Setup Reference Manual

October 31, 2011

Tan Erb | Bill Warner | Adam Weis | Andrew Ingraham
ire2102 whw2108 ajw2137 aci2110

1 Introduction

The Setup language defines a syntax for operating on finite sets. Setup
provides a level of abstraction to the user which makes set manipulation
more intuitive. We anticipate users will solve simple set-oriented problems
like schedule, rudimentary databases, and probability problems.

2 Lexical Conventions

There are 5 kinds of tokens: identifiers, keywords, literals, operators and
punctuation. Whitespace characters (blanks, tabs and newlines) are ignored
and used only to separate tokens. At least one whitespace character is
required to separate adjacent tokens.

2.1 Comments

Block comments are introduced with /* and terminated with */. Nesting
of comments is not permitted. Comments are in general ignored by the
compiler.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be
alphabetic. Names are case-sensitive.

REFERENCE MANUAL

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be
used otherwise:

set int bool
float string if

tuple in then
union else intersect
minus while cross

yup function returns
nope return

2.4 Primitives

There are four types of primitives used in Setup :

2.4.1 Integers

An integer is a sequence of digits. All integers are lexed as a sequence of
digits with an optional leading minus sign for negative integers. They are
represented internally using architecture native integer representation.

2.4.2 Strings

A string is a sequence of characters enclosed in double quotes as in "string".
Two adjacent strings are concatenated using the ”+4” sign. As in

"string" + "concat" -> "stringconcat".

2.4.3 Floats

We adopt the C' Reference Manual definition of a floating point number:

A floating constant consists of an integer part, a decimal
point, a fraction part, an e and an optionally signed integer
exponent. The integer and fraction parts both consist of a se-
quence of digits. Either the integer part or the fraction part (not
both) may be missing; either the decimal point or the e and the
exponent (not both) may be missing.

All floating point numbers will be 64-bit double precision.

REFERENCE MANUAL

2.4.4 Booleans

A Boolean value can take either yup or nope.

3 Syntax Notation

In this manual, elements of language syntax are indicated by italic type.
Literal words and characters are written in verbatim. Alternatives are
listed using the ”|” character: item | item.

4 Objects

4.1 Variables

A variable token is an identifier to a stored primitive, tuple or set. A variable
must begin with an alphabetic character followed by zero or more letters
and digits. Variables are declared by referencing their type followed by the
associated token and an optional initializer, as in int a; or int a = 3;.

A variable, once declared, may be reassigned but cannot be declared
again in the same scope.

int a = 3;
a=4; //ok
int a = 5; //error

4.1.1 Initialization

Variables for primitives not explicitly initialized when declared will be ini-
tialized as follows:

mt — 0

string — 77
float — 0.0
bool — nope

set — {}

Uninitialized tuples are not permitted.

REFERENCE MANUAL

4.2 Tuples

A n-tuple is an ordered collection of n comma-delimited elements enclosed
in parentheses. An element is either a primitive, set or tuple. An n-tuple
and m-tuple are considered of the same type if the following two conditions
are satisfied:

e n=nm.
e The type of each coordinate element is of the same type.

For example, the following tuple elements are not the same type because
the first coordinate tuples are not of the same type:

((1,"a"),2) //type: ((int,str),int)
((1,2),3) //type: ((int,int),int)

4.3 Sets

A set is a (potentially empty) collection of comma-delimited elements. Every
element of a set is unique (duplicate elements are discarded). A set must
be homogeneous in type, meaning that every element within the set has
matching type. All sets are typed as set, regardless of their contents. A set
containing sets of varying types is allowed. Sets can be initialized in various
ways:

4.3.1 Literal Initialization

A set may be initialized with a comma-delimited list of elements or identifiers
of matching type within curly braces:

set A = {1, 2, 3, 4, 5, 6}; //ok

string b = "name";

set B = {"this", "works", b}; //ok

set C = {1, 2, 3, b}; //error: elements have different type

4.3.2 Range Initialization

For sets of integer type, we allow the following range initialization using

b .

set A ={1 ... 6}; //ok: returns {1, 2, 3, 4, 5, 6}
set B={1 ... 6 10...12}; //ok: returns {1, 2, 3, 4, 5, 6, 10, 11, 12}
set C={3 ... -1}; //ok: {3, 2, 1, 0, -1}

REFERENCE MANUAL

4.3.3 Set-Builder Initialization

The following syntax is used for initializing a set through set-builder nota-
tion:
{ expr | sourcelist }

The source list is a sequence of comma-delimited expressions of the form
id in set

Each id represents a local variable which may be used to construct new
elements for a set via the expression appearing on the left hand side of the
| symbol. The sequenced sourcelist expressions are evaluated left-to-right.
The in operator is right associative, and the id is not assigned a value
until the right operand has been resolved. The resulting set will include
the resulting left side expression evaluated for all potential id values, with
duplicates removed.

set A ={ (x,y9 | x in {1,2,3}, y in {"a","b","c"} };

B={ (1,"a"),(,"p"),(1,"c"),
(2,"3."),(2,"b"),(2,"C"),
(3,"8."),(3,"b"),(3,"C") };

A == B; //returns yup

In addition, the left side expression may contain references to variables in
enclosing scopes (local sourcelist variables shadow enclosing scopes). For
example:

int a = 0;
int x = 5;

set A = { (a,x) | x in {1,2,3} }; //sourcelist x shadows enclosing x

B={(0,1,0,2),(0,3) };
A == B; //returns yup

5

REFERENCE MANUAL

5 Operators

5.1 Arithmetic Operations

The following arithmetic operations are provided: +,-,* for types int and
float. The return type is as follows:

int binop int — int
float binop float — float
float binop int — float
int binop float — float

There are two division operators:

1. /, which accepts as arguments any two numerical values and is guar-
anteed to return a float

2. // accepts as arguments any two numerical values and is guaranteed
to return an int truncated toward zero.

The following relational operators are provided for all primitive types:
<,>,<=,>=,==,1=. Types passed to these operators must match, except
in the case of <,> when comparing int and float. String comparison is
done lexicographically as per strcmp in the C standard library. The only
character set supported is 8-bit ASCII.

5.2 Set Operations

The following set operations are provided:

union intersect minus <cross #

union

union is a binary operator which returns a union of two sets. Both sets
must contain elements of the same type.

intersect

intersect is a binary operator which returns the intersection of two sets.
Both sets must contain elements of the same type.

REFERENCE MANUAL

minus

minus is a binary operator which returns a set of elements which are present
in the first set but not in the second set. Both sets must contain elements
of the same type.

Cross

cross takes as left operand a set with elements of type a and as right operand
a set of elements with type b and returns an exhaustive set of tuples of type
(a,b), duplicates removed.

#

is a unary operator returning the number of elements in a set.

6 Context-Free-Grammar

prog — € | funcdef | funcdef prog

stmt-list — stmt | stmt stmt-list

stmt — if (expr) then {stmi-list} else {e | stmt-list}
stmt — while (expr) {stmt-list}

stmt — expr;

stmt — return expr;

expr — id = expr | funcall | expr binop expr | {exprlist} | {int...int} |
{expr pipe sourcelist} | int | float | string | tuple | id

exrpr — uUnop expr

exprlist — expr | expr, exprlist

sourcelist — id in set | id in set sourcelist

tuple — (exprlist)

funcdef — function id [formals-list] returns typespec {stmt-list}
funcall — id(arglist)

arglist — € | exprlist

formals-list — € | formals-tail

formals-tail — formal | formal, formals-tail

formal — typespec id

typespec — int | set | float | string | tuple | bool

binop =+ |- |*|/|//|<|>|<=|>|==|1=|&&|”||” | union | cross

REFERENCE MANUAL

| minus | intersect
unop — # 1|1 | -

7 Functions

Each progam is a sequence of zero or more function definitions. Execution
begins by calling the main function which returns an int. Syntax for user-
defined function declarations is as follows:

funcdef — function id [func-param-list] returns typespec {stmt-list}

Function declarations may not be nested. Every function must return a
value. The value type must be specified in the declaration, as shown in the
following example:

function float_to_int[float f] returns int { return £f//1; }

8 Scope Rules

All variables are of local function scope. That is, functions may not access
variables outside of their bodies.

Each set-builder expression defines a local scope. Expressions in a given
set-builder expression may access variables in enclosing scopes. Sourcelist
variables used in set-builder notation can shadow variables that live in en-
closing scopes. Function nesting is not permitted.

A simple example of set-builder scope:

set A1 = {1,2};
set A2 = {3,4};
set A = {A1,A2};

set B = {(x,y) | a in A, x in a, y in a-{x}};
//B = {(1,2),(2,1),(3,4),(4,3)}

A richer example, using nested scopes:

set A1 = {1,2};
set A2 {3,4};
set A = {A1,A2};

REFERENCE MANUAL

set B={x*2 | ain A, x in {y+1 | y in a } }; //result: B = {4,6,8,10}

/*Pseudocode:
foreach a in A
foreach y in a
x = y+1
B.add (x*2)
next y
next a

*/
An example of variable shadowing:

int x = 2;

set A {x*x | x in {y | y in {x,x*x} } }; //result: A = {4,16}
x; //result: x=2

/*Pseudocode
x = 2 //outer scope x
temp t = {x, x*x} //{2,4}
foreach y in t
x=y; //does not touch outer scope x
A.add (x*x)
next y

*/

