

moveIt

Language Reference Manual
Chengchen Sun (cs2890)

Benjamin Kornacki (blk2129)

Thomas Rantasa (tr2286)

Introduction
This is the Language Reference Manual of the language: moveIt. The
default file extension for source code is .tbc.

This language is devised by Thomas Rantasa (tr2286), Benjamin
Kornacki (blk2129) and Chengchen Sun (cs2890) as a project in
Programming Languages and Translators by Professor Stephen A.
Edwards.

Basic Types:
Tokens:
There're six classes of tokens: Identifiers, Keywords, Constants, String
literals, Operators, Separators.

Comments:
Paired comment symbols are (: and :) which indicates the start and
end of comments. Comments do not nest.

Identifiers:
An identifier of a single entity (not an array) starts with a dollar sign '$',
followed by a sequence of letters and digits. Upper and lower case
letters are different. Identifier length must be within 31 characters.

Arrays will be identified with the '%' symbol. However, individual
elements of the array are identified as single entities and therefore use
the dollar sign.

Identifiers can refer to variable types, graphic object types and bindings.

Keywords:
The following keywords are reserved and cannot therefore be used as
an identifier:

 variable type declaration: int, float, char, struct
 graphic object type declaration: dot, line, triangle, circle
 movement manipulation: time, in

 object binding: bind
 program control: if, else, while, for, do
 global control setting: define

Constants & String Literals:
Constants can also be defined with both variable types, graphic object
types and bindings, like identifiers. String Literals will be stored in array
of char constants.

Separators:
Normally, separators include whitespace, tab indentation, and new line.
They are thought to be separating two tokens.

Type Cast
Still undefined. Which types can be cast each other and what about
default type cast behaving like?

Operators:
The following operators are accepted by system:

 Arithmetic Operators:
 Assignment: a = b
 Addition: a + b
 Subtraction: a - b
 Multiplication: a * b
 Division: a / b
 Modulo: a % b
 Comparison Operators:
 Equal to: a == b
 Not Equal to: a != b
 Greater than: a > b
 Less than: a < b
 Not Greater than: a <= b
 Not Less than: a >= b
 Logical Operators:
 Logical NOT: !a

 Logical AND: a && b
 Logical OR: a || b
 Member Operators:
 Array Index: a[b]
 Member Index: a.b: Used in bind.
 2D Object Shift Operators:
 Shift Toward, Movement: a->(X, Y)
 Serialized Movement: a -> A in 10 :: b -> B in 5
 Parallelized Movement: a -> A in 10 ^^ b -> B in 5
 Other Operators:
 Function call: f(a, varain...)
 End of Line or Sentence: ;
 Comma: ,

Operator Priority
Undefined yet.

Operations on Graphic
Objects
Creating Basic Objects
Definition of triangle, circle, etc

The following words are also reserved for 2D object manipulation: dot,
line, triangle, circle Meanwhile, a new type of time is also
defined. Time is basically of int type, but this could only be used to
represent time intervals. To define a time variable, use keyword time,
e.g. time a

Also, these four keywords are reserved for functions to initialize 2D
objects, respectively:

dot(float $XAxis, float $YAxis) ;
line(dot $A, dot $B) ;
triangle(dot $A, dot $B, dot $C);
circle(dot $A, float $Radius) ;
Display & Movement:

On a global scale, a variable called MINIMUM_INTERVAL is defined as
the minimum time interval for calculating movement. All objects'
movement is calculated based on current position and
MINIMUM_INTERVAL time later's position. The default
MINIMUM_INTERVAL is 0.001 with unit second.

Movement is defined using symbol ->. A screen consists of X by Y
pixels and to move a dot to a new position, say to move dot $A to dot
$B, simply using $A ->$B.

Resize, Shape Change:
Have not been defined yet. It's also possible to leave this for users to
implement their own resize/shaping policy.

Timing
To introduce the concept of speed, movement and morphing must be
carried out in a specific given time. the interval is introduced by affixing
in <time> after moving or morphing operations. For example:

time $t = 10000;
dot $A, $B, $C;
triangle $triA = triangle($A, $B, $C);
dot $D;
circle $cirA = circle($D, 10.0);
$triA => $cirA in $t;
means to complete this morphing in 10 seconds (since the default
MINIMUM_INTERVAL is set to 0.001 second. If without in <time> affix,
the default value for this operation would be 1000 times
MINIMUM_INTERVAL.

Binding & Creating Advanced
Objects
The real world consists of more complicated shapes. In order to
represent them, binding is defined. Generally binding is to use a
structure to store all geometric shapes together, and to manipulate on
this structure. For example,

dot $A = dot(1,0);
dot $B = dot(2,0);
dot $C = dot(2,1);

triangle $triA = triangle(A, B, C);
dot $D = dot(3,0);
circle $cirA = circle(D, 1.0);
bind $bindA = bind(triA, cirA);
triangle $triB = triangle(A, C, D);
bind $bindB = bind(bindA, triB);
A new type of bind is introduced using bind keyword. the bind type
variable can move, morph, just as previously defined. Manipulation to a
specific element of this binding is also available. This will be talked in
the manipulation in next paragraph.

Modifying Objects
Objects' parameters can be modified. By default, a dot's X-axis value is
referenced by .X. A triangle/circle's parameter can be modified
similarly. For example:

dot $A = (1,0); (: This defines a new dot. :)
$A.X = 2; (: This modifies A into (2,0) :)
dot $B = (1,1);
dot $C = (2,2);
triangle $triA = triangle(A, B, C);
$triA.A = (2,3); (: This changes triA's first vertex into
(2,3), while not changing dot A's value. :)
float $R = 10.0;
circle $cirA = circle(A, R);
$cirA.R = 5.0; (: This changes cirA's radius into 5.0. :)
Advanced parameters of
Objects

Visibility
For visual effect, objects can be defined or modified to be seen or
unseen. Objects' color can also be modified. Visibility can be used as
Object_Name.seen(). To make it unseen, simply call
Object_Name.unseen(). Objects can be line, circle, triangle, or bind.

Physical Property
When an object consists of triangle, circle or bind of them, physical
characters can be assigned to it. To convert such an object to physical
object, use PhyInit() function to initialize a new object.

The new object will have characters like mass, color, collision behavior,
etc

Loading Images
Objects can also be painted by loading a pre-existing image inside. All
triangles, circles and binds can load an image on it by calling
Object_Name.loadimg(imgname). If imgname is too large, crop down
from top left. Some common picture format will be supported and this
part still needs consideration.

Movement Control
After all the movement has been defined, call the run() function to
enable all movement. Movement will begin from the first ->.

Movement chains can be defined with symbols :: and ^^. :: and ^^
must concatenate movement sentences. $A :: $B means $B starts to
move once $A finishes. $A ^^ $B means $A and $B start
simultaneously.

Without :: or ^^, movement just happens one after another. For
example, $A; $B is the same as $A :: $B but this allows other
operations to be done between movement operations (like assignment
or modification to objects).

When program runs to run() function, it starts to display and all the
following movement sentences will be processed, until it encounters a
stop() function. stop() cleans all movement while pause() can
temporarily pause all movements. By calling resume(), previously
paused movements will be resumed until they end. After stop(), all
movement sentences will not be processed until a new run() is called.

Sample Code
Finally, Here's a sample hello world program:

{
dot[10] %A, %B, %C, %D;
triangle[10] %triA, %triB;
bind[10] %bindA;
int i, j;
for (i = 0; i < 10; i = i + 1) (* Construct object for
each letter. *)
{
 $A[i].X = 20 * i;
 $A[i].Y = 40;

 $B[i].X = 20 * i + 10;
 $B[i].Y = 40;
 $C[i].X = A[i].X;
 $C[i].Y = 60;
 $D[i].X = B[i].X;
 $D[i].Y = 60;
 $triA[i] = triangle($A[i], $B[i], $C[i]);
 $triB[i] = triangle($B[i], $C[i], $D[i]);
 $bindA[i] = bind($triA[i], $triB[i]);
 $bindA[i].seen();
} (* Every letter will be in a 10 x 20 rectangle composed
by two triangles. *)

(* The following bmp files must exist together with the
program executable. *)
$bindA[0].loadimg("h.bmp");
$bindA[1].loadimg("e.bmp");
$bindA[2].loadimg("l.bmp");
$bindA[3].loadimg("l.bmp");
$bindA[4].loadimg("o.bmp");
$bindA[5].loadimg("w.bmp");
$bindA[6].loadimg("o.bmp");
$bindA[7].loadimg("r.bmp");
$bindA[8].loadimg("l.bmp");
$bindA[9].loadimg("d.bmp");

run();
} 

