
Programming Languages and Translators

Stephen A. Edwards

Columbia University

Fall 2008

Pieter Bruegel, The Tower of Babel, 1563

Instructor

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

http://www1.cs.columbia.edu/~sedwards/

462 Computer Science Building

Office Hours: 4–5 PM Tuesday, 3–4 PM Wednesday

Schedule

Mondays and Wednesdays, 1:10 - 2:25

535 Mudd

Lectures: September 4 to December 6

Midterm: October 29

Final: December 8 (in-class)

Final project report: December 19

Holidays: November 3 (Election day)

Objectives

Theory of language design

◮ Finer points of languages

◮ Different languages and paradigms

Practice of Compiler Construction

◮ Overall structure of a compiler

◮ Automated tools and their use

◮ Lexical analysis to assembly generation

Required Text

Alfred V. Aho, Monica S. Lam, Ravi

Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques,
and Tools.

Addison-Wesley, 2006. Second

Edition.

Bug Al about all bugs.

Assignments and Grading

40% Programming Project

20% Midterm

30% Final

10% Individual homework

Project is most important, but most students do well on it.

Grades for tests often vary more.

Prerequisite: COMS W3157

Advanced Programming

Teams will build a large software system

Makefiles, version control, test suites

Testing will be as important as development

Prerequisite:

COMS W3261 Computability and Models of

Computation

You need to understand grammars

We will be working with regular and context-free languages

Class Website

Off my home page, http://www1.cs.columbia.edu/~sedwards/

Contains syllabus, lecture notes, and assignments.

Schedule will be continually updated during the semester.

Collaboration

Collaborate with your team on the project.

Exception: CVN students do the project by themselves.

Do your homework by yourself.

Tests: Will be closed book with a one-page “cheat sheet” of

your own devising.

Don’t cheat on assignments (e.g., copy from each other): If

you’re dumb enough to cheat, I’m smart enough to catch you.

Every term I’ve caught people cheating and sent them to the

dean. Please try to break my streak.

Part I

The Project

The Project

Design and implement your own little language.

Five deliverables:

1. A proposal describing and motivating your language

2. A language reference manual defining it formally

3. A compiler or interpreter for your language running on

some sample programs

4. A final project report

5. A final project presentation

Teams

Immediately start forming four-person teams to work on this

project.

Each team will develop its own langauge.

All members of the team should be familiar with the whole

project.

Exception: CVN students do the project by themselves.

First Three Tasks

1. Decide who you will work with

You’ll be stuck with them for the term; choose wisely.

2. Elect a team leader

Languages come out better from dictatorships, not

democracies. Besides, you’ll have someone to blame.

3. Select a weekly meeting time

Harder than you might think. Might want to discuss with a

TA you’d like to have so it is convenient for him/her as well.

Project Proposal

Describe the language that you plan to implement.

Explain what problem your language can solve and how it

should be used.

Describe an interesting, representative program in your

language.

Give some examples of its syntax and an explanation of what it

does.

2–4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your

language.

Follow the style of the C language reference manual (Appendix

A of Kernighan and Ritchie, The C Programming Langauge; see

the class website).

Final Report Sections

1. Introduction: the proposal

2. Language Tutorial

3. Language Reference Manual

4. Project Plan

5. Architectural Design

6. Test Plan

7. Lessons Learned

8. Complete listing

Due Dates

Proposal September 24 soon

Reference Manual October 20

Final Report December 19

Design a language?

A small, domain-specific language.

Think of awk or php, not Java or C++.

Examples from earlier terms:

Quantum computing language

Geometric figure drawing language

Projectile motion simulation langauge

Matlab-like array manipulation language

Screenplay animation language

Other language ideas

Simple animation language

Model train simulation language

Escher-like pattern generator

Music manipulation language (harmony)

Web surfing language

Mathematical function manipulator

Simple scripting language (à lá Tcl)

Petri net simulation language

Part II

What’s in a Language?

Components of a language: Syntax

How characters combine to form words, sentences,

paragraphs.

The quick brown fox jumps over the lazy dog.

is syntactically correct English, but isn’t a Java program.

class Foo {
public int j;
public int foo(int k) { return j + k; }

}

is syntactically correct Java, but isn’t C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

expr → expr + expr
| expr − expr

| expr ∗ expr

| expr / expr

| digit

| (expr)

Components of a language: Semantics

What a well-formed program “means.”

The semantics of C says this computes the nth Fibonacci

number.

int fib(int n)
{

int a = 0, b = 1;
int i;
for (i = 1 ; i < n ; i++) {
int c = a + b;
a = b;
b = c;

}
return b;

}

Semantics

Something may be syntactically correct but semantically

nonsensical.

The rock jumped through the hairy planet.

Or ambiguous

The chickens are ready to eat.

Semantics

Nonsensical in Java:

class Foo {
int bar(int x) { return Foo; }

}

Ambiguous in Java:

class Bar {
public float foo() { return 0; }
public int foo() { return 0; }

}

Specifying Semantics

Doing it formally is beyond the scope of this class, but there

are basically two ways:

◮ Operational semantics

Define a virtual machine and how executing the program

evolves the state of the virtual machine

◮ Denotational semantics

Shows how to build the function representing the

behavior of the program (i.e., a transformation of inputs

to outputs) from statements in the language.

Most language definitions use an informal operational

semantics written in English.

Part III

Great Moments in Evolution

Assembly Language

Before: numbers

55

89E5

8B4508

8B550C

39D0

740D

39D0

7E08

29D0

39D0

75F6

C9

C3

29C2

EBF6

After: Symbols

gcd: pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

movl 12(%ebp), %edx

cmpl %edx, %eax

je .L9

.L7: cmpl %edx, %eax

jle .L5

subl %edx, %eax

.L2: cmpl %edx, %eax

jne .L7

.L9: leave

ret

.L5: subl %eax, %edx

jmp .L2

FORTRAN

Before

gcd: pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

movl 12(%ebp), %edx

cmpl %edx, %eax

je .L9

.L7: cmpl %edx, %eax

jle .L5

subl %edx, %eax

.L2: cmpl %edx, %eax

jne .L7

.L9: leave

ret

.L5: subl %eax, %edx

jmp .L2

After: Expressions, control-flow

10 if (a .EQ. b) goto 20
if (a .LT. b) then

a = a ­ b
else

b = b ­ a
endif
goto 10

20 end

COBOL

Added type declarations, record types, file manipulation

data division.
file section.

* describe the input file
fd employee­file­in

label records standard
block contains 5 records
record contains 31 characters
data record is employee­record­in.

01 employee­record­in.
02 employee­name­in pic x(20).
02 employee­rate­in pic 9(3)v99.
02 employee­hours­in pic 9(3)v99.
02 line­feed­in pic x(1).

From cafepress.com

LISP, Scheme, Common LISP
Functional, high-level languages

(defun gnome­doc­insert ()
"Add a documentation header to the current function.

Only C/C++ function types are properly supported currently
(interactive)
(let (c­insert­here (point))
(save­excursion

(beginning­of­defun)
(let (c­arglist

c­funcname
(c­point (point))
c­comment­point
c­isvoid
c­doinsert)

(search­backward "(")
(forward­line ­2)
(while (or (looking­at "^$")

(looking­at "^ *}")
(looking­at "^ *")
(looking­at "^#"))

(forward­line 1))

APL
Powerful operators, interactive language, custom character set

Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html

At right: Datamedia APL Keyboard

Algol, Pascal, Clu, Modula, Ada

Imperative, block-structured language, formal syntax

definition, structured programming

PROC insert = (INT e, REF TREE t)VOID:
NB inserts in t as a side effect
IF TREE(t) IS NIL THEN t := HEAP NODE := (e, TREE(NIL), TREE(NIL))
ELIF e < e OF t THEN insert(e, l OF t)
ELIF e > e OF t THEN insert(e, r OF t)
FI;

PROC trav = (INT switch, TREE t, SCANNER continue, alternative)VOID:
traverse the root node and right sub­tree of t only.
IF t IS NIL THEN continue(switch, alternative)
ELIF e OF t <= switch THEN

print(e OF t);
traverse(switch, r OF t, continue, alternative)

ELSE # e OF t > switch #
PROC defer = (INT sw, SCANNER alt)VOID:

trav(sw, t, continue, alt);
alternative(e OF t, defer)

FI;

Algol-68, source http://www.csse.monash.edu.au/~lloyd/tildeProgLang/Algol68/treemerge.a68

SNOBOL, Icon

String-processing languages

LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@’
SP.CH = "+­,=.*()’/& "
SCOTA = SP.CH
SCOTA ’&’ =
Q = "’"
QLIT = Q FENCE BREAK(Q) Q
ELEM = QLIT | ’L’ Q | ANY(SCOTA) | BREAK(SCOTA) | REM
F3 = ARBNO(ELEM FENCE)
B = (SPAN(’ ’) | RPOS(0)) FENCE
F1 = BREAK(’ ’) | REM
F2 = F1
CAOP = (’LCL’ | ’SET’) ANY(’ABC’) |

+ ’AIF’ | ’AGO’ | ’ACTR’ | ’ANOP’
ATTR = ANY(’TLSIKN’)
ELEMC = ’(’ FENCE *F3C ’)’ | ATTR Q | ELEM
F3C = ARBNO(ELEMC FENCE)
ASM360 = F1 . NAME B

+ (CAOP . OPERATION B F3C . OPERAND |
+ F2 . OPERATION B F3 . OPERAND)
+ B REM . COMMENT

SNOBOL: Parse IBM 360 assembly. From Gimpel’s book, http://www.snobol4.org/

BASIC

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT A$
30 IF A$ <> "5" THEN GOTO 60
40 PRINT "GOOD JOB, YOU GUESSED IT"
50 GOTO 100
60 PRINT "YOU ARE WRONG. TRY AGAIN"
70 GOTO 10
100 END

Started the whole Bill Gates/

Microsoft thing. BASIC was

invented by Dartmouth

researchers John George Kemeny

and Thomas Eugene Kurtz.

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

class Shape(x, y); integer x; integer y;

virtual: procedure draw;

begin

comment ­­ get the x & y coordinates ­­;

integer procedure getX;

getX := x;

integer procedure getY;

getY := y;

comment ­­ set the x & y coordinates ­­;

integer procedure setX(newx); integer newx;

x := newx;

integer procedure setY(newy); integer newy;

y := newy;

end Shape;

C

Efficiency for systems programming

int gcd(int a, int b)
{

while (a != b) {
if (a > b) a ­= b;
else b ­= a;

}
return a;

}

ML, Miranda, Haskell
Functional languages with a syntax

structure RevStack = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =
(case s

of [] => true
| _ => false)

fun top (s:’a stack): =
(case s

of [] => raise Empty
| x::xs => x)

fun pop (s:’a stack):’a stack =
(case s

of [] => raise Empty
| x::xs => xs)

fun push (s:’a stack,x: ’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

class() {
classname=‘echo "$1" | sed ­n ’1 s/ *:.*$//p’‘
parent=‘echo "$1" | sed ­n ’1 s/^.*: *//p’‘
hppbody=‘echo "$1" | sed ­n ’2,$p’‘

forwarddefs="$forwarddefs
class $classname;"

if (echo $hppbody | grep ­q "$classname()"); then
defaultconstructor=

else
defaultconstructor="$classname() {}"

fi
}

VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming

Visicalc on the Apple II, c. 1979

SQL

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t­shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM(’red’, ’blue’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL

REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t­shirt’, ’blue’, LAST_INSERT_ID());

SQL T-Shirt

From thinkgeek.com

Prolog

Logic Language

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, X).
path(X, Y) :­ edge(X, Z), path(Z, Y).

	The Project
	What's in a Language?
	Great Moments in Evolution

