
Yet Another Image-processing
Language

Uday Chandrasen
Andrew Kisch
Aniket Phatak

Pranay Prabhakar

COMS W4115: Programming Languages
and Translators, Fall 2010

Overview & Motivation
• Why Image Processing

– Tangible output

– Amenable to numerical algorithms well suited for
computers

– Well understood problem domain

• Goals of YAIL:

– Flat learning curve

– Support for images and filters

– Support for frequent operations

– Ease of implementation of frequent image operations

Tutorial
• Start off – Nothing different from the ordinary:

– Open your favourite editor.

– Start off with the function main().

– Write YAIL code within this function. May also create your own
functions.

– Save the file with the .YAIL extension.

– Call the YAIL compiler on the target file.

• C based syntax

• Data types: int, float, string, image, filter

• Special operation: Convolution (image # filter)+

• Special built-in functions to aid image operations.

Tutorial
• Hello World

int main()
{
 int i;
 string s
 s = “Hello World”;
 for (i = 0; i < 5; i = i + 1)
 {
 print (s);
 }

 return 0;
 }

• Notice that the function declaration begins with a ‘{‘ and ends with
a ‘}’

All variables must be declared
before first “execution” line.

Built-in function

Tutorial
• Using the image functions
int main()

{

 image im;

 image im2;

 im = newImage("/home/ppp2113/yail/edwards.jpg");

 im2 = meanFilter(im);

 printImage(im2);

 printImage(edgeDetection(im));

 saveImage(im2,"/home/ppp2113/yail/edwards_edged.jpg");

 return 0;

}

 Original Softened Edged

Tutorial
• Using the image filters

Sobel’s vertical derivative
int main()

{

 image im;

 filter sobelY;

 im = newImage("/home/ppp2113/yail/edgyjpg");

 sobelY = { -1.0,-2.0,-1.0; 0.0, 0.0, 0.0; 1.0,2.0,1.0};

 printImage(im);

 printImage(im # sobelY);

 return 0;

}

 Original Edged

Implementation

Implementation Stages

• Early Stage

• Middle Stage

• Late Stage

Summary
• Goals achieved

– Simplicity: The learning curve is believed to be reduced as the syntax is
C based.

– Images and Filters can be easily constructed and represented.

– Rich support in terms of built-in functions

• Lessons learned
– Adjusting to a new programming paradigm is difficult, however Ocaml

is really succinct and well suited for describing grammars.

– Appreciation of how computer languages work.

– A big project needs discipline and ability to make hard choices to meet
deadlines.

– Cross team collaboration has a lot of difficulties. Regular
communication is the key.

Thank You

