
CLAM: The Concise Linear Algebra Manipulation Language

Jeremy Andrus and Robert Martin and Kevin Sun and Yongxu Zhang
{jca2119, rdm2128, kfs2110, yz2419}@columbia.edu

October 5, 2011

Language Proposal

CLAM is a linear algebra manipulation language specifically targeted for image processing. It provides
an efficient way to express complex image manipulation algorithms through compact matrix operations.
Traditional image processing is performed using a language such as C, or C++. Algorithms in these
languages are quite complex and error-prone due to the large number of lines of code required to implement
something as conceptually simple as, ”make this image blurry.” The complexity arises from the need to
perform elaborate calculations on every pixel in an image. For example, to blur an image you first
need to calculate the luminance of the pixel (from the red, green, and blue channels), then you need to
mathematically combine this with the luminance of adjacent pixels, and finally re-calculate red, green,
and blue values for an output image.

CLAM will simplify image processing, and more generally linear algebra, through domain-specific data
types and operators. The basic data type in CLAM is a Matrix. Matrices can be manipulated by
operators that perform functions such as matrix multiplication, or rotation. An Image is another CLAM
data type which is expressed as a collection of matrices, or channels. For example, when reading an image
into memory, CLAM creates a Red, Green, and Blue channel automatically. Additional Image channels
can either be assigned, or calculated using an expression syntax which defines a calculation involving
the values of other, previously defined, channels. The basic image processing operator in CLAM is the
convolution operator. This operator takes a channel and a Kernel, another basic data type, and outputs
an Image. This operator convolves each Matrix within the Kernel with the input channel, and collects
the resulting output channels into an Image.

Two primary use cases of CLAM are basic image information extraction, and filtering. The compact
syntax and powerful basic data types of CLAM will make information extraction, such as finding all the
edges in an image, simple, compact, and easy to read.

Features

CLAM uses implicit loops, i.e. there is no explicit looping construct in the language. Loops are implicitly
defined by per-pixel matrix or convolution operations. Additionally, CLAM automatically determines or
calculates image and matrix dimensions. There is no need to explicitly size these data types. This further
reduces complexity, and eliminates frequent mistakes such as going beyond array bounds in a calculation.

1

Example Syntax

The goal of the CLAM syntax will be to make conceptually simple image manipulations into simple
language constructs. For instance, convolutions make frequent use of constant matrices, so our language
will provide a simple way to specify them, such as:

Matrix sobelGy := { +1 +2 +1 | 0 0 0 | −1 −2 −1 } ;

Another common image processing technique is performing the same calculation on every pixel in the
image. An example of this is calculating the luminance of a pixel from the red, green, and blue channels.
CLAM makes this calculation simple and compact by defining an additional image channel. Assuming
there exists an instance of a Image variable named, myimg, a channel can be added to the image with:

Int32 myimg :Luminance := #[(3∗Red + 6∗Green + 1∗Blue) / 10] ;

Where the expression within #[...] is evaluated once for every pixel in the Image. The Red, Green, and
Blue variables correspond to previously defined channels in myimg, and their values during expression
evaluation will be the value of the corresponding channel at the current pixel location.

Image processing also frequently involves describing a series of operations that should be carried out for
each pixel, and then repeating it for every pixel in an image. CLAM makes it simple to describe this
process through the Kernel data type and the convolution operator. Here is an example of how one
might perform a Sobel edge detector in the CLAM language:

1 // read an image into the ’srcimg ’ variable
2 Image src img = imgread (”someimage . jpg ”) ;
3
4 // define a luninance channel for this image
5 // (Red, Green, and Blue channels are implicit from imgread)
6 Uint8 src img :Lum := #[(3∗Red + 6∗Green + 1∗Blue)/10] ;
7
8 // Kernel definit ions are ordered i . e . the channels
9 // are calculated in the order they are defined

10 Kernel s obe l = {
11 Uint8 @Gx := [1 | 1]{ −1 0 +1 | −2 0 +2 | −1 0 +1 } ;
12 Uint8 @Gy := [1 | 1]{+1 +2 +1 | 0 0 0 | −1 −2 −1 } ;
13 Uint8 G := #[s q r t (Gx∗Gx + Gy∗Gy)] ;
14 Angle Theta := #[arctan (Gy/Gx)] ;
15 } ;
16
17 // Convolution − resulting image wil l have the same number
18 // of channels as the f i l t e r ing kernel .
19 Image edges = $ (srcimg :Lum) ∗∗ $ (s o b e l) ;
20
21 // compose an output image which i s a grayscale of
22 // edge gradient magnitude
23 Image output = {
24 Uint8 Red = $ (edges :G) ;
25 Uint8 Green = $ (edges :G) ;
26 Uint8 Blue = $ (edges :G) ;
27 } ;
28 imgwrite (output , ” edges o f someimage . jpg ”) ;

2

