
CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards

Due March 3, 2011

Abstract

Use Quartus and SOPC builder to create one of two mixed hard-
ware/software designs: an FM sound synthesizer or a bouncing
video ball.

1 Introduction

This lab is about combining your own hardware and software
components. You have a choice of implementing one of two
“canned” designs that we started for you: an FM sound syn-
thesizer that generates pleasing-sounding notes under keyboard
control or a bouncing video ball in which software controls the
trajectory of a circle on the screen displayed by custom video
hardware.

First, follow the instructions in Section 2 to gain some prac-
tice building a simple system using SOPC Builder. Then, choose
one of the two projects described in Sections 3 and 4.

2 Building a Nios II System with SOPC Builder

SOPC Builder is an Altera-supplied program for quickly as-
sembling Nios II-based processor systems. It effectively writes
VHDL for you.

The tutorial below explains how to make a simple “bouncing
ball” LED display using SOPC Builder. Go though this tutorial
first to see how the tools work, then start working on one of the
three designs.

2.1 Quartus, part 1

Create a new directory (e.g., “lab3”), cd into it, and start quar-
tus.

Select File→New Project Wizard.
In the new project wizard dialog, select the directory (e.g.,

“lab3”) you just created. Name the project something like
“lab3.” The two names do not have to match, but only use let-
ters, digits, and underscores in the project name. See Figure 1.

Don’t add any files to the project yet.
For for the device, select the “Cyclone II” family and the

“EP2C35F672C6” chip. See Figure 2.
Click “Finish” to create the project.

2.2 SOPC Builder

Inside Quartus, select Tools→SOPC Builder. This will probably
ask you to start creating an SOPC builder system (if not, select
File→New System). Name it differently than the project, e.g.,
“nios_system,” and select VHDL as the language. See Figure 3.

You should now be at the SOPC Builder main window (Fig-
ure 4). Make sure the Device Family is set to Cyclone II and
that there is a single external 50 MHz clock listed.

Figure 1: Naming a new Quartus project

Figure 2: Selecting the device in Quartus

1



Figure 3: Naming a new system in SOPC Builder

Figure 4: The SOPC Builder main window. Available compo-
nents are listed on the left.

Add the processor by opening Avalon Components and
double-clicking “Nios II Processor—Altera Corporation.” This
should bring up the Nios II dialog in Figure 5. Select the
Nios II/e, the smallest of the three and click “Finish.” You don’t
need to adjust the other parameters.

At this point (Figure 6), you have a single processor with a
JTAG debug module connected to it. By itself, this is useless
because it has no memory.

We will use the off-chip 512K SRAM by creating a new com-
ponent (peripheral) that does the nearly-trivial translation from
the protocol spoken by the Avalon bus (i.e., that is connected to
the Nios II) to that for the SRAM.

First, you need a VHDL file for the component called
de2_sram_controller.vhd. Its contents are shown in Figure 7.

This does almost nothing: it connects and inverts the various
Avalon signals (named avs_s1_...) for the SRAM chip and con-
trols the tri-state output drivers by indicating the SRAM_DQ bus
should only be driven when the Avalon write signal is asserted.

Create a new SOPC Builder component by selecting
File→New Component. Under HDL Files, select this .vhd file.
A dialog will come up showing the file is being parsed and
give you a bunch of warnings about signals having type “ex-
port,” which is fine. Make sure the Top Level Module is set to
“de2_sram_controller.”

Go to the “Signals” tab and change all the interfaces for the
SRAM signals to “export_0.” The list should look like Figure 8.

Next, go to the “Interfaces” tab and click on “Remove In-
terfaces With No Signals.” You should leave the interfaces in
the state shown in Figure 9. Here, “Slave addressing” is an im-
portant choice. The “DYNAMIC” setting indicates that the bus
will be dynamically resized to accomodate the data width of the

Figure 5: Adding an Nios II processor in SOPC Builder

Figure 6: The system with only the Nios II processor

peripheral—exactly what we want for the SRAM component.
The “NATIVE” setting disables this: the bus always appears
as 32 bits wide and the peripheral is expected to align its data
on 32 bit boundaries.

Click on “Finish” and save your component.
Edit the “de2_sram_controller_hw.tcl” that this just created

and change the “isMemoryDevice” property from “false” to
“true.”

Return to the main SOPC builder window, select the new
“de2_sram_controller” component in the left pane, and click on
“Add...” and then “Finish.” Right-click on the module name (it
defaults to “de2_sram_controller_inst”) and rename it to “sram.”
Move the mouse into the “Connec...” section of the compo-
nents in the system and click on the white circle at the inter-
section of the line from “instruction_master” under the CPU to
“avalon_slave_0” of the SRAM. This allows the CPU to store
programs in the SRAM, not just data.

Congratulations: your processor system now has some mem-
ory and could actually run programs.

If you later change the VHDL code for your component (e.g.,
during the development process), you must re-edit the compo-

2



library ieee;
use ieee.std_logic_1164.all;

entity de2_sram_controller is

port (
signal chipselect : in std_logic;
signal write, read : in std_logic;
signal address : in std_logic_vector(17 downto 0);
signal readdata : out std_logic_vector(15 downto 0);
signal writedata : in std_logic_vector(15 downto 0);
signal byteenable : in std_logic_vector(1 downto 0);

signal SRAM_DQ : inout std_logic_vector(15 downto 0);
signal SRAM_ADDR : out std_logic_vector(17 downto 0);
signal SRAM_UB_N, SRAM_LB_N : out std_logic;
signal SRAM_WE_N, SRAM_CE_N : out std_logic;
signal SRAM_OE_N : out std_logic
);

end de2_sram_controller;

architecture dp of de2_sram_controller is
begin

SRAM_DQ <= writedata when write = ’1’
else (others => ’Z’);

readdata <= SRAM_DQ;
SRAM_ADDR <= address;
SRAM_UB_N <= not byteenable(1);
SRAM_LB_N <= not byteenable(0);
SRAM_WE_N <= not write;
SRAM_CE_N <= not chipselect;
SRAM_OE_N <= not read;

end dp;

Figure 7: de2_sram_controller.vhd: VHDL source for the
SRAM controller (inverters and a tristate buffer).

nent by right-clicking the component on the left menu and se-
lecting “Edit.”

Double-click on the cpu component and choose the “sram”
memory for both the reset vector and the exception vector. This
should turn off some warnings. If you can’t select sram as the
memory, you probably forgot to change the “isMemoryDevice”
setting in “de2_sram_controller_hw.tcl.”

Using the same procedure, create a new component called
“de2_led_flasher.” The VHDL for this is shown in Figure 11.
Again, remember to change the interface of the “leds” signal to
“export_1”. Connect the “clk” and “reset_n” signals the “clock”
interface and set their types to “clk” and “reset_n” respectively.
The signals tab should look like Figure 10.

Add an instance of your new “led_flasher” component to the
system and rename it to “leds.”

For debugging output, add a Interface Protocols/Serial/JTAG
UART component. Just click “Finish” to accept the default pa-
rameters.

Run System→Auto-Assign Base Addresses to locate each
component in memory. The completed system configuration is
shown in Figure 12.

Finally, click on the “System Generation” tab, make sure
“Simulation. Create simulator project files” is disabled (sim-
ulation with the DE2 does not work well without models for the
various off-chip peripherals) and click “Generate.” This should

Figure 8: Associating the signals with interfaces

Figure 9: Setting the interfaces

3



Figure 10: Signals for the LED flasher

fill your project directory with many .vhd files.
When system generation completes (this takes a while), click

on Exit and return to the Quartus II GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-
port it into a Quartus II project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios II system that was just generated and whatever
hardware you want to connect to it. In this case, we only need
to wire the Nios II to the external clock and connect the SRAM
and LEDs to their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios_system.vhd (along with a lot of other
things). As usual, its component definition is essentially just
the ports on the entity, which were named by SOPC Builder.

Figure 13 shows the top-level VHDL file. Put this in the
project directory and add it to the Quartus project. Also add
the relevant .vhd files that were generated by SOPC builder:
cpu_jtag_debug_module.vhd, cpu.vhd, jtag_uart.vhd, leds.vhd,
sram.vhd, and nios_system.vhd. Make sure you put “lab3.vhd”
below the others (it won’t find the nios_system entity otherwise).

By default, the name of the top-level entity is the name of
the project2. Open lab3.vhd and use Project→Set as Top-Level
Entity to change this.

Match the pin names to locations by selecting
Assignments→Import Assignments and choosing the
DE2_pin_assignments.csv file.

Impose a global timing constraint by choosing
Assignments→Classic Timing Analyzer Wizard.

Select an overall default frequency requirement, then set De-
fault fmax to 50 MHz (Figure 14). Leave the defaults alone on
the next window, then click Finish.

Compile the project and download it to the board. Congratu-
lations! You just built a computer.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_led_flasher is

port (
clk : in std_logic;
reset_n : in std_logic;
read : in std_logic;
write : in std_logic;
chipselect : in std_logic;
address : in unsigned(4 downto 0);
readdata : out unsigned(15 downto 0);
writedata : in unsigned(15 downto 0);

leds : out unsigned(15 downto 0)
);

end de2_led_flasher;

architecture rtl of de2_led_flasher is

type ram_type is array(15 downto 0) of unsigned(15 downto 0);
signal RAM : ram_type;
signal ram_address, display_address : unsigned(3 downto 0);
signal counter_delay : unsigned(15 downto 0);
signal counter : unsigned(31 downto 0);

begin
ram_address <= address(3 downto 0);

process (clk)
begin
if rising_edge(clk) then
if reset_n = ’0’ then
readdata <= (others => ’0’);
display_address <= (others => ’0’);
counter <= (others => ’0’);
counter_delay <= (others => ’1’);

else
if chipselect = ’1’ then
if address(4) = ’0’ then
if read = ’1’ then
readdata <= RAM(to_integer(ram_address));

elsif write = ’1’ then
RAM(to_integer(ram_address)) <= writedata;

end if;
else
if write = ’1’ then

counter_delay <= writedata;
end if;

end if;
else
leds <= RAM(to_integer(display_address));
if counter = x"00000000" then
counter <= counter_delay & x"0000";
display_address <= display_address + 1;

else
counter <= counter - 1;

end if;
end if;

end if;
end if;

end process;

end rtl;

Figure 11: led_flasher.vhd: VHDL source for the LED flash
controller. This memory-maps a 16×16 RAM into 16 halfwords
and a single “delay” register into another 16. When the RAM
is not being written, a counter steps through the contents of the
RAM, displaying it on the LEDs. The delay register sets the
hold time for each address.

4



Figure 12: The final configuration of the system

2.4 Nios II IDE

Next, create a new software project for your new computer sys-
tem. Since each system is different (e.g., different memory lay-
out, different peripherals), the software is tied to the system.

Run nios2-ide and switch the workspace to your project di-
rectory.

Select File→New→Nios II C/C++ Application.
Name the new (software) project something like

lab3_software (this is arbitrary—it creates a directory with this
name in your project directory).

Select the “nios_system.ptf” file in your project directory as
the SOPC Builder System. This should set the CPU to “cpu_0.”

Finally, select the “Hello World” template and click Finish.
At this point, you can build and run the project on your board,

but it does not do much. Instead, replace “hello_world.c” in the
lab3_software directory (i.e., the name of the software project
you specified) with the code in Figure 15, which exercises the
LED flasher peripheral we added earlier.

3 An FM Sound Synthesizer

This project is a stripped-down version of Ron Weiss, Gabriel
Glaser, and Scott Arfin’s Terrormouse project from 4840 in
spring 2004. Feel free to use it as reference and adapt what
VHDL you can, but make sure you understand what you are
using.

In 1973, John Chowing introduced the idea of FM synthesis
and the world has not sounded the same since. His basic in-
sight is that FM waveforms are easy to produce and are “natural
sounding.” The basic FM equation is

x(t) = sin
(
ωct + I sin(ωmt)

)
where x(t) is the amplitude at time t, ωc is the carrier frequency
(the fundamental tone we hear), ωm is the modulating frequency,
and I is the modulation depth. The timbre of the sound is largely
determined by the ratio ωc/ωm, which is generally set to an in-
teger ratio (e.g., ωc = 3ωm).

The fundamental frequency of musical notes follow an expo-
nential scale. The A above middle C is 440 Hz, and going up an
octave doubles the frequency.

Western music is built on a scale of twelve semitones, each in
equal ratio. Thus, the frequencies of a standard scale are of the

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity lab3 is
port (
signal CLOCK_50 : in std_logic; -- 50 MHz
signal LEDR : out std_logic_vector(17 downto 0); -- LEDs

SRAM_DQ : inout std_logic_vector(15 downto 0);
SRAM_ADDR : out std_logic_vector(17 downto 0);
SRAM_UB_N, -- High-byte Data Mask
SRAM_LB_N, -- Low-byte Data Mask
SRAM_WE_N, -- Write Enable
SRAM_CE_N, -- Chip Enable
SRAM_OE_N : out std_logic -- Output Enable
);

end lab3;

architecture rtl of lab3 is
signal counter : unsigned(15 downto 0);
signal reset_n : std_logic;

begin

LEDR(17) <= ’1’;
LEDR(16) <= ’1’;

process (CLOCK_50)
begin
if rising_edge(CLOCK_50) then
if counter = x"ffff" then
reset_n <= ’1’;

else
reset_n <= ’0’;
counter <= counter + 1;

end if;
end if;

end process;

nios : entity work.nios_system port map (
clk => CLOCK_50,
reset_n => reset_n,
leds_from_the_leds => LEDR(15 downto 0),
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N
);

end rtl;

Figure 13: lab3.vhd: The top-level entity

Figure 14: Imposing a global timing constraint

5



#include <io.h>
#include <system.h>
#include <stdio.h>

#define IOWR_LED_DATA(base, offset, data) \
IOWR_16DIRECT(base, (offset) * 2, data)

#define IORD_LED_DATA(base, offset) \
IORD_16DIRECT(base, (offset) * 2)

#define IOWR_LED_SPEED(base, data) \
IOWR_16DIRECT(base + 32, 0, data)

int main()
{

int i;
printf("Hello Michael\n");

IOWR_LED_SPEED(LEDS_BASE, 0x0040);

for (i = 0 ; i < 8 ; i++) {
IOWR_LED_DATA(LEDS_BASE, i, 3 << (i * 2));
printf("writing %x\n", i);

}

for (i = 8 ; i < 16 ; i++) {
IOWR_LED_DATA(LEDS_BASE, i, 3 << (32 - (i * 2)));
printf("writing %x\n", i);

}

for (i = 0 ; i < 16 ; i++) {
printf("reading %x = %x\n", i,

IORD_LED_DATA(LEDS_BASE, i));
}

printf("Goodbye\n");

return 0;
}

Figure 15: A hello_world.c file that imitates KITT from Knight
Rider (yes, I lived through the 80s). It sets the cycling speed, fills
the LED_flasher peripheral with a pattern, then reads it back to
verify it works as memory.

form
f = 440 ·2p/12

where f is the frequency in Hertz, p = 0 is the A above middle
C, p = 1 is A], p = 2 is B, p = 3 is C, p = 12 is the A the octave
above, p =−12 is the A the octave below, etc.

3.1 Starting Points

In the lab3.tar.gz file, we have supplied some helpful files
you should use as a starting point. The most interesting is
de2_wm8731_audio.vhd, which implements an interface to the
Wolfson WM8371 audio codec on the DE2 board. This operates
either in a test mode that generates a sinewave (a pure tone), or
as a parallel-to-serial converter.

We included two Verilog files that configure the WM8371:
de2_i2c_controller.v and de2_i2c_av_config.v. You should be
able to just instantiate them without modification. They send
initialization commands through the two-wire I2C bus.

lab3_audio.vhd is a simple top-level module that instantiates
the audio controller in test mode and the two I2C bus compo-
nents. You can build a new Quartus project with this as a starting
point and should hear a tone on line out.

Finally, we have included a PS/2 keyboard controller.

3.2 The PS/2 Controller

The file de2_ps2.vhd is the core of an Avalon peripheral that can
read data coming from a PS/2 keyboard. This is simpler than the
one you used in lab 2 (e.g., it cannot send data to the keyboard),
but will suffice. Use SOPC Builder to create a new component
around it and connect the two PS/2 lines (clock and data) to the
appropriate pins.

Important: for this peripheral, set the “Slave addressing”
mode to “NATIVE.” This affects whether the peripheral will ap-
pear as two words (register mode) or two bytes (memory mode).

This peripheral presents a simple two-word interface: reading
the first byte of the first word returns 1 if a byte is available and
zero otherwise. Reading the first byte of the second word returns
the byte received from the keyboard.

Thus, if DE2_PS2_BASE is the base address of the PS/2 con-
troller peripheral, you can wait for the next data byte using

unsigned char code;

while (!IORD_8DIRECT(DE2_PS2_BASE, 0)) ; /* Poll the status */
code = IORD_8DIRECT(DE2_PS2_BASE, 4);
/* Get received byte */

3.3 What To Do

You have two things to design: an Avalon peripheral that can
generate an FM waveform under software control that you feed
to the supplied WM8371 audio controller, and a C program that
translates key events from the PS/2 keyboard into commands for
your FM oscillator. Basically, make the PS/2 keyboard behave
like a dumb piano keyboard.

Using the LED flasher example peripheral, build an Avalon
peripheral that presents registers that control the oscillation fre-
quency, the modulation depth, and a simple volume control
(on/off) that lets you turn off the oscillator when no key is
pressed.

Use a sinewave lookup table to generate the waveform. Step
through it at different rates to generate the different tones.

First, develop the oscillator functionality first using Model-
Sim to test that your waveform is as you expect. Then, in-
tegrate it with the supplied audio codec controller and make a
VHDL-only design that actually generates sound. Finally, add
an Avalon interface to your oscillator, use SOPC Builder to inte-
grate a Nios II, the supplied PS/2 keyboard controller, and your
new component, and develop the software.

4 A Bouncing Video Ball

After you implement this project, you will feel a much stronger
connection with Nolan Bushnell, the inventor of the first
commercially-successful videogame, Pong. Of course, you
won’t find it quite as lucrative.

You have two things to design: an Avalon component that dis-
plays a small white circle on the screen under software control,
and a C program that controls the position of this circle.

Use the code in de2_vga_raster.vhd as a starting point for
your Avalon component. It is a simple VGA controller that
displays a large white rectangle against a blue background. It
currently does not have a bus interface. You need to add one
and change its behavior so that it displays a small circle. The
lab3_vga.vhd file holds a simple top-level for this component

6



that can be used to build a skeleton project.
First, adapt the video generator to display a circle instead of a

rectangle. Make sure you add signals that control where on the
screen the circle appears. While developing this, you can just
set these to constants; later software will supply them.

Your other challenge is building an Avalon peripheral. Use
the LED flasher from the tutorial as a basis for building a pe-
ripheral. First, get an Avalon peripheral working by building
the registers you plan to use in the end for your video controller
and connect them to some LEDs to verify you can communicate
from the software to the hardware.

Once you have a working peripheral, integrate your modified
video controller with it.

Finally, write a simple C program that bounces the ball around
the screen.

7


