
GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Galaxian
CSEE 4840 Embedded System Design

*Department of Computer Science

†Department of Electrical Engineering

†Department of Computer Engineering

School of Engineering and Applied Science,

Columbia University in the City of New York

March 2011

Xiaotian Huo

Computer Engineering Department

xh2144@columbia.edu

Yaolong Gao

Electrical Engineering Department

yg2258@columbia.edu

Qi Ding

Computer Science Department

qd2110@columbia.edu

Feng Ding

Electrical Engineering Department

fd2266@columbia.edu

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Abstract:

The main goal of this project is to implement a classic video game Galaxian based on

the Altera Cyclone II FPGA board. The project involves both hardware set up and

software programming. Moreover, this project is focused on the video signal

processing and image display with the FPGA board. This design report will provide

the general idea of the project and the details of the implementation.

Introduction:

Galaxian is a 1979 fixed shooter arcade game by Namco and released by Midway

Mfg. in the US. The game is a great success on the first generation of Family

Computer platform (also known as FCs). This game introduced several firsts to the

game industry at that time. Although true color (as opposed to a color overlay for a

game that was otherwise black and white) began appearing as early as 1975, Galaxian

took graphics a step further with multi-colored animated sprites and explosions, a

crude theme song, different colored fonts for the score and high score, more

prominent background "music" and the scrolling starfield, and graphic icons that

showed the number of ships left and how many rounds the player had completed. Due

to these features, rebuilding this game becomes a perfect project to exploit the FPGA

board with its powerful image processing functionality.

To implement the Galaxian game, the project will involve both hardware set up and

software programming. Especially, due to the complex display of the game, the

hardware set up will take the most of the work. Including: the display of images like

“spaceship” and “enemy”, the arrangement of enemies in the screen and the set up of

PS2 keyboard.

For the software, the difficulty lies in how the enemies fly down and then return to its

previous position. The algorithm will have to handle the path of the fly, the position

that avoids collision among enemies themselves and how to aim at the player.

The game play is very simple. The player gets 3 lives and wins by eliminating all the

enemies and loses if lost all lives. The player can control the spaceship to move right

and left with keyboard.

http://en.wikipedia.org/wiki/Fixed_shooter
http://en.wikipedia.org/wiki/Arcade_game
http://en.wikipedia.org/wiki/Namco
http://en.wikipedia.org/wiki/Midway_Games
http://en.wikipedia.org/wiki/Midway_Games
http://en.wikipedia.org/wiki/United_States

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Project Details:

1. General Idea

The general idea of the project is that the Altera Cyclone II FPGA board is used to

display the game graphics and the C code will control the objects’ positions and

introduce the play rules and simple enemy AI. This kind of infrastructure will help

to reduce the hardware complexity and save resources on the board. The

following sections will introduce how to organize the hardware and set up the

peripherals on the FPGA board in order to realize the game display and the

infrastructure the software.

2. Hardware Organization and Peripheral Set Up

In this project, there are three major hardware devices, i.e. the FPGA board, the

display, keyboard and sound box. To make these devices work properly, they

should be connected together and set up the FPGA board. The figure below is the

block diagram of the basic hardware architecture and thus makes the FPGA board

programmable.

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

The green block in fig 2-1 indicates the real hardware devices and all the other blocks

together with the Avalon Bus is the architecture of the FPGA board. Here, orange

blocks stands for Avalon slaves and the blue block is the CPU. The keyboard module,

VGA controller and the Audio controller are interfaces which make the block can

communicate through the Avalon bus. Here, the keyboard module uses the given code

which provided in Lab 3 hence its interface and control logic written in VHDL code is

in a same file. The VGA controller and Audio controller are written in our project. All

these three blocks will be bind to the Avalon bus with SOPC builder in the Quartus.

The VGA raster is the block which actually communicates with the LCD displayer

through VGA port and displays the game graphics. In the VGA block, the basic

Avalon Bus

SRAM

sla
v
e

NIOS 2

Processor

sla
v
e

Keyboard

Module

Keyboard
sla

v
e

VGA Controller

VGA Raster

LCD Displayer

sla
v
e

Fig 2-1 Basic Architecture

Audio Module

Audio Controller

Sound Box

sla
v
e

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

graphic patterns will be pre-set and the software will send the coordinates of positions

to the VGA raster hence realize the control of the game graphics. The audio controller

and audio module works in a similar way to the VGA controller and VGA raster.

Software will tell the audio block when to play which kind of sound. The details of

the implementation will be provided in the upcoming sections.

2.1 Keyboard

The keyboard in this project is used to let the player control the space ship in the

game. Though as an input device, it does not have much communication with

other block in the FPGA architecture. With the SPOC builder, the data from

keyboard can be visited from Avalon bus in the C code. Then, the software will

send the corresponding new coordinates to the VGA raster and update the position

of the space ship. Thus, the control of the game is realized.

2.2 VGA Blocks

We decided to build a two dimensional matrix that can display up to 8 colors at

once. Each element in the matrix is composed of a 3-bit vector. The value of the

vector indicates different colors. In our design, the colors are designated like this:

Black: “000”

Blue: “001”

White: “010”

Red : “011”

Yellow: “100”

Brown: 101

Green: “110”

We generate our icons mostly in 16×16 pixels, that means a 16×16 matrix is

needed to store the color information. For example, the icon of the “bee enemy” is

shown below:

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

The matrix that describes this bee is like this:

Signal sprite_bee :matrix := (

("000","000","000","000","000","000","110","000","000","110","000","000","000","000","000","000"),

("000","000","000","000","000","000","110","000","000","110","000","000","000","000","000","000"),

("110","110","000","000","000","000","110","110","110","110","000","000","000","000","110","110"),

("110","110","000","000","000","110","010","000","110","010","110","000","000","000","110","110"),

("110","110","110","110","110","110","110","110","110","110","110","110","110","110","110","110"),

("110","110","110","110","110","110","110","110","110","110","110","110","110","110","110","110"),

("000","000","000","000","110","110","110","110","110","110","110","110","000","000","000","000"),

("001","001","000","000","110","110","110","110","110","110","110","110","000","000","001","001"),

("001","001","001","000","000","110","110","110","110","110","110","000","000","001","001","001"),

("001","001","001","001","000","110","110","110","110","110","110","000","001","001","001","001"),

("001","001","001","001","001","001","110","110","110","110","001","001","001","001","001","001"),

("000","000","000","000","000","000","000","110","110","000","000","000","000","000","000","000"),

("000","000","000","000","000","000","000","110","110","000","000","000","000","000","000","000"),

("000","000","000","000","000","000","000","110","110","000","000","000","000","000","000","000"),

("000","000","000","000","000","000","000","110","110","000","000","000","000","000","000","000"),

("000","000","000","000","000","000","000","110","110","000","000","000","000","000","000","000")

)

Similarly, we can generate the graphics of other icons in the same way:

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Big_bee:

It’s matrix description:

Signal sprite_big_bee :matrix := (

("000","000","000","000","000","000","011","011","011","011","000","000","000","000","000","000")

("001","000","000","000","000","011","011","011","011","011","011","000","000","000","000","001")

("001","001","000","000","011","011","010","011","011","001","011","011","000","000","001","001")

("001","001","001","011","011","011","011","011","011","011","011","011","011","001","001","001")

("001","011","011","011","011","011","011","011","011","011","011","011","011","011","011","001")

("001","100","011","011","011","011","011","011","011","011","011","011","011","011","100","001")

("001","100","100","011","011","011","011","011","011","011","011","011","011","100","100","001")

("001","001","100","100","100","100","100","100","100","100","100","100","100","100","001","001")

("000","001","001","100","100","100","100","100","100","100","100","100","100","001","001","000")

("000","000","001","001","000","000","000","100","100","000","000","000","001","001","000","000")

("000","000","000","001","001","000","000","100","100","000","000","001","001","000","000","000")

("000","000","000","000","001","001","000","100","100","000","001","001","000","000","000","000")

("000","000","000","000","000","001","000","100","100","000","001","000","000","000","000","000")

("000","000","000","000","000","000","000","100","100","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","100","100","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","100","100","000","000","000","000","000","000","000")

)

Plane:

We use 20×20 pixel matrix to describe the plane:

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Signal sprite_plane :matrix := (

("000","000","000","000","000","000","000","000","000","011","000","000","000","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","000","000","011","000","000","000","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","000","000","011","000","000","000","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","000","011","011","011","000","000","000","000","000","000","000","000","000")

("000","000","000","000","000","000","000","011","011","011","011","011","000","000","000","000","000","000","000","000")

("000","000","000","000","000","000","011","011","011","011","011","011","011","000","000","000","000","000","000","000")

("000","000","000","000","000","011","011","011","011","011","011","011","011","011","000","000","000","000","000","000")

("000","000","000","000","000","011","011","011","011","011","011","011","011","011","000","000","000","000","000","000")

("000","000","010","000","000","011","000","000","001","011","001","000","000","011","000","000","010","000","000","000")

("000","010","010","010","000","000","000","001","001","011","001","001","000","000","000","010","010","010","000","000")

("000","010","001","010","000","000","000","001","001","011","001","001","000","000","000","010","001","010","000","000")

("000","010","001","010","000","000","001","001","001","011","001","001","001","000","000","010","001","010","000","000")

("000","010","001","001","001","001","001","001","001","011","001","001","001","001","001","001","001","010","000","000")

("010","010","001","001","001","001","001","001","001","011","001","001","001","001","001","001","001","010","010","000")

("010","010","001","001","001","001","000","001","001","011","001","001","000","001","001","001","001","010","010","000")

("010","010","001","001","010","000","000","001","001","000","001","001","000","000","010","001","001","010","010","000")

("000","010","001","010","010","000","000","001","000","000","000","001","000","000","010","010","001","010","000","000")

("000","010","001","010","000","000","000","000","000","000","000","000","000","000","000","010","001","010","000","000")

("000","010","010","010","000","000","000","000","000","000","000","000","000","000","000","010","010","010","000","000")

("000","000","010","000","000","000","000","000","000","000","000","000","000","000","000","000","010","000","000","000")

)

Destroyed enemy:

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

Signal sprite_plane :matrix := (

("000","000","000","000","000","000","000","000","000","101","000","000","000","000","000","000")

("000","000","000","000","000","101","100","100","100","101","101","101","101","000","000","000")

("100","101","000","000","000","101","101","101","101","100","101","101","101","000","000","000")

("100","100","100","100","101","101","101","100","101","100","101","100","101","101","101","101")

("101","100","101","100","101","101","100","100","100","101","101","100","100","100","101","101")

("000","101","101","100","101","101","100","100","100","101","100","100","100","101","101","000")

("000","000","000","100","100","101","101","101","101","100","100","101","100","101","101","000")

("000","000","000","000","100","100","101","101","101","101","100","100","101","101","101","000")

("000","000","101","101","100","101","101","100","101","100","100","101","101","000","000","000")

("000","000","101","101","101","101","101","100","101","100","100","101","101","000","000","000")

("101","101","101","100","100","100","100","101","101","101","100","100","101","000","000","000")

("101","101","100","100","100","101","100","100","101","100","100","100","100","101","101","101")

("101","100","101","101","101","101","101","101","000","101","101","101","100","100","101","101")

("101","100","101","101","000","000","100","101","000","000","000","101","101","100","100","100")

("101","101","000","000","000","000","100","100","000","000","000","101","101","101","101","101")

("000","000","000","000","000","000","101","101","000","000","000","000","000","000","000","000")

)

2.3 Audio Blocks

The sound output in the game is implemented with WM8731 Audio CODEC

(combining ADCs and DACs) provided on the DE2 board introduced in the Lab 3.

However, in our project, we will not synthesis the sound but load the saved music

file in directly in the audio module. Another choice is that we can implement the

interface of the SD card on the FPGA board. This will add complexity to the

project but will provide extra freedom.

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

3. Software Infrastructure and Implementation

With the properly set up hardware, the software can access to each module

through the Avalon bus. The communication with the keyboard is simple and

clear. The C code will try to read the input that the player made using the

keyboard. Then the program will react to the input with switch/case statement.

The program will update the coordinates of the space ship and send it to the VGA

raster block. Meanwhile, in the program the corresponding values of the space

ship position and check to see it the space ship will be hit by the enemy or not.

Another big part of the software is to control the movement of the enemy. First,

the whole enemy will move from right to left in a regular pattern. The program

will send the position of the left up corner of the enemy matrix block to the VGA

raster and the VGA will update the position whole enemy block. Secondly, the

program will control parts of the enemy to fly down from the enemy block and

towards the space ship in some kinds of path. This is a little bit difficult since

when the enemy flies down, it involves the strange path that the enemy flies and

how it returns to its previous position.

Apart from these, the bullet that the space ship shot is another complex design. In

the original game, there is at most one bullet in the screen. This feature can be

implemented by checking the status of the bullet to see whether it reaches the top

of the screen or hit an enemy.

References:

1. en.wikipedia.org/wiki/Galaxian

