
Ship Reference Manual
Kamil Alexander

ak2834@columbia.edu

Introduction

Ship is a simple interpreter that reads a configuration file and spits out Ruby objects.

It is intended for automation of data processing tasks in fields such as bioinformatics where the inputs consist of
multiple data sources and the execution pipeline is comprised of a series of independent steps. Each step usually
involves running a command-line tool with multiple configuration parameters and manipulating the inputs and
outputs with UNIX shell commands and ad-hoc scripts. With large data volumes it is sometimes necessary to
process the data on multiple machines in parallel which makes job coordination and data logistics time-consuming
and error-prone.

Ship simplifies task orchestration by freezing the job settings in a Shipfile spec, similar to Makefile [1] used in
software build and deployment process, and with a similar motivation, i.e. being able to combine the commands for
the different targets into a single file and being able to abstract out dependency tracking and data handling. Ship
translates the commands provided in Shipfile into shell commands suitable for local or remote execution. It makes
data-driven experiments more repeatable and controlled as it minimizes the room for error inherent in typing
command line options by hand.

The parser was developed with ANTLR3 for Ruby [2], the grammar is partially based on Fig Configuration
Language Interpreter by Terrence Parr [3]. Ship interprets input file (Shipfile) into Ruby objects, which allows easy
integration within Ruby ecosystem (e.g. it can be plugged in to command-line shell such as rush [4]).

Code Example

//Shipfile
Source s1 { input_dir=’~/data’; files =’*.in’; hosts = $hosts; modified_on =’*’;}
Source s2 { input_table =pcbl_s.batch.references; db= $bdb; hosts =$hosts;}
Target t1 { output_dir=’~/results’; files =’*.dat’; hosts =$hosts;}
Target t2 { output_dir=’~/summary’; files =’*.txt’; hosts =’localhost’;}
Target t3 { final_dir=’~/experiments/summaries’; hosts =$hosts;}
TASK1{

input1 =select * from $s1 where pattern= ‘^ref\.[0-9]+’;
input2 = select * from $s2 where CF2= ’77.890’ and GNFR = ’Y’;
map = mapper $opts $input1 $input2 $t1;
shuffle = shuffler $t1;

}
TASK2 {reduce = reducer $t1, $t2;}
TASK3 {send_command=Send $t2 to $t3, Notify on Timeout;}
ALL {pipeline= [$TASK1, $TASK2, $TASK3];}
CLEAN {remove = [$t1.files, $t2.files];}

options opts {
 -c = 2000;
 -l = ['10.1.1.190', '10.1.1.191'];
}
database bdb {
 port = 80;
 user = "test";
 rootdn= "cn=Manager,dc=example,dc=com";
}
hosts = {

h=[algiers.clic.cs.columbia.edu,
ankara.clic.cs.columbia.edu,
baghdad.clic.cs.columbia.edu];

}

mailto:ak2834@columbia.edu�
http://algiers.clic.cs.columbia.edu/�
http://ankara.clic.cs.columbia.edu/�
http://baghdad.clic.cs.columbia.edu/�

Lexical Conventions

Ship supports the following kinds of tokens: identifiers, strings, integers, expressions.
In general blanks, tabs, newlines are ignored except as they serve to separate tokens.

Identifiers
ID : ('_'|'-'|'a'..'z'|'A'..'Z') ('_'|'-'|'\.'|'a'..'z'|'A'..'Z'|'0'..'9')* ;

Strings
STRING :('\''.*'\''|'"'.*'"');

Integers
INT : '0'..'9'+ ;

Whitespaces
WS : (' '|'\n'|'\t')+;

Comments
CMT : '/*' .* '*/';

Syntax

Shipfile can contain several object declarations, where each object has a label (qid) and a block declaration enclosed
with curly braces. The block contains assign statements in the form ID=expression; Expressions can be terminal
strings, integers, identifiers, or non-terminal queries, commands and lists of expressions.

file
 : object+
 ;
object
 : qid ID? '{' assign* '}'
 ;
qid
 : ID ('.' ID)*
 ;
assign
 : ID '=' expr ';’
 ;
expr
 : STRING
 | ('$')?ID
 | INT
 | '[' ']'
 | query
 | command
 | '[' e=expr(',' e=expr)* ']'

Commands

Ship currently supports two built-in commands:

1. Select query which can be applied to filtering and extraction from two types of data sources:
a. unstructured data, such as text files by searching for a pattern, which can be a regular expression
b. structured data, such as database tables, where we can filter using where clause criteria

2. Send command which allows to ship files to target destination (i.e. remote host). Delivery options such as
notification mode and transfer type can be optionally added by the user.

Ship grammar can be easily extended to include domain-specific commands.

Query statement
query
 : select_stmt where_stmt ;
select_stmt
 : 'select' '*' 'from' (directory | table);
where_stmt
 : ('where' clause ('and' clause)*) ?;
clause
 : file_name
 | pattern
 | ID '=' STRING ;
directory
 : '/' ID;
table
 : ID;
file_name
 : 'file' '=' STRING;
pattern
 : 'pattern' '=' STRING;

SendCommand statement
command
 : (send_command delivery_options*
 | wait_command)
 ;
send_command
 : 'Send' container? 'to' destination ('by' send_channel)?;
container: ID;
destination: ID ;
send_channel: ID;
delivery_options
 : 'Get' 'Signature’
 | notify_on;
notify_on
 : 'Notify' notify_recipient 'on' notify_criteria;
notify_recipient returns [value]
 : SENDER
 | ALL;
notify_criteria returns [value]
 : SUCCESS
 | FAILURE
 | TIMEOUT;
wait_command: 'wait' 'for' wait_criteria notify_on?;
wait_criteria: ID;

References

1. GNU Make: http://www.gnu.org/software/make/
2. ANTLR3 for Ruby: http://antlr.ohboyohboyohboy.org/
3. Fig Generic Configuration Language Interpreter: http://www.antlr.org/wiki/display/ANTLR3/Fig+-

+Generic+configuration+language+interpreter
4. Rush, a Ruby replacement for the UNIX shell: http://rush.heroku.com/

http://www.gnu.org/software/make/�
http://antlr.ohboyohboyohboy.org/�
http://www.antlr.org/wiki/display/ANTLR3/Fig+-+Generic+configuration+language+interpreter�
http://www.antlr.org/wiki/display/ANTLR3/Fig+-+Generic+configuration+language+interpreter�
http://rush.heroku.com/�

