
MIDILC

Fredric Lowenthal, Ye Liu, Akiva
Bamberger, Ben Mann

Outline

• Overview
• Tutorial and demo
• Implementation
• Lessons

Overview
Akiva

• Music programs like Sibelius require a lot of point and click
action.

• Not nerd friendly!

MIDILC
Akiva

• Language is structured to help nerds build music quickly.
• Structure of the language is broken into several types:

o Void
o Number - a 32 bit signed integer which can be used for

math and logic
o Note - a musical atom consisting of two Numbers, pitch

and duration, and represented by one of several Note
literals matching regex [A-G R][b#][0-9][w h e s q]

o Chord - a collection of Notes with same start time +
duration (represented as list of Numbers)

o Sequence - a collection of Chords (represented as list of
list of Numbers)

More about MIDILC
Akiva

• Dynamically typed
language, with type
declarations necessary for
variable declarations and
optional for functional
declarations and
parameters

• Statically scoped with
applicative order

• Fun for the whole family!

Say hello to your new
instrument!

What's included?
Akiva

• Built in functions for
several important features,
such as play(),
set_instrument(),
set_tempo(),
new_chord(), and
new_sequence()

• Bytecode + CSV as
Intermediate
Representation

Beethoven says "Writing
symphonies in MIDILC is fun
and makes me giggle. Tee
hee!"

MIDILC Basics
Fred

• All MIDILC programs must have a main() function that
includes a play() statement, in order to generate an
output.

• Declarations must come before any other statements; they
can't be intermingled.

• A sequence must be passed into the play() function
• set_instrument() and set_tempo() can be used to

set the instrument via a string with the instrument's name,
and a number with the tempo in BPM, respectively. If they
are both used, they must be called in that order, before the
play() function

MIDILC Basics
Fred

• A simple program:

 main() {
 Chord cMajor;
 Note root;
 Sequence seq;

 root = C4;
 cMajor = new_chord(root, root .+ 4, root .+ 7);
 seq = new_sequence();
 seq = seq + cMajor;
 play(seq);
 }

MIDILC Basics
Fred

• The sample program creates a Note, Chord, and
Sequence object, and then plays the sequence, composed
of one chord (the C major chord).

• As this example shows, music can be composed using
simple mathematical operations (in this case, numerically
instantiating a major chord from a root); the .+ operator
indicates an addition operation that uses the pitch
property.

Tutorial:
 Twinkle, Twinkle

Declaring Variables
Ye

main(){
 Chord ch1;
 Chord ch2;
 Chord ch3;

Declare all variables

Declaring Variables
Ye

main(){
 Chord ch1;
 Chord ch2;
 Chord ch3;
 Sequence s;
 Number i;
 Number r1;
 Number r2;

Declare all variables

Initializing Variables
Ye

main(){
 Chord ch1;
 Chord ch2;
 Chord ch3;
 Sequence s;
 Number i;
 Number r1;
 Number r2;
 ch1 = new_chord(C,E,G);
 ch2 = new_chord(C,F,A);
 ch3 = new_chord(G3s,B3s,D4s,F4s);

 s = new_sequence();

Initialize Chord and Sequence

Building a Sequence
Ye

main(){
 Chord ch1;
 Chord ch2;
 Chord ch3;
 Sequence s;
 Number i;
 Number r1;
 Number r2;
 ch1 = new_chord(C,E,G);
 ch2 = new_chord(C,F,A);
 ch3 = new_chord(G3s,B3s,D4s,F4s);
 s = new_sequence();
 s = s + C + C;
 s = s + ch1 + ch1 + ch2 + ch2 + ch1;
 s = s + arpeggiate(ch3) + F + F;
 s = s + E + E + D + D + C;

Add Notes,
Chords, and
Sequence
returned by
arpeggiate()

Tempo and Play
Ye

main(){
 Chord ch1;
 Chord ch2;
 Chord ch3;
 Sequence s;
 Number i;
 Number r1;
 Number r2;
 ch1 = new_chord(C,E,G);
 ch2 = new_chord(C,F,A);
 ch3 = new_chord(G3s,B3s,D4s,F4s);
 s = new_sequence();
 s = s + C + C;
 s = s + ch1 + ch1 + ch2 + ch2 + ch1;
 s = s + arpeggiate(ch3) + F + F;
 s = s + E + E + D + D + C;
 set_tempo(125);
 play(s);
}

Set tempo and
play the song
as a CSV

The arpeggiate() function
Ye

function nameSequence arpeggiate(Chord chord) {
 Number n;
 Number i;
 Sequence s;
 s = new_sequence();
 n = chord.length;
 for(i = 0; i < n; i=i+1) {
 s = s + chord[i];
 }
 return s;
}

variable declarations

for loop
subscripting for Chord

return a Sequence

Bytecode
Ye

0 global variables
0 Jsr 36
1 Hlt
2 Ent 3
3 Jsr -3
4 Sfp 3
5 Drp
6 Lfp -2
7 Mem length
8 Sfp 1
9 Drp
10 Num 0
11 Sfp 2
12 Drp
13 Sjp (7,15,0)
14 Bra 13
15 Lfp 3
16 Lfp 2
17 Lfp -2
... etc

CSV output
Ye

CSV file
(tick, duration, pitch)

Tempo,125
0,4,60
4,4,60
8,4,60
8,4,64
8,4,67
12,4,60
12,4,64
12,4,67
16,4,60
16,4,65
16,4,69
20,4,60
20,4,65
20,4,69
24,4,60
... etc

24,4,64
24,4,67
28,1,55
29,1,59
30,1,62
31,1,65
32,4,65
36,4,65
40,4,64
44,4,64
48,4,62
52,4,62
56,4,60

Implementation
Ben

Compilation
Ben

• Turns AST into bytecode
• Special features

o Note literals (e.g., A, A#6h)
o Built in functions

 Chord constructor varargs
o break and continue

Execution
Ben

• Turns bytecode into CSV
• Stack holds bytecode objects
• Global and local variables also bytecode objects
• Assignment replaces the data in the lvalue with the rvalue
• Special features:

o Subscripting and direct selection
o Casting

Lessons

• Akiva:
o Understand and complement teammates' strengths
o Build and test

• Fred:
o Good source control and tools save time
o Work as a group, not a set of components

• Ye:
o Testing is your friend

• Ben
o Investing time in understanding

 No manual? RTFM → RTFC
o Command line

