Curtis Henkel
Matthew Duane
Chatura Atapattu
Kevin Ramkishun

TONEDEF

Motivation

= Create a language for the "Musical Computer
Scientist"

= Bring the semantics of musical composition

to a programming language
* Flexible enough for a variety of uses

Simple music creation
Algorithmic music creation

Language Overview

Imperative programming language
Statically scoped, weakly-typed
Types are immutable

No pointers

No polymorphism of function names
[* Comments */

Source file is piped in and optional output file
can be piped out.

Types

int digits only

boolean true or false

string chars inside double quotes
pitch $[A-G][b#]?[0-9]?
sequence comma-separated list of ints inside []
beat rational numbers

note pitch + beat

chord set of notes

phrase ordered list of chords
rhythm 1,0,-,_ within "'

void void

Operators

Arithmetic: + = * / // %
Comparators: < > <= >= == I=
Unary: - 1

Note/Chord Manipulation: ™ ™M
Phrase Manipulation: << >> ** @@
Assighment: =

Function Declarations

type func _name (type name list) {
body

Program is a list of function declarations
Applicative order
Pass-by-value parameters

Special functions
main
print
play

Syntax Overview

expression := literal | unop expr

expr binop expr

name (expr list) | name = expr
[expr list] | name

statement := expr; | if (expr) stmt [else stmt]
for (expr; expr; expr) stmt

while (expr) stmt

foreach(type name in expr) stmt
return expr;

fstmt list }

type name [= expr];

Example Program - Phrase Creation

void function main() {
note n = $C5 : 1//4;
sequence s = [];
for (int 1 = 0; 1<10; 1 = 1+1){
s = s + [x]; /* Creates a sequence
+
phrase p = n << reverse_sequence(s); /* Creates phrase using note
and sequence */
play(p);
s

sequence function reverse_sequence (sequence in_seq) {
sequence s = [];
foreach (int x in in_seq) {
s = [x] + s;

}

return s;

Language Implementation

Sample Bytecode

void function main() {
foreach (int i in [4,5,6]) {
print (i + "\n");

Jmp 2

HIt

Entry 1

PushEmpty sequence
Pushlnt 6

Combine

Pushint

Combine

Pushint

0
1
2
3
4
5
§)
5
8

9 Combine Concat
10 Bra 10 Jmp -1
11 Decompose Pop

Store 1 IsEmpty
13 Pop Beq -10
14 Load 1 Pop

15 ConvertType int - Pushint O
>string Ret O
16 PushString \n

Stack

type mbeat = int * int (* numerator, denominator *)

type mnote = int * mbeat (* pitch, beat *)

type mchord = mnote list (* list of notes *) Argument 2

Argument 1
Return Address
Old Frame Pointer
Local1
Local 2

type mphrase = mchord list (* list of chords *) Frame

type msequence = int list pointer

Meminteger of int
MemString of string
MemPitch of int

MemBool of bool MemChord (mchord([mnote(61, mbeat(z, 2))]))

MemBeat of mbeat MemNote (mnote(65, mbeat (3, 4)))

MemNote of mnote
MemChord of mchord

MemPhrase of mphrase MemBeat (mbeat(z, 4))

MemString (string("Quicksort Music"))

MemSequence of msequence Memlinteger (42)

MemRhythm of string

How We Collaborated

Source Code Control - Subversion
Hosting by Assembla.com
Stress frequent commits

Automatic E-Mail on new commits to notify team
members

Google Documents

Collaborative editing on all documents and
presentations

Proposal, Task List, LRM, Presentation, Final Report
Instant Messaging, E-Mail conversations
Impromptu meetings (after class) as required

Lessons Learned

= KISS - Keep it Simple Stupid (cliche, we know)
Everything is just an integer or a string

= |[f you don't have an easy solution, just add

another layer of indirection
Orthodox stack -> Object based stack

Summary & Conclusion

= Successfully implemented Tonedef per the
Language Reference Manual
= Future work
Overlapping phrases
User interaction in program
Command arguments

Different instruments, tempo and time signature

