direction = 0;

function drawLine(x1, x2, y1, y2){

_context.beginPath();

_context.moveTo(x1, x2);

_context.lineTo(y1, y2);

_context.stroke();

}

//start point

var a;

_tmp = _direction * Math.PI / 180;

_tmpx = Math.cos(_tmp) * (5) + _currx;

_tmpy = Math.sin(_tmp) * (5) + _curry;

if (_bDraw)

drawLine(_currx, _curry, _tmpx, _tmpy);

_currx = _tmpx; _curry = _tmpy;

//end point

function ResizeCanvas()

{

_canvas.width = document.width;

_canvas.height = document.height;

}

</script>

</body>

</html>

24

6.2 Test Suite

The entire test suite includes 44 test cases.
The way we create those test cases is that we would try to cover all the syntax and

semantics we have implemented. For example, at the beginning, we created simple test
cases as mentioned above with only variable declaration and FD. As we further developed
our system, we design more complicated cases to check whether the new functionality
we added works fine. A example would be a test cases using recursive function to draw
lines with length corresponding to Fibonacci’s number. Among our test cases, some are
designed with correct syntax and semantics, thus are expected to work. The others are
designed with wrong syntax or semantics, these are expected to fail. This method is
usually used to test whether semantic analysis is working fine.

The compiler is auto-tested by test.sh file, it tests all the .cl files in the test folder and
generate corresponding HTML file with javascript. Along with auto testing, we do code
coverage with a professional code coverage tool – bisect. The code coverage is tested in
a professional tool, bisect.

After build the source code , input the command line

bisect-report html report bisect*.out

Figure 3

it will display the html form report. As showed in Figure 3. With the details of the
report, we can find out the code coverage of every part so that to add new test cases or
delete the code would never be used to improve the code coverage and make our code
more effective.

25

7 Lessons Learned

Lixing Dong Team work is very very important. We should regularly meet every week.
I learned that a small, energetic team is much better than large team with someone
who don’t involve into the project much. Also, I found that a beautiful design at
the beginning of the project is very helpful. It will reduce much coding time and
will be easy for team module-orientated development.

Chao Song I think the greatest lesson I learned through this project is how to program
using Ocaml. Before meeting Ocaml, I thought every programming look very
similar to each other, but I was wrong. Ocaml uses a completely different idea of
how to program. No loop, strong typed. I even had problem using ‘if’. This is the
only language that alway give me ‘syntax error’ when compiling. But after I have
done the project, I think now I become much more familiar with programming
using Ocaml.

Dongyang Jiang Through the project, I have a better understand on how a compiler
works and the the structure of compilers and I learned how to write a compiler.
The use of the combination of Lex and Yacc to generate scanner and parser makes
writing a compiler easier. Besides, I pick up how to use bisect, a test tool, to test
the code coverage, so that we can optimize our code. And of course, get familiar
with programming with Ocaml.

26

