MIDILC

Fredric Lowenthal, Ye Liu, Akiva
Bamberger, Ben Mann



Outline

* Overview

* Tutorial and demo
* Implementation

* Lessons



Overview

Akiva

* Music programs like Sibelius require a lot of point and click
action.
* Not nerd friendly!




MIDILC

Akiva

* Language is structured to help nerds build music quickly.
* Structure of the language is broken into several types:
© Void
o Number - a 32 bit signed integer which can be used for
math and logic
© Note - a musical atom consisting of two Numbers, pitch
and duration, and represented by one of several Note
literals matching regex [A-G R] [b#][0-9][w h e s (]
© Chord - a collection of Notes with same start time +
duration (represented as list of Numbers)
© Sequence - a collection of Chords (represented as list of
list of Numbers)



More about MIDILC

Akiva
* Dynamically typed Say hello to your new
language, with type iInstrument!

declarations necessary for
variable declarations and
optional for functional
declarations and
parameters

* Statically scoped with
applicative order

* Fun for the whole family!




What's included?

Akiva

* Built in functions for Beethoven says "Writing
several important features, = symphonies in MIDILC is fun
such as play (), and makes me giggle. Tee
set instrument (), hee!"

set tempo (),
new chord(), and
new sequence ()
* Bytecode + CSV as
Intermediate
Representation




MIDILC Basics

Fred

* All MIDILC programs must have a main () function that

iIncludes aplay () statement, in order to generate an
output.

Declarations must come before any other statements; they
can't be intermingled.

* A sequence must be passed into the play () function

set instrument () and set tempo () can be used to

set the instrument via a string with the instrument's name,

and a number with the tempo in BPM, respectively. If they
are both used, they must be called in that order, before the
play () function



MIDILC Basics

Fred

* A simple program:

main () {
Chord cMajor;
Note root;
Seguence seq;

root = C4;

cMajor = new chord(root, root .+ 4, root .+ 7);
seq = new sequence();

seq = seq + cMajor;

play (seq);



MIDILC Basics

Fred

* The sample program creates a Note, Chord, and
Sequence object, and then plays the sequence, composed
of one chord (the C major chord).

* As this example shows, music can be composed using
simple mathematical operations (in this case, numerically
instantiating a major chord from a root); the .+ operator
iIndicates an addition operation that uses the pitch
property.




w

. w
. w
w Tutori.al: | w
* Twinkle, Twinkle *
x ¥ *
w w

w w



Declaring Variables

Ye

main () { _
Chord chl; Declare all variables

Chord ch?2;
Chord ch3;



Declaring Variables

Ye

main () {

Chord chl; Declare all variables
Chord ch?2;

Chord ch3;

Sequence s;

Number 1i;

Number rl;

Number r2;



Initializing Variables

Ye

main () {
Chord chl;
Chord ch?2;
Chord ch3;
Sequence s;
Number 1i;
Number rl;
Number r2;

chl = new_chord(C,E,G); Initialize Chord and Sequence
ch2 = new chord(C,F¥,A7);
ch3 = new chord(G3s,B3s,D4s,F4ds);

s = new_sequence () ;



Building a Sequence

Ye

main () {
Chord chl;
Chord ch?2;
Chord ch3;
Sequence s;
Number 1i;
Number rl;
Number r2;
chl = new chord(C,E,G);
ch2 = new chord(C,F¥,A7);
ch3 = new chord(G3s,B3s,D4s,F4ds);
S = new_sequence();
= s + C + C;

0 n n

s +
= s + arpeggilate(ch3) + F + F;
s + £+ E+ D+ D + C;

chl + chl + ch?2 + ch2 + chl;

Add Notes,
Chords, and
Sequence
returned by

arpeggiate()



Tempo and Play

main () {
Chord chil;
Chord ch?2;
Chord ch3;

Sequence s; Set tempo and
Number 1i; play the song

Number rl;
Number r2; as a CSV

chl = new chord(C,E,G);

ch?2 = new chord(C,F,A);

ch3 = new chord(G3s,B3s,D4s,F4ds);

= new_sequence();

= s + C + C;

s + chl + chl + ch?2 + ch2 + chl;
= s + arpeggilate(ch3) + F + F;

= s + E+F + D+ D + C;

set tempo (125);

play(s);

0 n n » 0
I



The arpeggiate () function
Ye

Sequence arpeggiate (Chord chord)

Number n;
Number 1i;
Sequence s;

S = new_sequence();

n = chord.length;

for(i = 0; 1 < n; 1=i+1)
s = s + chord[i1];

}

return s;

{

function name

variable declarations

for loop
subscripting for Chord

return a Sequence



Bytecode

global wvariables
Jsr 36
Hlt
Ent 3
Jsr -3
Sfp 3
Drp
Lfp -2
Mem length
Sfp 1
Drp
Num O
Sfp 2
Drp
Sjp (7,15,0)
Bra 13
Lfp 3
Lfp 2
17 Lfp -2
... etc

O Joy Ut WD E OO

el e = )
oUW N O



CSV output

Tempo, 125
0,4,60
4,4,60
8,4, 60
8,4, 64
8,4,67
12,4,60

12,4, 64 _
12,4, 67 CSV file

16,4, 60 (tick, duration, pitch)
16,4, 65

16,4, 69

20,4, 60

20,4, 65

20,4, 69

24,4,60

... etc



Implementation

Ben

Scanner/Lexer

Y

.minput
file

scanner.mll

l tokens

Parser
parser.mly

l AST

Compiler
compile.ml

bytecode

Y
Bytecode
Interpreter

Media Player
(not included)

sound

midi
audio file

Assembler
CSV2MIDI java

execute.ml

producing intermediate .csv file

8-y

producing .midi file from intermediate

]



Compilation

Ben

* Turns AST into bytecode
« Special features
o Note literals (e.g., A, A#6h)
o Built in functions
* Chord constructor varargs
o break and continue



Execution

Ben

* Turns bytecode into CSV

Stack holds bytecode objects

Global and local variables also bytecode objects
Assignment replaces the data in the Ivalue with the rvalue
Special features:

o Subscripting and direct selection

o Casting



Lessons

* Akiva:
o Understand and complement teammates' strengths
o Build and test
* Fred:
o Good source control and tools save time
o Work as a group, not a set of components
* Ye:
o Testing is your friend
* Ben
o |[nvesting time in understanding
* No manual? RTFM — RTFC
o Command line



