=anl

Pac-Man Game Programming Language

Reference Manual

Chun-Kang Chen (cc3260)
Hui-Hsiang Kuo (hk2604)
Shuwei Cao (sc3331)
Wenxin Zhu (wz2203)

Table of Contents

1] 4o [0 Tox £ o] o [OOSR PRURRR 4
LeXiCal CONVENTIONS......ccuiiiieieieieiesieste ettt ettt saas 4
2.1 COMIMENTS ...t as 4
2.2 NP2 10 YT T RSP PSRPR 4
2.3 KEYWOITS ...ttt ettt ettt et e e e e s sbeeaaesreenaesreens 4
(D U= Bl Y/ 012 RSP 4
3.1 Primitive Data TYPEScccveeeeieeieseeeeceerte ettt 5
3.1.1 L=t T=T (1 RS 5
3.1.2 Character (Char)ceecveeieeeee e 5
3.2 Derived Data TYPES....ccueeveeeeieceesieeresteesteeee sttt sae e eae s 6
3.2.1 RS o RSOSSN 6
3.3 GamME-SPECITIC TYPES ..vecveeieeeecteeeeeeeete e e 6
3.3.1 Y =T o O PPN 6
3.3.2 o 2T SRS 6
3.3.3 TEEIM e e 6
3.34 POINT .ttt 7
0] £ESES] o] o RSO PRP 7
4.1 UNAKY OPEFATOIS ..ooueveeeiieeeiteerieeerite et sre e sereesare e sae e e saaeesaaeesaeeesanes 7
4.1.1 e 81 (1] (o] RS 7
4.1.2 L=y o] (1S1S] o] o O S 7
4.2 WA [0 [1)Y= N 0] o 1= =1 (0] PSPPSRI 7
4.2.1 EXPreSSION + EXPreESSION: ...ccueecieeeereeerreeeesreesreeee e eeeseesseeaesseeneens 7
4.2.2 EXPreSSION — EXPIESSION: ..vecveeeeerereeeteetesteesreseeesreeeeseesseeeesseennens 7
4.3 Multiplicative OPerators.........cceceeiieieceeeceese e 7
4.3.1 EXPreSSION * EXPIESSION: ..oecueeeeeeereeeieeeesteesreeeesteeaeseesseeeesseesens 8
4.3.2 EXPreSSION / EXPIESSION:ccueeeveeeeseeerreeteseesteeeesteeeeseesseeaesseensens 8
4.4 Relational Operators..........cccooeeieiieiiecieseeeceee e 8
44.1 EXPreSSION < EXPrESSION: ...ecueeieeeereeereeeesreesreeeesreeaeseesseesesseesens 8
4.4.2 EXPreSSION > EXPIESSION: ...ecueeeeeieseeerteeeesreesteeeesteeseeseesseeaesseesens 8
443 EXPreSSION <= EXPIESSION: . ..ueeieeeereeereeiesreesteeeesreeeeseesseesesseesens 8
4.4.4 EXPreSSION >= EXPIESSION: .e.ueeteerereeereeiesreesteeeesreeeeseesseesesseesens 8
4.5 Equality OPeratorscccceevieeeeceee et 8
45.1 EXPreSSION == EXPIESSION: ...ueerveeeereeerreeeesreesreeeeeseeeaeseesseeaesseesens 9
45.2 EXPreSSION 1= XPreSSION:......cvueeieseesreeeesteerreeee e eeeseeseeeaesreenneas 9
4.6 EXPresSioN && EXPIreSSION:.....cuccuiereeeeeteeee e ete s sre et see e 9
4.7 EXPIESSION || EXPIESSION: ...c.veeuvietietietecteete et ee e 9

2

B DBCIATATIONS ... et e e e e e e e e e e e e e e e ——aaaaeaaaaas 9

6. Statements and BIOCKS........c.ocueiieiiiieeceeeesee e 9
6.1 EXPression StatemMeNntcooveveiieiiecieceeeceee e 9

6.2 Conditional statemeNt...........ccoeiieiiiieeceeeee e 9

6.3 While Statement...........coovieiieieecee e 10

6.4 BIOCKS ...ttt 10

6.5 Return StatemMENT.......cccviieieeiie e s 11

7. FUNCtion DEefiNITIONS........cooiieiecieeceeee e 11
7.1 BaSiC FUNCLIONSccveeeiiiicieceeeeseee e 11

7.2 BUIIE-IN FUNCLIONS.......cviitieieceeeeseee e 11
7.2.1 4 UL PSS 11

71.2.2 SEEMIAP ...ttt s 11

7.2.3 SEELEVEL ... 11

7.2.4 =] U d P Y= SR 12

7.25 Y0 [0 €] 00 1 O S 12

7.2.6 10 [0 [C | 1 AU 12

7.2.7 Y0 (0| 2T T4 T SRS 12

7.2.8 GetMAPWIALN ... 12

7.2.9 0 [=1AY, T o LT T |) R 12

7.2.10 getMAPITEM ...oiiiiieiiee e 12

7.2.11 iSPOINtAVaIlaDIe ..o 13

7.2.12 getAvailablePoint..........ccooovivieiiceeceseee e 13

250 T 1 | | OSSP 13

8. EXAMPIES ...t reeaaens 13

1. Introduction

PaCaml (PAC-MAN + Ocaml) is a game programming language that facilitates
design of elements in PAC-MAN scene, such as maps, characters, items, and win
conditions. Compiler of PaCaml is written in OCaml.

This manual provides reference for application and syntax of PaCaml. Examples
have been given in the end as a quick start.

2. Lexical conventions

2.1 Comments

A block of comment in PaCaml is delimited by "/*" and "*/". Unlike Java, no
single-line specific format, i.e., "//", is provided. Identifying a comment block is a
non-greedy operation. In other words, the first "*/" found after “/*” terminates the
comment block.

No other constraint is given, considering characters and positions of comments.

Example:
[* These lines
are not to be parsed by
the PaCaml compiler */

2.2 Naming

(1) Variable names are case-sensitive. A variable's name can be any legal
identifier — an unlimited-length sequence of Unicode letters and digits,
beginning with a letter or the underscore character " "

(2) Subsequent characters may be letters, digits, or underscore characters.
(3) No duplicate names are allowed in the fields including variables and functions.

(4) Keywords (defined in 2.3) are reserved.

2.3 Keywords

Keywords are reserved identifiers. The following are the keywords in PaCaml:
int, char, string, Map, Player, Item, Barrier, Gift, Ghost, Color

return, continue, break, if, else, do, while, for

pre-defined functions

3. Data Types

Two groups of data types are defined in PaCaml. Primitive data types include
integer, character, string, and etc. Game specific data types include map, item, and
etc. These two groups are introduced in section 3.1 and section 3.2 respectively.
PaCaml is statically-typed, which means that all variables must first be declared
before they can be used.

3.1 Primitive Data Types
3.1.1 Integer (int)

The int data type is a 32-bit signed numeric variant. Negative numbers are
signified by the minus sign (-'), while no white space is allowed between the
minus sign and the integral number.

Please notice that a point ('.") is prohibited in integer declaration, even if the
value equals to an integer. In other words, 1 is a legal declaration while 1.0
and 1. are illegal. Default value given to an uninitialized variable is 0.

Examples:
0, 2, 256, -102
inta =10;

In addition to numeric variant, an integer can be used as a presentation of a
Boolean value. As convention, 1 stands for true and O (or null) stands for false.

Example:
int flag = 1;
if (flag) { ... }

3.1.2 Character (char)

A single ASCII alphanumeric letter is denoted as a char. Letters can be either
upper or lower case.

Examples:
a,AdF! =
Declaration:
char ch ="a’;

3.2 Derived Data Types
3.2.1 String

Array of characters is denoted as string. It is defined by double quotes “”.

Example:

“abcd”, “aAbB”
Declaration:

String str = *““abcd”’;

3.3 Game-specific Types
3.3.1 Map

Map is the abstract container of the game, including player and items. In other
words, it is the world of Pac-Man.

3.3.2 Player

Pac-Man is the only object accessed through the data type Player.

Properties are defined in Player, including position, speed, status (normal,
dead, invincible, slow, fast, and fighting, and the valid remaining time of the
current status (0 means forever).

3.3.3 Item

Roles accessed through the data type Item are ghosts, gifts, and barriers.

Basic properties contained in an item are location, and image. Other important
properties include type (i.e., type of the object, such as ghost, gift, and barrier),
effect (which changes the status of PacMan), speed, status, move function,
escape function, move counter, and maximum of move counter.

Functions move function and escape function are rand(0, 4) by default. Value
of maximum of move counter is 5 by default. Value of move counter is set to 0
when PacMan changes the status between "normal’ and "fighting".

The following example illustrates how components of items control the flow.

(1) Assume that Item i (ghost) and Player p have been defined in a game.
In condition that p.status !'= "fighting" and i.move_counter == 0, the

server calls i.move_function.
6

(2) In condition that p.status == "fighting" and i.move_counter ==0, the
server calls i.escape_function.

Only one of i.move_function and i.escape_function is called at each time.
Result of the function must be integers, whose residue number given modulo 4
determines direction of the next move of i. 0 means up while the consequent
ones rotates the direction clockwise.

In this sense, all items are able to move.

3.3.4 Point

Point is a 2D geometry concept, with two components, X, and y, which
together depict the position of a player’s or an item’s.
Example:

Pointp =[1, 2];

4. Expressions

4.1 Unary operators
4.1.1 - expression:
Numeric negation
4.1.2 !expression:

Logical negation

4.2 Additive operators
4.2.1 expression + expression:

(1) Numeric addition
(2) String concatenation
(3) Join of maps

4.2.2 expression — expression:

Numeric subtraction

4.3 Multiplicative operators

4.3.1 expression * expression:
(1) Numeric multiplication;

(2) Expression of identifier * number creates the same identifier with different
index by n times and new identifiers inherit all the attributes. e.g. Copy the
ghosts.

4.3.2 expression / expression:
Numeric division

4.4 Relational operators
4.4.1 expression < expression:

(1) Less-than;
(2) Comparison of properties of two objects. The value is 1 if exprl is less
powerful than expr2. An example is given as:

Player p;
Item i;
if (p.speed < item.speed) { ... }

According to the default definition, slow < normal < fast, while weak <
normal < aggressive < invincible.

4.4.2 expression > expression:

(1) Greater-than;
(2) Comparison of properties of two objects. The value is 1 if exprl is more
powerful than expr2.

4.4.3 expression <= expression:

Similar to 4.4.1, except that comparison of properties also returns 1 if exprl
== expr2 (i.e., the two properties are of the same level. For details, please refer
to 4.5.1).

4.4.4 expression >= expression:

Similar to 4.4.12 except that comparison of properties also returns 1 if exprl
== expr2 (i.e., the two properties are of the same level. For details, please refer
to 4.5.1).

4.5 Equality operators

45.1 expression == expression:

(1) Equal-to
(2) 1 if the two properties are of the same level, and 0 otherwise.

4.5.2 expression = expression:

(1) Not-equal-to
(2) 1 if the two properties are not of the same level, and 0 otherwise.

4.6 expression && expression:
Return 1 if and only if both values are 1; otherwise it return 0.
4.7 expression || expression:

Return 1 if at least one of the two values are 1; otherwise it returns 0.

. Declarations

Declaration creates new variables with a specified type and an optional values by
the following forms:

type_specifier identifier

type_specifier identifier = initialization expression

where type_specifier is one of the following type: int, char, string, Map, Item.

Example:
int num;
int num = 14;

. Statements and Blocks

6.1 Expression statement

Expression statement is a construct consisting of variables, operators and
functions. It is like real word statements.

Examples:
inti=1;

item speed=slow;
map_earth+map_mars;

6.2 Conditional statement

Same as Java or C, conditional statement executes a certain code only if a
particular condition is true.

Examples:

(1)
if (expression)
{statement}
else
{statement}

)
if (expression)
{statement}
elseif (expression)
{statement}
else
{statement}

6.3 While statement
The while statement continually executes a block of statement while the condition
is true.

Example:
while (expression)
{ statement }

6.4 Blocks

Block is a group of statements surrounded by a pair of braces. It is used in flow
control sentences.

Example:
while (expressionl)
{
if (expression2)
{statement1}
else
{statement2}

10

6.5 Return statement

A function returns to its caller by means of the return statement, which has the
following form:

return (expression) ;

. Function Definitions

7.1 Basic Functions

func return_data_type function_name (argl,arg2, arg3)

{
/*
statement;
*/

}

7.2 Built-in Functions
7.2.1 main
int main()

This function is the entry point for execution of the program. Each PaCaml
program must define this function. A return value of zero indicates failure;
otherwise, success.

7.2.2 setMap
void setMap(Map map)

Set the map of this game. This function should be called before initiating the
player, enemies, and barriers.

7.2.3 setlLevel
void setLevel(String level)

Set the level of the game. Types of the Level could be either easy or hard.
Example:
11

setLevel(Level.Easy); /* Difficulty level is set to easy */

7.2.4 setPlayer
int setPlayer(Player player, Point p)

Move the player to a new location.

7.2.5 addGhost
int addGhost (Item item)

Add user-defined ghost object to the current map. A return value of zero
indicates failure; otherwise, success.

7.2.6 addGift
int addGift(Item item, Point p)

Add a gift to a specific location of the map. A return value of zero indicates
failure; otherwise, success.

7.2.7 addBarrier
int addBarrier(Item item, Point)

Add a barrier to a specific location of the map. A return value of zero indicates
failure; otherwise, success.

7.2.8 getMapWidth

int getMapWidth()

Return the current width of the map.
7.2.9 getMapHeight

int getMapHeight()

Return the current width of this map.

7.2.10 getMapltem
Item getMapltem(Point)

Return an item on a specific location, or null if there is no item.

12

7.2.11 isPointAvailable
int isPointAvailable(Point)

Check if the point of the current map is available.
Return 1 if the point is available, or 0 if this point has been assigned to another
item.

7.2.12 getAvailablePoint
void getAvailablePoint()

Return one randomly chosen available point, or null if there is no available
point on this map.

7.2.13 print
void print(String)

Print a string on standard output.

8. Examples
int main()
{
int width = 10;
int height = 5;

[* generate a map of the game */
Map m(width, height);
setMap(m);

[* create a barrier, and add it to the map */
Point p = [3,4];

Item b;

b.type = Barrier;

b.color = Color.blue;

if (isPointAvailable(p))

addBarrier(b,p);
}

[* create a player of this game */

13

Player pac;

pac.color = Color.yellow;

Point initLoc = getAvailablePoint(); /* randomly choose a point */
setPlayer(pac, initLoc);

14

