
AGRAJAG

A GRAph JArGon

Language Reference Manual

by:
Dongyang Jiang (dj2322)

Zachary Salzbank (zis2102)
Erica Sponsler (es3094)
Nate Weiss (ndw2114)

AGRAJAG Language Reference Manual Page 2

1. Introduction
AGRAJAG is a C-like programming language designed to allow the easy creation and
manipulation of graphs. The purpose of our language is to simplify the process of representing
connections between data points. Using this simple representation, the manipulation and
extraction of data is also simplified.

2. Lexical conventions
i. Comments

A comment begins when the character sequence /* is encountered. The comment
ends when the character sequence */ is encountered. Comments cannot be nested.

ii. Identifiers
An identifier can be comprised of any combination of alphabetic characters (upper and
lower case), integers, and the underscore ‘_’ character. Identifiers cannot begin with an
integer or an underscore, but can be any length. Identifiers are case sensitive, for
instance helloWorld and HelloWorld would not be equivalent.

iii. Keywords
The following words are reserved as keywords and cannot be used as identifiers:

● int
● char
● boolean
● Node
● void
● null
● return
● break
● if
● else
● while
● true
● false

iv. Constants
The following types of constants are supported in AGRAJAG:

○ Integer constants
Integers are any sequence of digits not enclosed within single or double quotes.
Digits in any other context (such as in an identifier name) are not considered
constants.

○ Character constants
A character constant is a single character contained within single quotes. A
single quote character is denoted by \’ (backslash + single quote), and a
backslash character is denoted by \\ (two backslashes).

3. Syntax Notation
This reference manual uses the following syntax notation:

AGRAJAG Language Reference Manual Page 3

○ Terminals: Indicated by bold Courier New typeface.
○ Non-terminals: Indicated by regular Courier New typeface.
○ Any terminal or non-terminal followed by the subscript opt notation, is not required and

can be omitted.

4. Nodes
Nodes will be our primary data type.

1. Data Structure
○ A node will consist of a value and a list of pointers to that node’s successors.
○ A node’s value can be the value of any expression including another node.
○ A node is inherently directed, as not all nodes that are connected point to each

other. A node’s successors are not necessarily ‘aware’ that they are a child to
the first node. However, if the user wishes to have an undirected graph, they
must simply ensure that for every node N, all successors of N include N as a
successor.

2. Operations
○ The value of each node will be mutable and obtainable through operations on

that node.
■For a node x, the value will be obtained by x.value

○ The list of successors will also be mutable and obtainable through operations on
that node.

○ Each node will have internal functions to access the number of successors.
■For a node x, the number of successors will be obtained by

x.numSuccessors
○ For a node x, the nth successor of this node will be obtained by x[n] where n is

any integer.
3. Intended Use

○ Mainly to build trees and graphs, but other data structures can be created by
using Nodes. An example is a string, which could be represented by a collection
of nodes with character values.

5. Expressions
Expressions return values. This section lists the available expressions. Precedence of
expressions is the same as the order of sections listed below. All expressions within a section
have the same precedence.

1. Primary Expressions
Primary expressions are the first to be evaluated. Leftmost expressions are evaluated
first.

a. identifier
An identifier is any previously declared variable, as long as it has been declared
according to the rules specified in the Declarations section below.

b. constant
Any boolean (true or false), integer, or character. The type returned for each
type of constant is as follows:

AGRAJAG Language Reference Manual Page 4

● boolean: boolean
● integer: int
● character: char

c. (expression)
Parentheses are used to alter precedence. Expressions within parentheses will
be evaluated as primary expressions, even if the expressions contained within
the parentheses are a lower precedence than the surrounding operations. The
returned type and value evaluates to the same as expression.

d. function-name (expression-list opt)
Evaluates the expressions described in function-name, optionally passing
values via expression-list. expression-list can be a single expression,
or a comma-separated list of expressions. The declaration of function-name
must return a value (cannot be a void function declaration). Calling void
functions is covered under statements.

2. Unary Operators
Unary operators modify the result of a single expression. Rightmost unary operators are
evaluated first.

a. – expression
The result is the negated value of expression, with the same type.
expression must be int.

b. ! expression
The result is the logical opposite of expression. expression must be of type
boolean and the return type is boolean.

3. Multiplicative Operators
Leftmost multiplicative operators are evaluated first.

a. expression * expression
Multiplies the first expression by the second expression. The type of both
expressions must be the same. The allowed type for expression is int.

b. expression / expression
Divides the first expression by the second expression. The type restrictions
for multiplication apply to division as well. Since division is always integer
division, the result will be the highest integer value less than or equal to the
quotient.

4. Additive Operators
Leftmost additive operators are evaluated first.

a. expression + expression
Adds the first expression to the second expression. Allowed types for
expression are int or char, but both expressions must be of the same
type.

b. expression - expression
Subtracts the second expression from the first expression. The type
restrictions for addition apply to subtraction as well.

5. Relational Operators

AGRAJAG Language Reference Manual Page 5

Relational operators return a boolean type. Allowed types for expression are int
or char, but both expressions must be of the same type. The following relational
operators are available:

● expression < expression (less than)
● expression > expression (greater than)
● expression <= expression (less than or equal to)
● expression >= expression (greater than or equal to)

6. Equality Operators
Equality operators return a boolean type. The type restrictions for relational operators
apply to equality operators as well. The following equality operators are available:

● expression == expression (equal to)
● expression != expression (not equal to)

7. expression && expression
The boolean and operator (&&) returns true if both expressions are true. Otherwise,
it returns false. Both expressions must be of boolean type.

8. expression || expression
The boolean or operator (||) returns true if either expression is true. Otherwise, it
returns false. Both expressions must be of boolean type.

9. Assignment Operator
An assignment has the following form:

identifier = expression or
node-identifier.value = expression
node-identifier[expression] = expression
■Note: the expression within the brackets must evaluate to an int

The rightmost assignment will occur first. Operands must have the same type. After the
leftmost assignment occurs, the value of expression is returned.

6. Declarations
Declarations are used in AGRAJAG to specify variables and functions. When declaring a
variable the type and name must be specified. The types available are:

○ int
○ char
○ boolean
○ Node<Type>

note: when using a Node, the contained type specified can be any of the above
types, including Node

Each variable must have its own type specified, and must be a separate statement from other
declarations. After a variable declaration has been made wherever the variable appears in the
program, the value associated with the variable will be used. A variable declaration has three
parts: type, variable name, statement end. For instance, declaring a variable called number of
type int would look like this:

int number;

Variables may also be instantiated at the same time they are declared. The same rules for
assignment apply as in the section above. The declaration/instantiation would have the form:

int number = expression;

AGRAJAG Language Reference Manual Page 6

Functions can be declared to return any of the types listed above, or the void type, and can
take as parameters any values and/or variables of the types listed above. Function declarations
can be made anywhere in the program, before or after the function(s) that call them, but cannot
be nested within other function definitions. Declarations of functions have four parts: return
type, function name, parameter list, function body. Return type specifies the type of value the
function returns. Function names can be any valid identifier that is not a reserved keyword.
Parameter lists can have an arbitrary number of parameters with any mixture of the above
types. A function body consists of a set of statements enclosed in braces (‘{‘, ‘}’). These
statements can be any valid AGRAJAG program, but must return a value of the same type as
the specified return type. The form of a function declaration is:

type function_name(parameter-list) {sequence of statements return
statement}

where parameter-list is a comma separated list of zero or more variables and their
associated types. For instance:

type parameter1, type parameter2, type parameter3

The root function is the entry point to the program. It will be the first function executed, and
has the return type void.

7. Statements
There are several allowable statements in AGRAJAG. A sequence of statements will be
executed in the order that they appear in the program. The statements that are recognized by
AGRAJAG are:

● Expression statement: A single expression followed by the end-statement character,
‘;’.

● Conditional statement: An expression that evaluates a boolean expression, and will
execute the appropriate statements based on the result. It has the form:

if (boolean expression) then {sequence of statements} else
{sequence of statementsopt}

There is no form of conditional without an else section. If the programmer wishes there
to be no action in the else case they may write a statement that has the form:

if (boolean expression) then {sequence of statements} else {}

● While statement: An expression that evaluates a sequence of expressions based on

the value of a boolean expression. The form of a while statement is:

while (boolean expression) {sequence of statements}

The sequence of statements will be executed until the boolean expression evaluates to
false. The boolean expression will be evaluated before each execution of the loop
statements.

AGRAJAG Language Reference Manual Page 7

● Return statement: A statement that specifies what value a function should return. A
return statement has the form:

return (expressionopt);

The expression inside the return statement will be evaluated, and the value will then be
returned to the calling function. The type of the evaluated expression must match the
return type of the function in which the return statement appears. If the expression is
omitted, then no value will be returned. In this case, the type of the function should be
void.

● Calling a function with a return type of void is a statement as well, because all

expressions must evaluate to a value, but statements do not have this restriction. A
function call to a void function has the form:

function-name(parameter-listopt);

8. Scope Rules
A lexical block begins with a ‘{‘ and ends with a ‘}’. The scope of any variable in a program will
be the lexical block that it is defined in, after the point at which it is defined. If blocks are nested,
the scope of the variables within the outer block extend into the inner block. To avoid ambiguity,
no overlapping names can be used for identifiers; within any scope, there will only be one
identifier with a certain name.

AGRAJAG allows for global variables, which are variables defined outside the scope of any one
function, and will be in the scope of all functions. Nested functions are not allowed. Therefore,
all functions have global scope. To avoid ambiguity, function identifiers must be unique.

9. Compilation and Output
Compilation on the file ‘program.ag’ is performed by running the command:
 ./agrajag < program.ag

The program output will be displayed on the standard output of the terminal that the compiler
was run on. The built in print function is used to output data. Any argument passed to the
print function will be output.

AGRAJAG Language Reference Manual Page 8

10. Examples
void root(){

Node<int> treeRoot = Node<5>;
 treeRoot[0] = Node<3>;
 treeRoot[1] = Node<7>;
 treeRoot[0][0] = Node<2>;
 treeRoot[0][1] = Node<4>;
 treeRoot[1][0] = Node<6>;
 treeRoot[1][1] = Node<8>;

 Node<int> result = binSearch(treeRoot, 4);
 if(result == null){
 print(false);
 } else {
 print(true);
 }

 result = bfs(treeRoot, 7);
 if(result == null){
 print(false);
 } else {
 print(true);
 }
 return ();
}

Node<int> binSearch (Node<int> sNode, int searchFor) {

while (sNode != null) {
 if (searchFor < sNode.value) {
 sNode = sNode[0];

}
 else {

if(searchFor > sNode.value) {
 sNode = sNode[1];

}
 else {
 return sNode;
 }
 }

}
return null;

}

Node<int> bfs(Node<int> n, int target)

AGRAJAG Language Reference Manual Page 9

{
 Node<Node<int>> toVisit = Node<n>;
 Node<Node<int>> endToVisit = toVisit;
 return bfsHelper(n, target, toVisit, endToVisit);
}

Node<int> bfsHelper(Node<int> n, int target, Node<Node<int>>

toVisit, Node<Node<int>> endToVisit)
{
 if (n.Value == target) {

return n;
 }
 else
 {}

 while (n[i] != null)
 {
 if(existsInGraph(n[i], toVisit)
 {
 Node<int> next = Node<n[i]>;
 endToVisit[0] = next;
 endToVisit = endToVisit[0];
 }
 else
 {}
 i = i + 1;
 }
 return bfsHelper(toVisit, target, toVisit[0], endToVisit);
}

boolean existsInGraph(Node<int> n, Node<Node<int>> graph)
{
 Node<Node<int>> temp = graph[0];
 while (temp != null)
 {
 if (temp == n)
 {
 return true;
 }
 temp = temp[0];
 }
 return false;
}

AGRAJAG Language Reference Manual Page 10

Appendix I - Syntax Summary

1. Expressions
 primary
 - expression
 ! expression
 expression binop expression
 lvalue assignop expression
2. Primary
 constant
 (expression)
 primary (expression-listopt)
 lvalue
3. lvalue
 identifier
 node [primary]
 node.Value
4. binop
 + -
 / *
 < > <= >=
 != ==
 &&

||
5. assignop
 =
6. statement
 expression ;
 while (expression) { statement-list }
 if (expression) { statement-list } else { statement-listopt }
 return (expression);
7. statement-list
 statement
 statement statement-list
8. expression-list
 expression
 expression,expression-list

	AGRAJAG
	A GRAph JArGon
	by:
	1. Introduction
	2. Lexical conventions
	i. Comments
	ii. Identifiers
	iii. Keywords
	iv. Constants

	3. Syntax Notation
	4. Nodes
	5. Expressions
	6. Declarations
	7. Statements
	8. Scope Rules
	9. Compilation and Output
	10. Examples
	Appendix I - Syntax Summary

