DiGr: Directed Graph Processing Language
PLT Fall 2010 Final Project Report

Bryan Oemler (Team Leader)
Ari Golub
Dennis V. Perepelitsa

22 December 2010

Contents

1

Introduction
1.1 What Problems Can DiGr Solve?

Tutorial

2.1 Basics e
2.2 Loops and Conditions
2.3 User Defined Operations
24 Graphs
2.5 Graph Traversal

Language Reference Manual

3.1 Lexical conventions
3.1.1 Comments
3.1.2 Identifiers
3.1.3 Keywordso
3.1.4 Constants L
3.1.5 Operators
3.1.6 Separators
3.1.7 Scoping and Execution L
3.1.8 Statements
3.1.9 Theprint() opt

3.2 Primitive Types
3.2.1 Basic Primitive Types oo
3.2.2 Node e
3.23 Edge

3.3 Derived Types o

3.3.1 Arrays 17

3.3.2 Opts . . . 17

3.3.3 Crawl s 18

3.34 Rule 19
3.4 Connection Context 21

3.4.1 Grammar e e 21
3.5 Logic . . .o e 22

3.5.1 Conditional Logic 22

3.5.2 Boolean Logic oo 22
3.6 Control Logic 23
Project Plan 24
4.1 Project Timeline 24
4.2 Style Guide 24
4.3 Team Member Roles and Responsibilities 25
4.4 Software Development Environment 25
4.5 Project Logo 26
Architectural Design 35
5.1 DiGr Compiler Modules 35
5.2 Definitions and Librarieso 37
Test Plan 38
6.1 Dbasiccrawl test 39
6.2 recursivecrawl test L 42
Lessons Learned 48
Appendix 49
81 scanner.mll 49
8.2 wparseramly 51
83 ast.ml 56
8.4 interpret.mlo 58
8.5 translate.ml 70
86 cast.ml s 81
8.7 compileml 83
8.8 digr.h . .. 89
8.9 digr.cpp 91

1 Introduction

DiGr (pronounced to rhyme with “tiger”) is a compiled, imperative, object oriented
language designed to easily create, process and modify directed graphs. Directed graphs are
simple yet flexible graph theory concepts which show up in everything from basic computer
science data structures to gaming. Fundamental objects and operations in DiGr make it
easy to quickly and efficiently define trees and graphs, and then modify, search, traverse and
otherwise interact with them. DiGr also provides support for more abstract concepts like
tree traversals and value hierarchies.

DiGr is a language in which nodes and edges are the most natural objects. Its syntax
allows for the creation of nodes, edges, and entire graph structures with small, concise
statements. In DiGr, the user can write the minimum amount of information needed to
define the digraph, and the compiler will intelligently fill in the rest of the details. Each
node and directed edge efficiently stores any additional amount of user information, allowing
for a wide variety of user applications. Where possible, DiGr tries to hide implementation
details from the user: for example, undirected graphs are compiled as a special type of
directed graph, and tree traversal queues present only a minimal front-end to the user.

In DiGr, it is also easy to crawl and manipulate digraphs. “Crawls” are a special type
of function defined in a way convenient for depth-first, breadth-first, or any other type of
user-defined traversals of digraphs. That is, the most primitive function in the language is
a recursive one that moves from parent to children nodes. Crawls are general enough to be
useful in many graph-related applications, but narrowly defined enough to let the user do a
lot while writing a little.

When given a start node and a “rule” by the user, crawls use an internal queue to
move through and examine or modify a directed graph. The user defines which action, if
any, the crawl takes at a given node. The rule guides graph traversal by determining the
structure of the queue at each step. For example, three variants depth-first search variants
are implemented by changing the order in which the rule adds children to the queue. In a
conditional path traversal, the crawl maintains a queue with a single node in it.

1.1 What Problems Can DiGr Solve?

DiGr can be applied to a number of problems which can be modeled and solved using basic
graph theory operations and ideas. These span from the academic and abstract to more down
to earth applications, from finding the best route between points based on various criteria
(distance, cost, time required), to designing and modeling search trees and search algorithms
for fast storage and look-up of data (contacts lists, dictionary definitions, computer process
trees), to even fancier applications like implement finite state machines (and, by extension,
regular expressions). Here is a specific example.

A main concern in commercial shipping is getting the products to their destination in as
economical a fashion as possible, be it the economy of time, money, or some other factor.
Thus it is very important to have an easy yet sophisticated model of the shipping lanes, facto-
ries, and destinations involved. The DiGr language is ideal for describing and manipulating

the kind of data that a route planner would deal with.

The factories and destinations are represented as DiGr nodes and the shipping lanes
that connect them are DiGr edges. The attributes of the edges could represent weight or
importance based on a number of factors including distance, frequency traveled, difficulty of
transportation, etc. When shipping lanes are temporarily disabled, say, due to weather, those
edges could be represented as “broken”; the connection would still exist, but an attribute
would render it inactive. Different choice of rules in specially written crawls could select
routes by speed or efficiency (e.g. “take the edge with less financial cost”, “take the edge of
shorter distance”) and return two very different routes. Adding and modifying the network
are very natural low-level operations in the DiGr language, as are ways to modify and
examine the network.

2 Tutorial

The DiGr programming is designed to make creating, modifying and inspecting directed
graphs easy and efficient. It provides tools for constructing trees, and an extensible traversal
framework. This tutorial will walk you through the basis of DiGr, but will necessarily leave
some details out. For more information, please see the reference manual below.

2.1 Basics

DiGr is built on a C-like base. Each program begins execution in an opt with no argu-
ments called main, declared as follows :

opt main(){

...program code. .

Your running program will start within these brackets.

DiGr has 5 variable types: integers, floating point numbers, strings, nodes and edges.
The first 3 types are simple data types, similar to variables in other languages. Nodes and
edges are more complex variable types that we will get to later.

First let’s start with a simple statement that does something in the DiGr language.

opt main(){

print ("Hello World")!

print is a simple operation call that takes its contents, a string "hello world” in this case,
and displays it on the console. A program consists of multiple statements like this, each
ending in an exclamation mark.

To store values for later use we have variables. Declare a new variable in the form:

type Variable_namel!

Type can be str, flt, int, node or edge. The variable name must start with either a lower
or upper case character, and consist of any number of underscores, characters or numbers.
The following statement declares a string variable.

str MyStringl!

Set a variable to a certain value with the =’ symbol, either while declaring it or any

time afterward.

str MyString = "DiGr"!
MyString = "Program"!

To store a collection of values in one symbol, use an array. An array is declared with
a set size. Once declared,the size cannot be changed. The following example illustrates an
array of integers with size 5 being declared:

int MyIntArray[5]!

You can initialize an array on declaration by assigning a bracket enclosed list of values
of the appropriate type. Not the length of the list must not exceed the length of the array

int myList[56] = {1;2;3;4;5}!

2.2 Loops and Conditions

Iteration is handled with the while loops, which take conditional statements like:

e value == value : check to see if the values are equal.

e value != value : check to see if the values are not equal.

and the scalar comparisons <, > , <=, >=. Anything within the body of the while loop
runs while these conditions hold. The following example illustrates the while loop:

while (myInt != 1)
{
myInt = myInt - 1!

For control logic we have if else statements. Like other languages, we check a condition
within the if statement and run the first block if statements if it evaluates to true, and the
else block if the statement evaluates to false. The else block is optional. We can see its use
in the following lines of code.

if (myVal ==5)

{

newValue = 5!
}
else
{

newValue = 6!
}

2.3 User Defined Operations

You can also declare operations to serve as functions. We declare these with the opt label,
name and arguments. Arguments have a direction type, either in or out, a data type, and
a name within the scope of the operation. Operation declaration cannot be nested. They
are declared outside of opt main and can be referenced in any code before or after the opt
declaration. The following is an example of an operation function.

opt addThree(in int n; out int return)

{

return = n + 3!
This operation takes the value n, adds 3 to it and pass it back to the caller in the return
variable. The following code calls it:
opt main(){
int m!

addThree(3;m) !
print(m)! : This prints 6

Note that the argument passed must be a variable, as the operation sets its value.

2.4 Graphs

Now to get to the real strength of DiGr, the node and edge types, and their traversal.
Node objects represent vertices in a graph, and an edge object is used to connect them.
DiGr can connect two nodes with a simple statement.

nodel -> node2!

We have now created an edge between nodel and node2. The — > indicates that this
is a directed edge, out from nodel, in to node2. We could have done the reverse with the
following statement:

nodel <- node?2!
or
node2 —-> nodel!

If we wanted an undirected edge, we could use:

nodel -- node2!

There is an easier, quicker way to create edges between nodes. Using an array of nodes
you can create what we call a Connection Context. In a single line of code we can connect
any number of nodes with any type of connections within the array. The following line of
code will show you how:

int myNodeArray([5] = [0 -> (2->4), 3 |!

With this one line of code we have created 3 connections between 4 nodes. The connection
context is enclosed within the — — symbols. The numbers here reference the nodes at
the array index. You can see the edge type between them. A comma after an integer or
parenthesized unit allows us to connect the first node to multiple nodes with the same kind
of edge. See the Language reference manual for more details.

We will be able to utilize these edge types with crawl operations on these nodes. Node
objects have built in special properties which you can access by nodevariable.property.

e myNode.parent (n) : gives you the nth node that has a directed edge into myNode

myNode.child(n): the same thing as parent but the edge direction is reversed

myNode . inedges and myNode.outedges both return just the number of those types of
edges connected to myNode.

e You can retrieve those edges with the node.outedge(n) and node.inedge(n) proper-
ties, similar to the parent and child properties.

You can also define your own properties for a node with the following line of code.
myNode.weight = 5!

These attributes must be integers. If you attempt to reference an attribute that has not
already been defined, the value will be 0.

Edge objects are similar in a lot of ways to the node object. They are implicitly created
when you create a node connection, but can be declared independently in their own variable.
Edges are declared with the edge type. They have properties similar to the node, that can
access the nodes they are connecting. Additionally, they can be given additional properties
in the same way as nodes.

2.5 Graph Traversal

To really make the most use of these connections we can use a crawl. A crawl is defined
like a function, with crawl name(args) rather than opt name(args). The body of the crawl
itself usually only operates on a single node, though implicit in a crawl is a graph traversal
function. The crawl moves through nodes that have been connected in the direction of their

edges. It uses a queue to determine the order of the traversal, and calls a rule object (see
below) to determine what (if anything) to add to the queue.

A crawl has two special key words to handle the traversal. The current symbol represents
the node that the crawl is currently on. The call imperative executes the rule, which may
or may not add any additional nodes to the queue.

Here is a very basic crawl which does not make use of its rule:

crawl myCrawl(in int compareValue)

{
if (current.weight == compareValue)
{
print("this is the right node")!
+
}

This crawl compares the current node’s weight property with the value passed to the
crawl. If these matches, it prints a message. To start a crawl, you call it like an opt but
with additional special arguments.

opt myOpt () {

myCrawl (5) from myNode with myRule!

The from-with statement at the end handle two additional arguments. myNode is the
starting point, the first node to be processed with the crawl.

myRule is a rule, a special object that guides the crawl. A rule is declared like a function,
but has no arguments.

rule myRule{
..rule code..

}

A rule’s job is to decide which nodes are queued up for the crawl.

It has some special functions which manage the queue. It also has the current handle
which points to the node the crawl is at. It can add a node to the queue with the add (node)
function and add to the front of the queue with the addFront (node) function. In each case
the argument passed must be a variable of type node.

Now that we have some idea as to what the rule is we can put the crawl and rule together.
When the crawl runs and reaches the end of the body of statements, it looks at the first node
in the queue. If there is something on the queue, it runs again, with this new node set to
the current handle. Within the crawl you can add new nodes to the queue by invoking the

rule with the call command. This adds nodes to the queue according to the rule set. You
can also change the rule with the set command. The following examples illustrates both of
these commands.

crawl newCrawl(in int someVar)

{
call! :add new nodes to the queue, if applicable.
set (newRule)! :change the way we add nodes to the queue :
call! : add new nodes with the new rule :
+

And there you have it. Within the crawl we can modify or output variables within a
graph. And we use a rule to make traversal of this graph as simple as possible.

To put all the pieces together now, we have 3 code block types, the crawl, rule and opt.
Opts are general functions with one main function for the program, crawls are specialized
operations with iteration built in, and rules guide the crawls.

Hopefully these tools will be helpful to you in any graph related problem solving. There
are subtleties in the language we have glossed over here. For further information, see the
language reference manual below.

3 Language Reference Manual

3.1 Lexical conventions

There are 5 kinds of tokens: identifiers, keywords, constants, operators, and separators.
Tokens are separated by whitespace or new line characters.
3.1.1 Comments

Comment blocks begin and end with the colon character (:).!

3.1.2 Identifiers

An identifier is a sequence of letters, numbers and underscores, that begin with a letter.
Upper and lower case letters are considered distinct. Identifiers are at least one character
long, but no maximum length. Identifiers cannot start with any reserved DiGr keywords.

3.1.3 Keywords

The following keywords are reserved for use by the language.

Tt is DiGr tradition (but not syntactically required) to follow a starting comment character or lead a
closing comment character with a left or right parenthesis to form a smiley or frowny face.

10

add
addby
addfront
addbyfront
call
current
crawl
edge
flt
from

in

int
node
opt

out
print
queue
rule
set

str
while
with

3.1.4 Constants

Constants types in DiGr are either ints, f1ts, or strs. They will be discussed later.

3.1.5 Operators

The list of operators in DiGr, grouped into orders of precedence from highest to lowest,
is below. Note that not all operators act on all DiGr types.

* /%
+ -
== |I=

<= < >= >

&& ||

Some of these are binary operators, and some have a more specialized use. Their appli-
cation will be discussed in the relevant section below.

11

3.1.6 Separators

Semicolons (;) separate arguments in opt definitions. The comma character (,) is used to
separate argument in an opt call, node children in a connection context, and initial values
in an array declaration. Curly brackets are used to separate blocks of code.

3.1.7 Scoping and Execution

DiGr has a global scope in which crawls, opts and rules (only) may be declared. Every
DiGr program must contain an opt named main which takes no arguments, which is where
code execution begins.

DiGr is statically and locally scoped within each crawl, rule or opt, but an important
exception is that modifying outgoing variables modifies the corresponding variable in the
scope the crawl or opt was called from.

3.1.8 Statements
DiGr is an imperative language. All statements are terminated with the ! symbol.?
Statements can be grouped into blocks using open curly brace { and closed curly brace }.

3.1.9 The print() opt

print () is a built in DiGr opt that prints its argument, which can be any int, str, or
f1t separated by a comma (,). It is the basic mechanism by which DiGr passes information
from a running program.

3.2 Primitive Types

There are five kinds of primitive types: int, f1t, str, node, edge, and several derived
types, including rule and crawl. All primitive types must be declared before they can be
assigned or dereferenced. Primitive types are declared with their type name and the name
of the bound identifier:

type identifiername!

All primitive types are assigned by being on the left side of the = operator. A primitive
type can be assigned as it is declared:

type identifiername = initial_value!

2In DiGr, when you write a statement, you must really mean it!

12

3.2.1 Basic Primitive Types

The int (integer) is a signed, base 10 whole number. The range of ints is machine-
specific.
Example:

int magNum = 42!

Flts (floats) are a representation of real, decimal numbers.

3.14!
3.14! :(error):

flt pi
int pi

Strs (strings) begin and end with a double quote (7). The double quote itself (”) and
the backslash (\) must both be escaped with a backslash. (e.g. \\ and \"). Strings are
compared lexicographically.

Example:

str myName = "Ari"!
str myNumber 10! :(won’t work, 10 is not a str, it is an int):
str myNumber = "10"! :) this will work (:

The common mathematical operators + - * / have the usual meaning when used be-
tween two ints, two f1lts, or an int and a f1t. % is defined only between two ints. In the
case of an int and a f1t, the result will match the argument with the least precision.

Example:

int numA = 42!
flt numAl = 42!
flt numB = 10.5!

flt result = numA + numB! : result will be 52, not 52.5.
: This would also be true if result was of type int.
flt resultl = numAl + numB! : resultl will be 52.5 :

The addition operator can be used on two strings, and results in concatenation. If the
result is not stored anywhere, the concatenation has no effect on the original strings.
Example:

str first = "Ari"!

str last = "Golub"!

str fullname = first + " " + last!

print (fullName) ! : prints "Ari Golub"

13

3.2.2 Node

The node is a primitive type in DiGr that represents a node in directed and undirected
graphs, and other abstract objects. Nodes are connected to other nodes through edges. A
node must be declared before it can be used, unless it is created inside a connection context
(see below). A node can hold as many attributes of any name as the user wishes. Attributes
are designed to be a flexible concept, and can be created and modified on the fly with little
overhead.

Node opts

Each nodes has built in opts (DiGr functions) that can be called by placing a dot (.)
after the name of the node followed by the opt you wish to call. The functions are child,
parent, inedge, inedges, outedge and outedges.

e (node) node.child(int n) : Returns the (n+1)th child of the node counted by
node.children(). If n is not within the inclusive range (0,node.children()-1),
this function throws a runtime exception.

e (node) node.parent(int n) : Returns the (n+1)th parent of the node counted by
node.parents(). If n is not within the inclusive range (0,node.parents()-1), this
function throws a runtime exception.

e (int) node.inedges : Returns the integer number of edges coming in to the node.
e (int) node.outedges : Returns the integer number of edges coming out of the node.

e (edge) node.inedge(int n) : Returns the (n+1)th edge coming into the node. If
n is not within the inclusive range (0,node.inedges()-1), this function throws a
runtime error.

e (edge) node.outedge(int n) : Returns the (n+1)th edges going out of the node. If
n is not within the inclusive range (0,node.outedges()-1), this function throws a
runtime error.

e (int) node.<attributeName> : Returns the value of the attribute named
<attributeName>. See below for more information.

Undirected edges qualify as both in and out edges for the purposes of these functions.
Thus, the children and parents of the current node can be the same set of nodes.
Example (using connection context language, see below):

node tree[5] = | 0->1,(2->4) |!

node head = tree[0]!

print (head.inedges)! : prints "O"

print (head.outedges) ! : prints "2"

edge myEdge = head.inedges(0)! : myEdge is the edge from 0 -> 1

14

Node attributes

Attributes are integer values stored under a variable name within the node. Attributes are
defined simply by attempting to assign a value to them. In DiGr, referencing an undefined
attribute automatically creates an attribute of that name with a value of 0 in the node!

To get or set the value of an attribute, follow the node name with a dot (.) and the
name of the attribute. Attributes are declared by treating this as an identifier, and can
be normally assigned with (=). Node attribute names cannot start with the names of any
built-in node functions, including inedge, outedge, child and parent.

Example:

node myNode!
myNode.weight
int twoWeight

32!
myNode.weight * 2! : twolWeight = 64 :

Attributes that are declared but not initialized will have value of zero.

node myNode!
int t = myNode.weight!
print (t)! : prints O :

Operations on Nodes

The (=) operator between two nodes binds the identifier on the left to the object deref-
erenced by the identifier on the right.

The (->) and (<-) operators between two nodes will create an unnamed directed edge
from the first node to the second, or the second to the first, respectively. Alternatively, the
(--) operator will create an unnamed undirected edge.

Example:

node tree[5] = | 0 -> 1, (2 -> 4) |!
node head = tree[0]!

head.weight = 10!

node alt = treel[1]!

alt.weight = 20!

alt = head!
print(alt.weight)! : prints 10 :
node last = tree[4]! : reference to node number 4 from first line :

head <- last!
: creates a directed edge out of last and into head :

3.2.3 Edge

The edge is the complementary type to anode in DiGr. An edge can be explicitly declared
and named, but most often an edge object is created anonymously as a result of linking
nodes. An edge not bound to an identifier can still be accessed via the inedge () /outedge ()
function of a node. Like nodes, edges can be given any number of attributes.

Example:

15

node tree[5] = | 0->1,(2->4) |!
node head = tree[0]!
edge myEdge = head.outedges(0)!

Declaring a handle to an edge but not assigning to anything will create two anonymous
nodes for the directed edge to point between.

edge e!
node nout = edge.innode!
: valid reference since this object exists :

Edge opts

Each edge has built in opts (DiGr functions) that can be called by placing a dot (.) after
the name of the node followed by the opt you wish to call. The functions are innode and
outnode.

e (node) edge.innode : Returns the node this edge is pointing to.
e (node) edge.outnode : Returns the node this edge is leaving

e (int) edge.<attributeName> : Returns the value of the attribute named
<attributeName>. See below for more information.

Undirected edges are implemented as two directed edges in both configurations between
the two nodes.

Edge attributes

Edges have attributes in a manner almost identical to nodes. To get or set the value of
an attribute, follow the edge name with a dot (.) and the name of the attribute. Attributes
are declared by treating this as an identifier, and can be normally assigned with (=). Edge
attribute names cannot start with the names of any built-in edge functions, including innode
and outnode.

Example:

node treel4] = | 0 > 1, (2 > 4) |!

node head = tree[0]!

edge myEdge = head.inedges(1)!

: myEdge points to edge between O and 2 :
node three = myEdge.innode!

: three points to node 2 :

myEdge.value = 17!

Operations on Edges

The (=) operator between two edges binds the identifier on the left to the object deref-
erenced by the identifier on the left.

Example:

16

node tree[b] = | 0 -> 1, (2 -> 4)|!
node head = tree[0]!

edge el = head.outedges(0)! : el is between 0 and 1
edge e2 = tree[2].outedges(0)! : e2 is between 2 and 4 :
el = e2!

: the handle el now refers to the edge between 2 and 4 :

3.3 Derived Types
3.3.1 Arrays

DiGr supports arrays built out of any primitive type. Arrays are allocated by giving a
type and an identifier for the array, similar to creating a single instance of that type, but
following the identifier with an open and closed bracket and the integer number of elements
in the array in between the brackets.

type arrayidentifier [number_elements]!

Initialization

Alternately, the user can initialize the entire array at declaration by placing the initial
value of sequential elements inside curly brackets, separated by commas. Giving the array a
different array length than what the DiGr compiler infers from context will cause an error.

Examples:

int arr1[3]!

arr1[0] = 10!
int arrDeclared[4] = {1, 2, 3, 4}!
node treel[3] = | 0 > (1 > 2)|!

node badIntTree[3] = {17, 41}!
node badNodeTree[2] = [1 -> 2 -> 3!
: wrong, too many nodes in connection context for array size :

Array operations

Array indexing begins at 0, and elements are accessed by appending square brackets with
the element index to the end of the array. Trying to index into an array outside the bounds
of the array will generate a run-time error.

The (=) operator can be used on individual elements of an array to change the value of
that element. It can not be used to set one array equal to another.

3.3.2 Opts

Opts (operations) are the DiGr functions. opts must declare their input and output
variables as part of their signature. As a result, there are no return types in DiGr opts.
When called, ”in” variables can be constants, but "out” variables must be a previously
declared identifier of the proper type.

17

Opts are declared with a sequence of arguments in a parenthesis block separated by
semicolons (;), and with the body of the opt inside curly brackets. Each argument is denoted
in or out, its type and is given the local identifier to which the value is bound when the
opt is called. The body of an opt can contain any standard DiGr code except further
opt/crawl/rule definitions.

Example:

opt myFunc(in int varl; in int var2; out int result) {
if (varl > 10) {
result = varl x 2!

+
else {

result = varl + var2!
}

int result!
myFunc(3,12,result)!

print (result)! : prints 15 :

myFunc(11,7,result)!

print (result)! : prints 22 :
3.3.3 Crawl

A crawl is the DiGr type used to traverse a tree. Crawls are similar to an opt that will
run its code on every node it visits, when given which node to start at and the rules for
moving to additional nodes. They are general enough to be used for a variety of purposes,
but provide enough built-in functionality to quickly define different traversal behaviors and
operations.

When called, a crawl creates an internal queue of the next nodes to visit, and visits them
one at a time by popping the next node off the front of the queue. It executes its code at
each node. Fach crawl also has a rule that controls which nodes to add to the queue at any
given moment (usually somehow connected to the current node, see the rule section below).
A crawl only knows about one rule at a time, but this rule can be changed dynamically.
In this way, DiGr implements a level of abstraction in tree traversal: crawls describe what
one does at a node, while rules describe where one goes next. When run, a crawl must be
given an initial node to start at and an initial rule for how to move on from there.

Variables passed to crawls persist between iterations of the crawl code being executed on
nodes, but variables declared in the crawl are redeclared each time. Crawls may recursively
call themselves.

Crawls are defined with an opt-like set of in and out variables:

crawl myCrawl(in intypel invarl; ... ; out outtypel outvarl; ...) {

18

: list of crawl statements

Crawls are executed as follows:
myCrawl (myvarl; myvar2; ...; myoutvarl; ...) from mynodel with myrule;

Where "mynodel” is a node that serves as the initial starting point of the tree traversal,
and "myrule” is a rule that assigns the initial traversal rule to this crawl (see below). from
and with are reserved keywords used primarily for readability.

In addition to standard DiGr code, the crawl body can contain the following three oper-
ations:

e (node) current: Reference to the current node the crawl is visiting. This is the
handle the crawl uses to perform local computation on the node.

e call: Executes the current crawl’s rule. There is no return value.

e set <newrule>: Here, <newrule> is a rule. This updates the rule currently executed
by the crawl upon a call statement. There is no return value.

After executing all statements in the crawl body and reaching the closing parenthesis, the
crawl automatically moves on to the next node in the queue and starts again. If there are
no more nodes in the queue, the crawl terminates with no return value. Any locally-scoped
in and out variables persist between crawl operations on different nodes.

3.3.4 Rule

A rule is a special form of opt with no arguments that is used by a crawl to control
and inform tree traversal. This abstraction separates tree traversal from tree modification
(which is done in the body of a crawl, see above) into two distinct sets of operations. A
rule can be used in any number of crawls, but a crawl knows about only one rule (but
can update which one it is using).

Given a current node, a rule determines which nodes, if any, should be added to the
internal double-ended queue. Rules can modify either end of the queue, but crawls will
always pop the next node off the front to decide where to go next. A rule is declared as
follows:

rule myRule {
: rule body goes here :

}

There is one special keyword and four built-in opts that the rule uses to manipulate the
queue and guide an effective crawl:

19

e (node) current: A reference to the current node the crawl is at.

e add(node): Takes a node as an argument and adds it to the back of the queue. This
operation does not return a value.

e addfront(node): Takes a node as an argument and adds it to the front of the queue.
This operation does not return a value.

e addby(<property>, <ordering>, number to_add): Takes 3 arguments: the prop-
erty on which to sort, the ordering to use on that property, and how many of the
winning nodes to add to the back of the queue. The syntax for the first two arguments
is described below. If there are fewer children than the amount requested, addBy will
add as many as it can. Returns nothing.

e addbyfront (<property>, <ordering>, number to_add): Similar to addBy(), but
adds the winning nodes to the front of the queue.

The first argument to addby and addbyfront is the property being evaluated to determine
queuing order, written as edge.<attName> or node.<attName>, where <attName> is the
name of the attribute to be used for selection, and the keyword node or edge indicates
whether the rule is to sort children nodes by their attributes or by the attributes of the
edges connecting them to the current node.

The second argument describes how to order nodes or edges using the selected attribute.
The special symbols dollar sign ($) and tilde () tell the rule to sort in default ascending or
descending order, respectively.

The third argument sets a maximum on the number of nodes to add to the queue. The
rule will add up to, but not over, this number of nodes to the queue.

Example:

rule depthFirst {
int n = 0!
while (n < current.outedges) {
add(current.child(n))!
n= n+1!

rule breadthFirst {
int n = 0!
while (n < current.outedges) {
addfront (current.child(n))!
n= n+1!

20

rule weightFirstThreeMax {,
addby(node.weight,$,3)!
: this will add at most three children to the back of the
queue, starting with the node with the greatest weight

+

Note that the only handle to the tree being crawled is current, the node that the crawl
is at. This is a design choice to enforce the abstraction that a rule only does evaluation,
and not modification.

3.4 Connection Context

The connection context is the easiest way to create an entire tree of nodes in a single line.
The connection context has a special grammar and is only valid inside pipe (|) operators.
It must be on the right-hand side of an assignment to a node array, which has the same size
as the number of nodes in the described tree.

3.4.1 Grammar

The grammar of the language used to describe a tree inside the connection context can
be formally defined as follows (with tree as the starting symbol):

tree: node edge children
edge: > | <= | -=

children: child, children | child
child: node | (tree)

node: LIT_INT

LIT_INT is any integer. Integers are references to the node array that prefixes the con-
nection context, and are 0-indexed. The -> symbol is somewhat analogous to the standard
DiGr operator which is written the same way. It binds the node referenced on the left to the
tops of the subtrees listed on the right.

The multiple children of a node are separated by commas, and can be a single node (e.g.
|0->11) or a subgraph which is wrapped in parenthesis (e.g. 10->(1->2) |, in which case
node 1 is connected to node 2), or to multiple nodes (e.g. [0->1,2,3][, in which case node
0 is connected to nodes 1 2 and 3). The -- operator is similar to -=> but creates undirected
edges.

The size of the array must be large enough to include all of the nodes listed. If a node isn’t
listed in the connection context, that element of the array is a free-floating node unconnected
to the rest of the tree.

Examples:

: create a two node graph with a directed edge between the two:
node simple[2] = [0 -> 1!

21

: create a three node graph with node O pointing to node 1 and
: node 1 pointing to node 2:
node lineofthree[3] = |0 —> (1 -> 2)[!
: create a three node graph with node O pointing to nodes 1 and 2:
node split[3] = [0 -> 1, 2]!
: create a directed four-cycle:
node fourcycle[4] = [0 > (1 => (2 => (3 => 4)))|!
: create a complete 4-graph:
node fourcomplete[4] = |0--(1--2,3),(2--3),3]!
create a 6-node bipartite graph (with odds and evens in the two
: partitions, respectively):
node bipartite[6] = [0--(1--(2--3,5)),(3--(4--5)) |!

3.5 Logic
3.5.1 Conditional Logic

DiGr uses C-style "if then else” conditional logic statements. These statements can take
the following forms:

if (expression) { list_of_statements }
if (expression) { list_of_statements } else { list_of_statements }

where ”expression” has integer type (DiGr boolean expressions are equivalent to ints),
and the statements are standard DiGr statements.

3.5.2 Boolean Logic

DiGr has several boolean logic symbols: || (conditional or), && (conditional and), ==
(conditional equality), !'= (conditional inequality), < (less than), <= (less than or equal to),
> (greater than), and >= (greater than or equal to). These symbols can be used to create
boolean statements of arbitrary complexity for use in while loops or if statements.

Example:

node myNode!

myNode.weight = 19!

myNode.id = 21!

while(myNode.weight < 10 || myNode.id == 13) {
myNode.weight = myNode.weight + 1!
if ((myNode.weight % 20) == 0) {

myNode.id == myNode.id * 2!

X

3

print (myNode.id) !

: this outputs 42 :

22

3.6 Control Logic

All looping in DiGr is done in while loops. A while loop begins with a logical boolean
evaluation; if the evaluation results in true, the body of the while block is executed. If it is
false, the block is skipped. Once the body is executed, the while statement is re-evaluated
to check if it should run again. The syntax of the loop is C-like: the condition to be tested
follows the keyword while in parenthesis, which is then followed by a statement block.

There are no "break” or ”exit” commands to escape a while loop without violating the
while condition. To exit a while loop, the condition must evaluate to false by the end of the
while block. An example of a while loop:

int fact = 1!

int n = 5!

while (n > 1) {
fact = fact * n!
n=mn- 1!

}

print(fact)! : prints 120

23

4 Project Plan

Our weekly meetings with our TA Hemanth helped us greatly in our planning process. At
the early stages, while we were still figuring out what DiGr was really about, we had weekly
meetings on Monday nights to discuss a plan of attack for the rest of the project. We set
several deadlines, some of which we were able to meet and some of which had to be pushed
back due to heavy courseloads and the loss of a teammate. Around the midway point of the
semester we started to diverge in the work we were doing: Ari and Bryan focused on the
frontend while Dennis began the process of writing an airtight backend. At this point, tasks
were atomic enough that the team could split up and each person could implement his part
of the design contract. As the semester progressed, meetings became more frequent but less
formal in how often they would occur or how long they would last. As the semester wound
down and reading week began, the team met almost every night to work on the project.

4.1 Project Timeline

Our ideal timeline is outlined below. As is common, there was more of a crunch towards
the end of the project than we expected, as unknown unknowns came up.

e 11/14: Begin scanner/parser/ast development in parallel.

e 11/22: Begin first stage of interpreter development (namespace issues, scoping).
e 12/1: First tests ran, at the syntactic/semantic level.

e 12/3: 90% completion of the core of the DiGr front-end.

e 12/5: Begin development of C++ AST + compiler in parallel, while also working on
the C++ backend and translator. Front-end is stable but occasional changes in the
language are written in.

e 12/10: 95% completion on C++ backend and compiler.

e 12/11: 95% completion on translator. First complete pipeline from DiGr code to
executable output.

e 12/15: First run of entire test suite. Many errors.

e 12/15-12/22: Finishing implementation, test battery, writing documentation.

4.2 Style Guide

The focus of our style plan was to break up the OCaml code into its logical pieces with a
tabbing and newline scheme. All statements under the let statement that defines a function
is given an additional level of tabbing. In a match statement, all the values are indented and
the match comparisons form a single column. If the result section of each match spills past

24

the readable length of our text editor, it was moved to the next line and an additional level
of tabbing was added.
If statements were lined up in a single column as follows:

if condition
then statement
else statement

Any nested statements within these clauses is indented. When a single line of code gets
long, we break it up over multiple indented lines, usually by the various arguments being
passed to a method.

In the compiler and translator, our naming scheme for bound functions was to make
explicit what the inputs and outputs are. For example, cexpr_from expr took a single
DiGr AST expr as an argument and returned a single C++ AST cexpr. This saved some
significant time looking up the formatting of various functions when dealing with crawling
the typed abstract syntax trees.

4.3 Team Member Roles and Responsibilities

Due partially to the small size of our team, and partially to a need to develop quickly,
all three team members made at least nominal changes to every part of the compiler. With
that in mind, the main duties of each team member were as follows:

e Bryan (Team Leader): scanner / parser front-end, type checking / static semantic
checking in the interpreter, C+4 and DiGr AST development, team organization,
language white paper

e Dennis: initial symbol table / static semantic checking in the interpreter, transla-
tion involving DiGr objects and opt/crawl/rules, compilation work, C++ backend,
documentation structure.

e Ari: scanner / parser front-end, translation work involving connection contexts and
arrays, some compilation work, testing suite and test paradigm writeup.

The initial language design, as well as the language reference manual, was a team re-
sponsibility.

4.4 Software Development Environment

The DiGr compiler itself is written in OCaml, and the scanner and parser use the OCaml
lex and yacc extensions. The backend is written in C4++ with the use of a handful of
specific standard libraries (vector, algorithm, iostream, etc.). The documentation is written
in I TEX, make was used for build management, a subversion repository hosted by Google
Code was used for version control, and some flowcharts in the documentation were made

25

with GraphViz dot. bash shell scripting was used to run out test suite, and a python script
formatted the commit logs and actual code base for inclusion into the final report.

The development tools used varied among team members. Dennis used plain old emacs
and the command line. Ari used gedit with Ocaml syntax highlighting and command line.
Bryan used gedit as well with cygwin to compile all Ocaml code.

4.5 Project Log

r214 | dennis.v.perepelitsa | 2010-12-22 23:45:06 -0500 (Wed, 22 Dec 2010)
spell-checking all final paper modules, ready for turn in!

r213 | dennis.v.perepelitsa | 2010-12-22 23:38:58 -0500 (Wed, 22 Dec 2010)
mile reformatting of some code to fix LaTeX overfull h boxes

r212 | dennis.v.perepelitsa | 2010-12-22 23:33:24 -0500 (Wed, 22 Dec 2010)
testing section done. almost there...

r211 | dennis.v.perepelitsa | 2010-12-22 22:44:38 -0500 (Wed, 22 Dec 2010)
folding in tutorial and updating to present TeX standard...

r210 | dennis.v.perepelitsa | 2010-12-22 22:14:02 -0500 (Wed, 22 Dec 2010)
integrating several project plan sections

r209 | oemlerb | 2010-12-22 18:29:27 -0500 (Wed, 22 Dec 2010)
A very brief style plan write up.... Pretty basic.

r208 | oemlerb | 2010-12-22 18:03:04 -0500 (Wed, 22 Dec 2010)
Small change

r207 | oemlerb | 2010-12-22 18:02:28 -0500 (Wed, 22 Dec 2010)
Style, might not be perfect, but its all I can stomach at the moment

r206 | dennis.v.perepelitsa | 2010-12-22 14:47:41 -0500 (Wed, 22 Dec 2010)
final cut presentation

r205 | AriGolub | 2010-12-22 14:40:52 -0500 (Wed, 22 Dec 2010)
runtime test added

r204 | oemlerb | 2010-12-22 14:26:35 -0500 (Wed, 22 Dec 2010)
fixed typos

r203 | AriGolub | 2010-12-22 14:20:28 -0500 (Wed, 22 Dec 2010)
projectplan

r202 | AriGolub | 2010-12-22 14:09:13 -0500 (Wed, 22 Dec 2010)
anything?

r201 | oemlerb | 2010-12-22 13:50:44 -0500 (Wed, 22 Dec 2010)
Some slight changes

r200 | dennis.v.perepelitsa | 2010-12-22 13:47:14 -0500 (Wed, 22 Dec 2010)
presentation so far (stealing commit 200 from Bryan)

r199 | oemlerb | 2010-12-22 13:32:56 -0500 (Wed, 22 Dec 2010)
Made it work with variables

r198 | AriGolub | 2010-12-22 13:30:42 -0500 (Wed, 22 Dec 2010)
changed add/addfront/crawl to variable

r197 | dennis.v.perepelitsa | 2010-12-22 13:20:23 -0500 (Wed, 22 Dec 2010)
passing O to addby and addbyfront DTRT

r196 | oemlerb | 2010-12-22 13:03:55 -0500 (Wed, 22 Dec 2010)
Getting rid of patronizing messages.

r195 | oemlerb | 2010-12-22 12:51:06 -0500 (Wed, 22 Dec 2010)
Removed todos, added some checking

r194 | AriGolub | 2010-12-22 12:37:40 -0500 (Wed, 22 Dec 2010)
cleaner

26

r193 | oemlerb | 2010-12-22 06:38:55 -0500 (Wed, 22 Dec 2010)
Think i covered enough. Thats it for now.

r192 | oemlerb | 2010-12-22 04:52:01 -0500 (Wed, 22 Dec 2010)
Committing in case this computer dies. Not quite done

r191 | oemlerb | 2010-12-22 04:24:03 -0500 (Wed, 22 Dec 2010)
Committing in case this computer dies. Not quite dome

r190 | dennis.v.perepelitsa | 2010-12-22 02:21:03 -0500 (Wed, 22 Dec 2010)
squashing last few bugs. all tests pass

r189 | dennis.v.perepelitsa | 2010-12-22 01:56:00 -0500 (Wed, 22 Dec 2010)
cleaning up Ocaml warnings and final test polishing...

r188 | AriGolub | 2010-12-22 01:45:37 -0500 (Wed, 22 Dec 2010)
whoops

r187 | oemlerb | 2010-12-22 01:31:13 -0500 (Wed, 22 Dec 2010)
Added nodeChild and nodeParent

r186 | oemlerb | 2010-12-22 01:18:08 -0500 (Wed, 22 Dec 2010)
Updated with current and edge attributes

r185 | dennis.v.perepelitsa | 2010-12-22 01:09:06 -0500 (Wed, 22 Dec 2010)
last bit of pipeline for static semantic verification!

r184 | oemlerb | 2010-12-22 00:47:47 -0500 (Wed, 22 Dec 2010)
Added a whole lot of checking and a whole lot of love

r183 | dennis.v.perepelitsa | 2010-12-22 00:47:40 -0500 (Wed, 22 Dec 2010)
folding in Ari’s test plan. I am anal and will probably tweak grammar later

r182 | AriGolub | 2010-12-22 00:40:32 -0500 (Wed, 22 Dec 2010)
more tests

r181 | dennis.v.perepelitsa | 2010-12-22 00:40:03 -0500 (Wed, 22 Dec 2010)
intro and LRM are good enough to push

r180 | AriGolub | 2010-12-22 00:10:20 -0500 (Wed, 22 Dec 2010)
more in testplan

r179 | AriGolub | 2010-12-22 00:06:55 -0500 (Wed, 22 Dec 2010)
stuff that happened

r178 | dennis.v.perepelitsa | 2010-12-22 00:06:16 -0500 (Wed, 22 Dec 2010)
now with correct tree ordering

r177 | AriGolub | 2010-12-21 23:38:31 -0500 (Tue, 21 Dec 2010)
changed the word varible to variable

r176 | AriGolub | 2010-12-21 23:36:20 -0500 (Tue, 21 Dec 2010)
what did i do again... oh right, variable stuff

r175 | dennis.v.perepelitsa | 2010-12-21 22:55:24 -0500 (Tue, 21 Dec 2010)
fixed weird crawl argument ordering

r174 | dennis.v.perepelitsa | 2010-12-21 22:46:13 -0500 (Tue, 21 Dec 2010)
oops, typo

r173 | dennis.v.perepelitsa | 2010-12-21 22:40:28 -0500 (Tue, 21 Dec 2010)
basic run-time error handling in child, parent, inedge, outedge

r172 | dennis.v.perepelitsa | 2010-12-21 22:17:14 -0500 (Tue, 21 Dec 2010)
child() and parent() built-in opts work

r171 | dennis.v.perepelitsa | 2010-12-21 22:03:45 -0500 (Tue, 21 Dec 2010)
anonymous edges are no longer null pointers

r170 | dennis.v.perepelitsa | 2010-12-21 21:55:44 -0500 (Tue, 21 Dec 2010)
connection contexts now O-index into tree nodes

r169 | dennis.v.perepelitsa | 2010-12-21 21:36:42 -0500 (Tue, 21 Dec 2010)
fucking awesome in-order and post-order demo

r168 | dennis.v.perepelitsa | 2010-12-21 21:16:59 -0500 (Tue, 21 Dec 2010)

27

fixing things until depth first works!

r167 | AriGolub | 2010-12-21 21:16:49 -0500 (Tue, 21 Dec 2010)
test plan (updated)

r166 | AriGolub | 2010-12-21 21:16:07 -0500 (Tue, 21 Dec 2010)
test plan (test/testplan.txt)

r165 | AriGolub | 2010-12-21 20:29:07 -0500 (Tue, 21 Dec 2010)
negative numbers

r164 | AriGolub | 2010-12-21 19:40:57 -0500 (Tue, 21 Dec 2010)
changed name of test script

r163 | AriGolub | 2010-12-21 19:27:36 -0500 (Tue, 21 Dec 2010)
fixed test programs

r162 | oemlerb | 2010-12-21 18:15:27 -0500 (Tue, 21 Dec 2010)
Start of the tutorial. WORK IN PROGRESS

r161 | oemlerb | 2010-12-21 14:20:30 -0500 (Tue, 21 Dec 2010)
Implemented a few more things. Now returns false if there is an error

r160 | AriGolub | 2010-12-21 01:39:24 -0500 (Tue, 21 Dec 2010)
fixing with ; instead of ,

r159 | dennis.v.perepelitsa | 2010-12-21 01:22:05 -0500 (Tue, 21 Dec 2010)
added project log to final report...

r158 | oemlerb | 2010-12-21 01:20:54 -0500 (Tue, 21 Dec 2010)
A few more things for the todo, or at least just to consider

r157 | oemlerb | 2010-12-21 01:04:18 -0500 (Tue, 21 Dec 2010)
My short blurb

r156 | AriGolub | 2010-12-21 00:54:40 -0500 (Tue, 21 Dec 2010)
added my environment

r155 | dennis.v.perepelitsa | 2010-12-21 00:53:33 -0500 (Tue, 21 Dec 2010)
creating code-included appendix

r154 | oemlerb | 2010-12-21 00:43:33 -0500 (Tue, 21 Dec 2010)
Lesson learned

r153 | AriGolub | 2010-12-21 00:32:58 -0500 (Tue, 21 Dec 2010)
what i learned

r152 | dennis.v.perepelitsa | 2010-12-21 00:27:37 -0500 (Tue, 21 Dec 2010)
finished architecture writeup, initial Who Did What section

r151 | oemlerb | 2010-12-20 18:32:31 -0500 (Mon, 20 Dec 2010)
Properly checking crawls

r150 | dennis.v.perepelitsa | 2010-12-20 17:04:23 -0500 (Mon, 20 Dec 2010)
small changes

r149 | dennis.v.perepelitsa | 2010-12-20 16:47:35 -0500 (Mon, 20 Dec 2010)
up before LRM.4.0, skipped arrays...

r148 | dennis.v.perepelitsa | 2010-12-20 16:21:19 -0500 (Mon, 20 Dec 2010)
TODOs for myself and implementation changes to match LRM

r147 | dennis.v.perepelitsa | 2010-12-20 16:19:15 -0500 (Mon, 20 Dec 2010)
commit changes through LRM.2.4

r146 | oemlerb | 2010-12-20 14:35:44 -0500 (Mon, 20 Dec 2010)
Fixed order in which we were evaluating nested statements

r145 | dennis.v.perepelitsa | 2010-12-20 12:16:35 -0500 (Mon, 20 Dec 2010)
stubbing project plan, adding lesson learned, folding in LRM, some introduction editi
ng

r144 | dennis.v.perepelitsa | 2010-12-20 11:20:13 -0500 (Mon, 20 Dec 2010)
starting work on architecture writeup

r143 | oemlerb | 2010-12-20 04:34:36 -0500 (Mon, 20 Dec 2010)

28

Error message was off
r142 | oemlerb | 2010-12-20 04:27:27 -0500 (Mon, 20 Dec 2010)
Cant stop, wont stop, changed order of binding for and ors,
better type checking with different operations. Rocking on
r141 | AriGolub | 2010-12-20 03:39:24 -0500 (Mon, 20 Dec 2010)
working script for testing
r140 | AriGolub | 2010-12-20 03:10:35 -0500 (Mon, 20 Dec 2010)
removed stupid .txt files in test folder
r139 | AriGolub | 2010-12-20 03:04:07 -0500 (Mon, 20 Dec 2010)
new tester files
r138 | AriGolub | 2010-12-20 02:13:37 -0500 (Mon, 20 Dec 2010)
keep ignoring, but not FOR LONG
r137 | oemlerb | 2010-12-20 01:47:16 -0500 (Mon, 20 Dec 2010)
Function argument checking
r136 | AriGolub | 2010-12-20 01:15:56 -0500 (Mon, 20 Dec 2010)
ignore
r135 | AriGolub | 2010-12-20 01:12:56 -0500 (Mon, 20 Dec 2010)
ignore
r134 | AriGolub | 2010-12-19 23:51:08 -0500 (Sun, 19 Dec 2010)
ignore these commits, i have to sync between laptop and cunix and i need to push tiny
, tiny changes. enjoy
r133 | AriGolub | 2010-12-19 23:45:52 -0500 (Sun, 19 Dec 2010)
more test cases
r132 | AriGolub | 2010-12-19 23:39:41 -0500 (Sun, 19 Dec 2010)
test cases
r131 | oemlerb | 2010-12-19 19:11:37 -0500 (Sun, 19 Dec 2010)
Checking proper argument passing .. WOOOT WOOOH know what im sayin
r130 | AriGolub | 2010-12-19 18:06:00 -0500 (Sun, 19 Dec 2010)
ok, gonna start testing now
r129 | oemlerb | 2010-12-19 18:03:40 -0500 (Sun, 19 Dec 2010)
Updated array tests
r128 | oemlerb | 2010-12-19 17:56:06 -0500 (Sun, 19 Dec 2010)
Indexed arrays being evaluated properly
r127 | oemlerb | 2010-12-19 17:37:19 -0500 (Sun, 19 Dec 2010)
Actual checking imp
r126 | AriGolub | 2010-12-19 17:34:56 -0500 (Sun, 19 Dec 2010)
doin’ work
r125 | oemlerb | 2010-12-19 16:34:47 -0500 (Sun, 19 Dec 2010)
Ever closer
r124 | oemlerb | 2010-12-19 14:50:15 -0500 (Sun, 19 Dec 2010)
type checks almost working
r123 | dennis.v.perepelitsa | 2010-12-19 14:49:29 -0500 (Sun, 19 Dec 2010)
starting documentation push...
r122 | dennis.v.perepelitsa | 2010-12-19 14:03:24 -0500 (Sun, 19 Dec 2010)
fixing compiler error and edge types in connection contexts
r121 | dennis.v.perepelitsa | 2010-12-19 13:56:13 -0500 (Sun, 19 Dec 2010)
oops, now grammar back to unambiguous (but we have to type check the static arrays)
r120 | dennis.v.perepelitsa | 2010-12-19 13:49:34 -0500 (Sun, 19 Dec 2010)
connection contexts --> sequence of statements about arrays
r119 | AriGolub | 2010-12-19 12:31:57 -0500 (Sun, 19 Dec 2010)
so close to working concon, but no

29

r118 | AriGolub | 2010-12-18 22:22:06 -0500 (Sat, 18 Dec 2010)
beginnings of working connection context; 1->(2->(3->4) works, but nested does not

r117 | dennis.v.perepelitsa | 2010-12-18 20:28:45 -0500 (Sat, 18 Dec 2010)
filling in the last rule implementation

r116 | dennis.v.perepelitsa | 2010-12-18 20:22:02 -0500 (Sat, 18 Dec 2010)
STABLE BUILD with addby, addbyfront but no nested dot operations (for now)

r115 | oemlerb | 2010-12-18 20:03:54 -0500 (Sat, 18 Dec 2010)

Started added type checking. Changed Nodefunctions to work with variables

r114 | dennis.v.perepelitsa | 2010-12-18 18:47:08 -0500 (Sat, 18 Dec 2010)
a swarm of translator/AST pattern matching fixes

r113 | dennis.v.perepelitsa | 2010-12-18 16:41:29 -0500 (Sat, 18 Dec 2010)
fixing formal ordering & testing out variable pass-by-reference

r112 | AriGolub | 2010-12-18 16:34:56 -0500 (Sat, 18 Dec 2010)
beginnings of working connection context backend

r111 | dennis.v.perepelitsa | 2010-12-18 16:27:17 -0500 (Sat, 18 Dec 2010)
twiggling with test framework

r110 | dennis.v.perepelitsa | 2010-12-18 16:04:25 -0500 (Sat, 18 Dec 2010)
finally, a working crawl() example :)

r109 | dennis.v.perepelitsa | 2010-12-18 15:56:52 -0500 (Sat, 18 Dec 2010)
more cleaning up node/edge handles & pointers

r108 | dennis.v.perepelitsa | 2010-12-18 15:23:30 -0500 (Sat, 18 Dec 2010)
small fixes everywhere. no basic crawling yet .. but SOON!

r107 | AriGolub | 2010-12-18 15:01:06 -0500 (Sat, 18 Dec 2010)
added dynamic array indexing

r106 | dennis.v.perepelitsa | 2010-12-18 14:50:13 -0500 (Sat, 18 Dec 2010)
inedge(), outedge(), innode, outnode properly return handles!

r105 | dennis.v.perepelitsa | 2010-12-18 14:08:45 -0500 (Sat, 18 Dec 2010)
attribute getting and setting

r104 | AriGolub | 2010-12-18 14:07:12 -0500 (Sat, 18 Dec 2010)
added dynamic array indexing

r103 | dennis.v.perepelitsa | 2010-12-18 13:50:21 -0500 (Sat, 18 Dec 2010)
change to underlying attribute representation

r102 | dennis.v.perepelitsa | 2010-12-18 13:45:24 -0500 (Sat, 18 Dec 2010)

i _believe_ queueing in crawls works properly
r101 | AriGolub | 2010-12-18 13:25:23 -0500 (Sat,
array indexing
r100 | AriGolub | 2010-12-18 04:39:34 -0500 (Sat,

now
18 Dec 2010)

18 Dec 2010)

beginnings of connection context interpretation

r99

gs to variables

| AriGolub | 2010-12-18 02:51:23 -0500 (Sat, 18 Dec 2010)
made assignment a statement intsead of expression, implemented ability to assign thin

r98 | dennis.v.perepelitsa | 2010-12-17 23:24:01 -0500 (Fri, 17 Dec 2010)
I believe that add() and addByFront() works?! MAYBE

r97 | dennis.v.perepelitsa | 2010-12-17 23:07:04 -0500 (Fri, 17 Dec 2010)
more changes to crawl/rule model

r96 | dennis.v.perepelitsa | 2010-12-17 22:11:12 -0500 (Fri, 17 Dec 2010)
more crawl + rule functionality!

r95 | dennis.v.perepelitsa | 2010-12-17 21:00:31 -0500 (Fri, 17 Dec 2010)
proper (compilable) crawl/rule C++ formation

r94 | dennis.v.perepelitsa | 2010-12-11 05:41:31 -0500 (Sat, 11 Dec 2010)

trying to fix crawl and rule types and arguments

30

r93

r92

rol

r90

r89

r88

r87

r86

r85

r84

r83

r82

r81

r80

r79

r78

r77

r76

r75

r74

r73

r72

r71

r70

r69

| dennis.v.perepelitsa | 2010-12-11 04:50:28 -0500 (Sat, 11 Dec
example I want to show off :)

| dennis.v.perepelitsa | 2010-12-11 04:46:16 -0500 (Sat, 11 Dec
way too much awesome stuff

| dennis.v.perepelitsa | 2010-12-11 04:11:48 -0500 (Sat, 11 Dec
more work!

| dennis.v.perepelitsa | 2010-12-11 03:34:42 -0500 (Sat, 11 Dec
dealing with main() and C++ includes

| dennis.v.perepelitsa | 2010-12-11 02:43:05 -0500 (Sat, 11 Dec
no more errors?!

| dennis.v.perepelitsa | 2010-12-11 02:27:55 -0500 (Sat, 11 Dec

TEMPORARY COMMIT ONLY

| oemlerb | 2010-12-11 02:21:19 -0500 (Sat, 11 Dec 2010)
Alright since you asked for it. I am not seeing the problem
but you might.
| dennis.v.perepelitsa | 2010-12-11 01:04:35 -0500 (Sat, 11 Dec
fixing C++ errors so this now compiles

| dennis.v.perepelitsa | 2010-12-11 01:04:24 -0500 (Sat, 11 Dec
more compiler + translator work

| dennis.v.perepelitsa | 2010-12-11 00:31:49 -0500 (Sat, 11 Dec
making more translation + compilation work

| dennis.v.perepelitsa | 2010-12-10 23:45:56 -0500 (Fri, 10 Dec
unbroke the build. DO NOT COMMIT THINGS UNLESS make clean; make
| AriGolub | 2010-12-09 14:32:36 -0500 (Thu, 09 Dec 2010)

more work on rules in parser/scanner

| oemlerb | 2010-12-09 14:27:56 -0500 (Thu, 09 Dec 2010)
Updated c ast

| AriGolub | 2010-12-09 13:59:59 -0500 (Thu, 09 Dec 2010)
extended attributes in backend

| dennis.v.perepelitsa | 2010-12-09 01:48:20 -0500 (Thu, 09 Dec
C++ hashed attribute objects

| AriGolub | 2010-12-09 00:01:21 -0500 (Thu, 09 Dec 2010)

just kidding, this is the scanner/parser with rules

| AriGolub | 2010-12-08 23:01:50 -0500 (Wed, 08 Dec 2010)

added rules to scanner/parser

| dennis.v.perepelitsa | 2010-12-08 22:24:50 -0500 (Wed, 08 Dec
very beginning of backend

| dennis.v.perepelitsa | 2010-12-08 21:30:58 -0500 (Wed, 08 Dec
test I’ve been using

| dennis.v.perepelitsa | 2010-12-08 21:22:03 -0500 (Wed, 08 Dec
my list of major TODO items

| dennis.v.perepelitsa | 2010-12-08 10:12:23 -0500 (Wed, 08 Dec
more backend work, fixes here and there

| dennis.v.perepelitsa | 2010-12-08 09:38:11 -0500 (Wed, 08 Dec
code generation pipeline in place!

| dennis.v.perepelitsa | 2010-12-08 09:15:09 -0500 (Wed, 08 Dec

committing stub files for translation to CAST
| dennis.v.perepelitsa | 2010-12-06 17:04:41 -0500 (Mon, 06 Dec

2010)

2010)

2010)

2010)

2010)

2010)

If its causing to many problems, just comment it out and continue

2010)

2010)

2010)

2010)
WORKS!

2010)

2010)

2010)

2010)

2010)

2010)

2010)

2010)

now parsing global opts with signatures now ; cleaning up some other stuff

| dennis.v.perepelitsa | 2010-12-06 04:42:42 -0500 (Mon, 06 Dec
misc TODO

31

2010)

r68 | dennis.v.perepelitsa | 2010-12-06 04:33:19 -0500 (Mon, 06 Dec 2010)
comparators now go into symbol table; other miscellany

r67 | dennis.v.perepelitsa | 2010-12-06 04:24:33 -0500 (Mon, 06 Dec 2010)
symbol table now keeping track of types (but not doing type checking yet)

r66 | dennis.v.perepelitsa | 2010-12-06 03:50:55 -0500 (Mon, 06 Dec 2010)
i forget what i did but it was important

r65 | dennis.v.perepelitsa | 2010-12-06 03:42:55 -0500 (Mon, 06 Dec 2010)
fixing misc parser errors

r64 | dennis.v.perepelitsa | 2010-12-06 03:27:35 -0500 (Mon, 06 Dec 2010)
symbol table getting better

r63 | dennis.v.perepelitsa | 2010-12-06 02:18:39 -0500 (Mon, 06 Dec 2010)
starting symbol table checks

r62 | dennis.v.perepelitsa | 2010-12-05 18:56:45 -0500 (Sun, 05 Dec 2010)
start very crude automated test suite

r61 | dennis.v.perepelitsa | 2010-12-05 18:36:57 -0500 (Sun, 05 Dec 2010)
TeX the LRM as Makefile option

r60 | dennis.v.perepelitsa | 2010-12-05 18:34:55 -0500 (Sun, 05 Dec 2010)
starting C++ backend implementation (very ugly prototyping for now)

r59 | dennis.v.perepelitsa | 2010-12-05 18:34:23 -0500 (Sun, 05 Dec 2010)
interpreter beginning to crawl AST!

r58 | oemlerb | 2010-12-04 00:24:43 -0500 (Sat, 04 Dec 2010)
Simplified arrays a bit by making them into kinds of variables and
connection contexts and actual lists into expressions.

r57 | dennis.v.perepelitsa | 2010-12-03 19:23:25 -0500 (Fri, 03 Dec 2010)
accepts properly formatted comparator constructors!

r56 | dennis.v.perepelitsa | 2010-12-03 18:24:57 -0500 (Fri, 03 Dec 2010)
notes to update connection context definition slightly

r55 | dennis.v.perepelitsa | 2010-12-03 17:09:23 -0500 (Fri, 03 Dec 2010)
adding some very simple tests to cat & pipe into ./digr

r54 | dennis.v.perepelitsa | 2010-12-03 16:54:28 -0500 (Fri, 03 Dec 2010)
connection contexts accepted by interpreter!!

r53 | dennis.v.perepelitsa | 2010-12-03 16:49:09 -0500 (Fri, 03 Dec 2010)
connection contexts no longer throw shift/reduce conflicts!

r52 | oemlerb | 2010-12-03 16:42:42 -0500 (Fri, 03 Dec 2010)
Added arguments notation

r51 | dennis.v.perepelitsa | 2010-12-03 15:49:35 -0500 (Fri, 03 Dec 2010)
I keep forgetting to commit the LRM

r50 | dennis.v.perepelitsa | 2010-12-03 15:49:18 -0500 (Fri, 03 Dec 2010)
while/if work with just stmt and stmt_lists!

r49 | AriGolub | 2010-12-01 13:57:10 -0500 (Wed, 01 Dec 2010)
added line 126 to parser, check it out to make sure it makes sense. basically, wasn’t
accepting |1-->(2--3),4| so i added a new rule to accept it

r48 | AriGolub | 2010-12-01 13:09:26 -0500 (Wed, 01 Dec 2010)
update todo with more c++ classes

r47 | AriGolub | 2010-12-01 12:38:08 -0500 (Wed, 01 Dec 2010)
added print function

r46 | dennis.v.perepelitsa | 2010-12-01 12:33:15 -0500 (Wed, 01 Dec 2010)
updating Makefile clean

r45 | dennis.v.perepelitsa | 2010-12-01 12:32:37 -0500 (Wed, 01 Dec 2010)
adding two TODOs for me

r44 | dennis.v.perepelitsa | 2010-12-01 12:29:50 -0500 (Wed, 01 Dec 2010)

32

killing ’new’ version files
r43 | oemlerb | 2010-11-23 19:32:26 -0500 (Tue, 23 Nov 2010)
Made program functional
r42 | oemlerb | 2010-11-23 19:21:31 -0500 (Tue, 23 Nov 2010)
Added block and block list along with 22 shift reduce errors
r41 | oemlerb | 2010-11-23 03:22:34 -0500 (Tue, 23 Nov 2010)
Had some old code from calculator
r40 | oemlerb | 2010-11-23 01:38:14 -0500 (Tue, 23 Nov 2010)
a functional interpret
r39 | AriGolub | 2010-11-18 14:44:01 -0500 (Thu, 18 Nov 2010)
this works
r38 | dennis.v.perepelitsa | 2010-11-18 14:15:17 -0500 (Thu, 18 Nov 2010)
oops. minor bugs in new parser
r37 | dennis.v.perepelitsa | 2010-11-18 14:05:10 -0500 (Thu, 18 Nov 2010)
minor fix in arguments of comparator constructor
r36 | AriGolub | 2010-11-18 03:03:21 -0500 (Thu, 18 Nov 2010)
i realized version control is the point of not having to rename all these files but t
oo late. i need to sleep
r35 | oemlerb | 2010-11-18 00:02:29 -0500 (Thu, 18 Nov 2010)
The beginnings of a new parser. Still in process. Dont know if it even compiles
r34 | oemlerb | 2010-11-17 23:45:05 -0500 (Wed, 17 Nov 2010)

some big changes to ast. wanted to commit them separately so it doesnt mess up anyth
ing

r33 | oemlerb | 2010-11-17 23:08:23 -0500 (Wed, 17 Nov 2010)
Added dollar sign for greatest value statement

r32 | AriGolub | 2010-11-17 22:58:46 -0500 (Wed, 17 Nov 2010)
added brackets to comparator

r31 | AriGolub | 2010-11-17 22:51:51 -0500 (Wed, 17 Nov 2010)
added comparator

r30 | AriGolub | 2010-11-17 19:51:51 -0500 (Wed, 17 Nov 2010)
bunch of fixes, works right now, 1 shift/reduce conflit, also added TODO.txt that con
tains what needs to be don and by who

r29 | AriGolub | 2010-11-17 18:32:35 -0500 (Wed, 17 Nov 2010)
this works, but not perfect

r28 | AriGolub | 2010-11-17 18:05:20 -0500 (Wed, 17 Nov 2010)
changes

r27 | AriGolub | 2010-11-16 17:54:01 -0500 (Tue, 16 Nov 2010)
some parser, some ast

r26 | dennis.v.perepelitsa | 2010-11-16 14:33:04 -0500 (Tue, 16 Nov 2010)
committing different id types

r25 | AriGolub | 2010-11-16 14:25:23 -0500 (Tue, 16 Nov 2010)
ast stuff

r24 | AriGolub | 2010-11-16 13:53:46 -0500 (Tue, 16 Nov 2010)
ast stuff

r23 | dennis.v.perepelitsa | 2010-11-16 13:44:11 -0500 (Tue, 16 Nov 2010)
basic clean build

r22 | dennis.v.perepelitsa | 2010-11-16 13:33:50 -0500 (Tue, 16 Nov 2010)
temp fixing ID and strings

r21 | AriGolub | 2010-11-16 13:30:50 -0500 (Tue, 16 Nov 2010)
tree fixed

33

r20

rl9

rl8

rl7

rl6

rib

ri4

ri3

ri2

ril

rl0

r9

r8

r7

r6

rb5

r4d

r3

r2

rl

| oemlerb | 2010-11-16 13:24:26 -0500 (Tue, 16 Nov 2010)
Changed connection to tree

| dennis.v.perepelitsa | 2010-11-16 13:24:12 -0500 (Tue, 16 Nov
adding Makefile for project and basic interpreter testbed

| dennis.v.perepelitsa | 2010-11-16 13:22:26 -0500 (Tue, 16 Nov
parser builds(\?\!\?7\!)

| dennis.v.perepelitsa | 2010-11-16 13:16:58 -0500 (Tue, 16 Nov
ast compiles

| AriGolub | 2010-11-16 13:12:43 -0500 (Tue, 16 Nov 2010)

ast

| dennis.v.perepelitsa | 2010-11-16 13:10:26 -0500 (Tue, 16 Nov
fixing ocamlyacc formatting

| dennis.v.perepelitsa | 2010-11-16 13:05:38 -0500 (Tue, 16 Nov
starting to fix some bugs; want to make this compile

| oemlerb | 2010-11-15 23:56:04 -0500 (Mon, 15 Nov 2010)

Added or functionality

| AriGolub | 2010-11-15 23:19:46 -0500 (Mon, 15 Nov 2010)

more ast

| AriGolub | 2010-11-15 22:31:24 -0500 (Mon, 15 Nov 2010)

more ast

| AriGolub | 2010-11-15 21:35:12 -0500 (Mon, 15 Nov 2010)

fixed ast, i think

| oemlerb | 2010-11-15 19:07:09 -0500 (Mon, 15 Nov 2010)

Adding handlers for or and and. Brackets

| oemlerb | 2010-11-15 18:47:01 -0500 (Mon, 15 Nov 2010)

Added abstract syntax tree. Modified version of microC

| AriGolub | 2010-11-14 17:33:27 -0500 (Sun, 14 Nov 2010)
started parser

| AriGolub | 2010-11-14 15:54:01 -0500 (Sun, 14 Nov 2010)

more scanner

| oemlerb | 2010-11-14 14:48:49 -0500 (Sun, 14 Nov 2010)

Just did some copy and pasting, converting pdf characters to
normal characters. Added a few symbols

| oemlerb | 2010-11-14 14:01:53 -0500 (Sun, 14 Nov 2010)

test test

| AriGolub | 2010-11-14 13:58:05 -0500 (Sun, 14 Nov 2010)

ari push test

| oemlerb | 2010-11-14 13:42:34 -0500 (Sun, 14 Nov 2010)

test

| (no author) | 2010-09-26 15:07:20 -0400 (Sun, 26 Sep 2010)
Initial directory structure.

34

2010)

2010)

2010)

2010)

2010)

5 Architectural Design

The DiGr compiler pipeline consists of five major modules along with a final execution
stage, and three backend/abstract syntax tree definitions and libraries. A block diagram of
the flow of information and dependencies is pictured in Figure 1.

5.1 DiGr Compiler Modules

The scanner processes a stream of DiGr code and returns tokens. If the input is not lex-
ically correct DiGr code, the scanner fails. At this stage, only the presence of unrecognizable
tokens will stop compilation.

The parser then uses the grammar defined in the DiGr AST Definition to turn the
token sequence into an instance of the DiGr AST. The AST is a recursive, typed OCaml
tree of tuples. If the token stream is not a syntactically correct DiGr program, compilation
fails at the parser stage.

The interpreter performs static semantic type checking, scoping and other consistency
checks on the DiGr AST. If the AST does not represent a semantically sensible DiGr program,
compilation fails at the interpreter stage. Unlike the first two modules, the interpreter does
not modify its input (the DiGr AST), but simply accepts or rejects it. The interpreter
generates symbol tables for the global and all local scopes, but these do not remain after the
interpreter stage.

The translator turns the DiGr AST into an instance of the AST described in the C4++
AST Definition. Much of the translation, especially for the C+--like elements of the
language, occurs in a recursive, depth-first manner and is straightforward. The higher-level
elements of the DiGr are turned into significantly longer or more complicated sequences of
C++ statements. The translator does no further semantic checking of its own, and this
module always generates a valid instance of a C++ abstract syntax tree. This is because
any problems encountered by the translator reflect either an incomplete or inconsistent DiGr
AST definition, or a failure of the interpreter to properly validate the DiGr AST.

In terms of the block diagram, one could argue that the interpreter and translator stages
could be combined, since the interpreter does not modify its input. However, we felt that
separating the semantic type checking (which can be thought of as part of the compiler
front-end) from the beginning of the compilation back-end was a good abstraction. This
way, development could be focused on either module, since they perform non-overlapping
tasks.

The compiler recursively walks the C++ AST and outputs a C++ program. In effect,
the compiler takes the semantic meaning of the C++4 AST and turns it into a compilable
program will all syntactic details included. The compiler is blind to the semantic correctness
(or incorrectness) of the actual resulting program.

The sixth stage before program execution is compiling with g+ against the DiGr
C++ Backend and running the resulting binary program, but this is not a formal DiGr
module. The C++ AST is constrained so as to generate only syntactically valid C++, and
the interpreter and translator ensure that the output is semantically correct and will compile.

35

DiGr code

l

lexxer

DiGr AST
definition

\ /Jkens

parser

DiGr AST

minimal C++

AST definition | 'nterpreter

verified
DiGr AST

translator

C++ AST

DiGr C++
backend

\ %l—+ code

g++

l

executable

compiler

Figure 1: DiGr compiler block diagram

36

Our test examples have been checked against g++ version 4.4.3, but it is likely that any ISO
compliant C++ compiler will compile the DiGr output.

Unfortunately, there are errors it is impossible to check at compile time, and difficult to
handle gracefully at runtime. These include segmentation faults from out of bounds accesses
of C++ arrays and are an unfortunate consequences of the

5.2 Definitions and Libraries

Several stages of the compiler use the DiGr AST Definition, which represents a DiGr
program with all syntactic details stripped away. The AST definition was designed to split
the difference between being in a form easily constructed by the parser, and easily interpreted
and translated later.

The C++ AST Definition implements the small but flexible subset of the C++ lan-
guage needed to output compiled DiGr code. The definition takes some shortcuts (for exam-
ple, there is no support for shifting (>>, <<) operators or streams with the single exception
of using std: :cout << to implement the DiGr print () opt), and is meant to be lightweight
to make compilation easy. The C++ AST definition has no concept of semantic correctness.

Finally, the DiGr C++4 Backend is the engine against which compiled DiGr C++
code can be turned into a binary executable. The backend was written to have a simple
interface to make the compilation step efficient and clean, and also be short enough so that
the overhead in a DiGr binary program is relatively small. The backend does a small amount
of runtime error catching.

37

6 Test Plan

Our test strategy consisted of writing short to medium length DiGr programs which
would typically print information to the screen, and creating by hand a ”gold standard” of
what the output should be according to the language designers. Additionally, for some test
programs we examined the output in the target language by hand to check our code.

To run the test suite, we compile and execute every test program and compare its output
to the gold standard. Sometimes, programs would fail at the front-end level (implying the
parser or static semantic checking was improperly implemented. Sometimes, programs would
fail at the back-end level (output programs in the target language would fail to compile, or
throw a run-time exception, or output something different from the gold standard). The
stage at which the error occurred allowed us to narrow down bugs along the DiGr compilation
pipeline.

Some tests focused on testing atomic features of the language, from basic concepts like
fundamental types, arithmetic, opt calls, and so forth, to high-level concepts like graphs,
attributes, creation contexts, etc. Other tests were designed to be complicated and integrate
a wide cross-section of language features.

The test suite was run after every significant change to the parser, translator, or compiler,
to ensure that development had not broken any previous work. A few tests were written to
ensure that necessary errors at compile time and run time were in fact caught.

Although all team members contributed test programs and ideas for test programs, and
used the test battery to track and fix bugs, Ari was the member responsible for the upkeep
of the suite. The complete list of test programs (in alphabetical order in our directory) and
what functionality they are designed to test:

e anonedge : proper creation of anonymous edges without runtime errors
e arrays : creating, accessing and modifying arrays

e attributes : proper creation and access of node and edge attributes, both implicitly
and explicitly

e basiccontext : proper parsing of complicated tree definition in a connection context
e basiccrawl : a crawl test that integrates many DiGr features

e binops : testing binary operators

e blockorder : proper handling of control flow (if, if/else, while)

e comments : very simple comment parsing test

e contexts : in-depth test of proper connection context compilation and edge assign-
ment between nodes

38

e crawlargs : proper indexing and C++ typing of in and out variables in function
signatures

e depthfirsts : high-concept test of a breadth-first (the name of the test is misleading)
and an iterative depth-first search

e edgetest : proper manipulation nodes by traversing edges

e factorial : test of a simple recursive function with in/out variables
e fast : test of fencepost while loop iteration

e func : more complicated test of proper scoping for in/out variables

e globals : testing the 'call’ function, changing rules inside crawls, and proper compi-
lation with respect to global namespaces in general

e indexattr : accessing attributes of elements of an array via indexing into the array
e nodetest : creating nodes and edges, plus basic node functionality
e opttest : simple opt-calling test to check proper in/out variable binding

e recursivecrawl : high-concept test with two depth first searches and, specifically,
the ability to call a crawl within a crawl

e ruleaddby : proper use of advanced ’addby’ feature in a rule
e runtime : check to see that a run-time exception catches illegal indexing

e scope : proper scoping of similarly named variables inside different local scopes

6.1 basiccrawl test

Here is an example which integrates edges, nodes, crawls and rules. The DiGr source
code is

rule addMarkedChildren {
int n = 0!
while (n < current.outedges) {
edge tmp_edge = current.outedge(n)!
if (tmp_edge.mark == 1) {
node destination = tmp_edge.innode!
add(destination) !
+
n

=n + 1!

39

crawl printId() {
print (current.id)!
call!

opt main() {

node nl!

node n2!

node n3!

node n4!

nl.id = 1!

n2.id = 2!

n3.id = 3!

n4.id = 4!

nl -> n2!

n2 -> n3!

n2 -> n4!

edge tmp_edge = nl.outedge(0)!
tmp_edge .mark 1!
tmp_edge = n2.outedge(1)!
tmp_edge.mark = 1!

printId() from nl with addMarkedChildren!

This is a simple program which creates a tree by connecting nodes, marks some edges
with an attribute, and then runs a crawl which prints the id attribute of the current node,
while only following edges which are marked. The output in the target language is (there
is normally a symbol table dump and static semantic checking information output in the
header of the program. In this example, we leave it in):

/*begin formal AST verification

global signature dump:
main:

Starting

unimplemented expression
n assigned value

nl assigned value

n2 assigned value

40

n3 assigned value
nd4 assigned value
tmp_edge assigned value
tmp_edge assigned value
tmp_edge assigned value

symbol table dump:
--> nl: node
-—> n2: node
--> n3: node
--> n4: node
--> tmp_edge: edg

symbol table dump:
—--> current: node

symbol table dump:

--> current: node

--> n: int

no error!

begin translation to CAST

passed static semantic checking, begin code generation

_*/

#include ‘‘digr.h’’

#include <iostream>

/* actual definition of C++ functions */
void addMarkedChildren(DiGrNode *current, deque<DiGrNode*> *returnQueue) {
int n = 0 ;

while(n < current->0OutEdges())

{DiGrEdge *tmp_edge = current->getOutEdge(n);
if (tmp_edge->getAttribute(‘ ‘mark’’) == 1)
{DiGrNode #*destination = tmp_edge->inNode();
returnQueue->push_back(destination) ;

}

else{}

n=n + 1 ;

}

}

void printId(DiGrNode *current, void (*rule) (DiGrNodex, deque<DiGrNode*>*)) {
deque<DiGrNode*> *queue = new deque<DiGrNodex*>();

queue->push_back(current) ;

do {

current=queue->front () ;

41

queue->pop_front();

std::cout << current->getAttribute(‘‘id’’) << std::endl;
rule(current, queue);

} while (queue->size() > 0);

¥

int main() {
try{

DiGrNode *nil
DiGrNode *n2

new DiGrNode();
new DiGrNode();
DiGrNode *n3 = new DiGrNode();
DiGrNode *n4 = new DiGrNode();
nl->setAttribute(‘‘id’’, 1);
n2->setAttribute(‘‘id’’, 2);
n3->setAttribute(‘‘id’’, 3);
n4->setAttribute(‘‘id’’, 4)
new DiGrEdge(nl, n2);

new DiGrEdge(n2, n3);

new DiGrEdge(n2, n4);

DiGrEdge *tmp_edge = nl->getOutEdge(0);
tmp_edge->setAttribute(‘ ‘mark’’, 1);
tmp_edge=n2->getOutEdge(1);
tmp_edge->setAttribute(‘ ‘mark’’, 1);
printId(nl, addMarkedChildren) ;

}

catch(const char *e) {

std::cout << e << std::endl;

}

3

The simple DiGr crawls and rules and implicit queues and references to nodes are turned
into explicit and careful function signatures and a system of pointers in the target language.
When executed, this should outputs the first node (with an id of 1), follow the marked edge
to node 2, and the follow the marked edge to node 4. Sure enough, the output is

N

6.2 recursivecrawl test

Another sophisticated example is a test that implements post-order and in-order depth-
first traversals of a tree. It accomplishes this by leaving the queue empty (in fact, even

42

assigning a blank rule), and simply recursively calling itself on its children before printing.
The DiGr source code is:

rule blankRule {

crawl recurse_to_children_and_print() {

int n = 0!

while (n < current.outedges) {
edge tmp_edge = current.outedge(n)!
node tmp_node = tmp_edge.innode!

recurse_to_children_and_print() from tmp_node with blankRule!
n=n+ 1!

print (current.name) !

crawl recurse_inorder() {

int n = 0!

while (n < current.outedges) {
edge tmp_edge = current.outedge(n)!
node tmp_node = tmp_edge.innode!
if (tmp_node.name < current.name) {

recurse_inorder() from tmp_node with blankRule!

}
n

=n + 1!

print (current.name) !

n = 0!

while (n < current.outedges) {
edge tmp_edge = current.outedge(n)!
node tmp_node = tmp_edge.innode!
if (tmp_node.name > current.name) {

recurse_inorder() from tmp_node with blankRule!

b
n

=n + 1!

43

opt main() {

node binTree[8] = |4 -> (2 -> 1,3), (6 -> 5,7)|!

node tmp_node = binTree[1]!
tmp_node.name = 1!
tmp_node = binTree[2]!
tmp_node.name = 2!
tmp_node = binTree[3]!
tmp_node.name = 3!
tmp_node = binTree[4]!
tmp_node.name = 4!
tmp_node = binTree[5]!
tmp_node.name = 5!
tmp_node = binTreel[6]!
tmp_node.name = 6!
tmp_node = binTree[7]!
tmp_node.name = 7!

node start = binTree[4]!

print (¢‘post-order!’’)!
recurse_to_children_and_print() from start with blankRule!

print (¢‘in-order!’’)!
recurse_inorder() from start with blankRule!

This compiles to (leaving out the verbose static semantic output and the symbol table
dump) :

#include ‘‘digr.h’’

#include <iostream>

/* actual definition of C++ functions */

void blankRule(DiGrNode *current, deque<DiGrNode*> *returnQueue) {

¥

void recurse_to_children_and_print(DiGrNode *current, void (*rule) (DiGrNode*, deque<DiGrNodex>
deque<DiGrNode*> *queue = new deque<DiGrNodex*>();

queue->push_back(current) ;

do {

current=queue->front () ;

queue->pop_front();

int n = 0 ;

44

while(n < current->0OutEdges())

{DiGrEdge *tmp_edge = current->getOutEdge(n);

DiGrNode *tmp_node = tmp_edge->inNode();
recurse_to_children_and_print (tmp_node, blankRule);

n=n + 1 ;

}std::cout << current->getAttribute(‘‘name’’) << std::endl;
} while (queue->size() > 0);

}

void recurse_inorder (DiGrNode *current, void (*rule) (DiGrNode*, deque<DiGrNodex*>*)) {
deque<DiGrNode*> *queue = new deque<DiGrNode*>();
queue->push_back(current) ;

do {

current=queue->front () ;

queue->pop_front () ;

int n = 0 ;

while(n < current->OutEdges())

{DiGrEdge *tmp_edge = current->getOutEdge(n) ;

DiGrNode *tmp_node = tmp_edge->inNode();

if (tmp_node->getAttribute(‘‘name’’) < current->getAttribute(‘ ‘name’’))
{recurse_inorder (tmp_node, blankRule);

3

else{}

n=n + 1 ;

}std::cout << current->getAttribute(‘‘name’’) << std::endl;
n= 0 ;

while(n < current->OutEdges())

{DiGrEdge *tmp_edge = current->getOutEdge(n);

DiGrNode *tmp_node = tmp_edge->inNode();

if (tmp_node->getAttribute(‘ ‘name’’) > current->getAttribute(‘‘name’’))
{recurse_inorder (tmp_node, blankRule);

}

else{}

n=n + 1 ;

}} while (queue->size() > 0);

}

int main() {

try{

DiGrNode* binTree[8];
binTree[0]=new DiGrNode();
binTree[1]=new DiGrNode();
binTree[2]=new DiGrNode();

45

binTree[3]=new DiGrNode();
binTree[4]=new DiGrNode();
binTree[5]=new DiGrNode();
binTree[6]=new DiGrNode() ;
binTree[7]=new DiGrNode();

new DiGrEdge(binTree[4], binTree([2]);
new DiGrEdge(binTree[4], binTree[6]);
new DiGrEdge(binTree[6], binTree[5]);
new DiGrEdge(binTree[6], binTree[7]);
new DiGrEdge(binTree[2], binTree[1]);
new DiGrEdge(binTree[2], binTreel[3]);
DiGrNode *tmp_node = binTree[1];
tmp_node->setAttribute(‘‘name’’, 1);
tmp_node= binTree[2];

tmp_node->setAttribute(‘ ‘name’’, 2);
tmp_node= binTree[3];
tmp_node->setAttribute(‘ ‘name’’, 3);
tmp_node= binTree[4];
tmp_node->setAttribute(‘name’’, 4);
tmp_node= binTree[5];
tmp_node->setAttribute(‘name’’, 5);

tmp_node= binTree[6];
tmp_node->setAttribute(‘name’’, 6);
tmp_node= binTree[7];
tmp_node->setAttribute(‘name’’, 7);
DiGrNode *start = binTreel4];

std::cout << ‘‘post-order!’’ << std::endl;
recurse_to_children_and_print(start, blankRule);
std::cout << ‘‘in-order!’’ << std::endl;
recurse_inorder (start, blankRule);

}

catch(const char *e) {
std::cout << e << std::endl;

¥

When executed, the output is

post-order!

O NN W

46

4
in-order!

~N O O W N

47

7 Lessons Learned

Dennis

One of the most painfully leaned lessons for me during this project was the importance
of a consistent and carefully thought about contract between different modules. A strong
enough architecture model, and an eye towards dependencies means that each developer
can handle the internal implementation of different parts of the project without having to
constantly be aware of small changes in the details of somebody else’s work. We got worse
at following this rule as the project went along. Towards the end of the project, as the code
evolved more and more towards completion, a single change very early on in the architecture
model (say, a new keyword in the parser), had to implemented all the way down the line
to the compilation stage. Particularly annoying was the fact that there were about six
different abstract stages at which an error could propagate. This made last minute features
(or, features we did not plan on when we created the DiGr AST) slightly exasperating. In
an ideal world, I think our two ASTs and the backend would have been written first, and
then the modules worked on independently. In reality, development was concurrent and
intertwined.

Ari

As the project neared its completion and we found ourselves testing out the language,
the thing that hit me the most was that its easier to come up with a simple idea, implement
it perfectly, and then build upon it. This contrasts with the approach that we took: we had
the great idea with all the different features and bells and whistles for the user, but had to
keep dropping one thing or another because the things that were really necessary, the most
basic parts, weren’t rock solid because of the bells and whistles. Basically, I learned that its
better to set your dream small and build bigger rather than dream big and build smaller.
There were a lot of good ideas I wish we would have had the time— or working infrastructure—
necessary to build. On a lower level, I learned that Ocaml is exceedingly frustrating but also
very gratifying when it works. The slide at the beginning of the year, "never have i done so
much writing so little,” now makes too much sense.

Bryan

I realized, perhaps too late, that languages like Ocaml require their own coding style
standards. Before getting into writing the bulk of the code it would have been helpful to
nail down a set Programming style. Ocaml’s structure deviates greatly from most other
languages I have used. A consistent style would have made Ocaml, a language that was new
to all of us, more understandable.

48

00 O U~ Wi+

s R s R R R B W W W W W WWWWWNNNDNDNNDNDDNNDN ==
OO WINNHFRF OO UE WD, O OO E WNNFE O OO U W+~ OO

8 Appendix

8.1

{ open Parser 1}

rule token = parse
[7) ’\t’ ’\I" :\n
[" { comment
| { LPAREN }
|2 { RPAREN }
| { { LBRACE }
(I { RBRACE }
| o { EXC }
|2, { coMMA }
|52 { SEMI }

| > { NEG }

| 2+ { PLUS }
|- { MINUS }
| %2 { TIMES }
| "\"" { QUOTE }
| 2/ { DIVIDE }
| =2 { ASSIGN }
| % { MOD }

| "==" { EQ }

| mr=" { NEQ }

| < { LT 2

| "<=" { LEQ 1}

| 2> { GT }

| ">=" { GEQ 1}

| 1> { CNCT 1}

| "->" { REDGE }
| "<-" { LEDGE }
| "--» { UEDGE }
| [{LBRACK}

["1" {RBRACK}

I "1I" {OR}

| "&&" {AND}

| »>.> {DOT}

I naddn {
| "addBy" {
| "addFront" {
| "call" {
| "set" {
| "addByFront" {
| "call" {
| "crawl" {
| "edge" {
| "else" {
| "for" {
| "f1t" {

scanner.mll

’] { token lexbuf }
(* Comments changed *)

lexbuf 7}

(* punctuation *)

ADD }
ADDBY }
ADDFRONT 1}
CALL 2

SET }
ADDBYFRONT }
CALL 1}
CRAWL ¥
EDGE }
ELSE }

FOR }
FLOAT }

49

(* Whitespace *)

48 | "from" { FROM }

49 | "in" { IN }

50 | "int" { INT }

51 | "if" { IF }

52 | "node" { NODE }

53 | "opt" { OPT }

54 | "order" { ORDER 1}

55 | "out" { oUT }

56 | "print" { PRINT }

57 | "queue" { QUEUE }

58 | "rule" { RULE }

59 | "str" { STR }

60 | "while" { WHILE }

61 | "with" { WITH }

62 | "g" { DOLR }

63 | "child" { CHILD 1}

64 | "parent" { PARENT }

65 | "inedges" { INEDGES }

66 | "outedges" { OUTEDGES }

67 | "inedge" { INEDGE }

68 | "outedge" { OUTEDGE 1}

69 | "innode" { INNODE }

70 | "outnode" { OUTNODE }

71

72 | eof { EOF }

731 [’0°-°9°]+ as lxm { LITINT(int_of_string 1lxm) }
74| [°0°-29’]1%.°[’0°-"9’]+ as 1lxm { LITFLT(float_of_string lxm) }
751 2\"? [T\"?]% °\"’ as 1lxm { LITSTR(1lxm) }
76

77 | [’a’>- ’z? °A’-°Z°][’a’-’z’ ’A’-°Z? °0’-°9? > _*]x as 1xm { ID(1lxm) }
78

79 | _ as char { raise (Failure("illegal character " Char.escaped char)
)}

80

81 and comment = parse

82 ":" { token lexbuf }

8 | _ { comment lexbuf }

20

QU W N =

N o

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

8.2 parser.mly

%{ open Ast %}

/* TODO: rules are not

implemented, like, at all x*/

%“token CHILDREN PARENTS CHILD PARENT INEDGES OUTEDGES INEDGE OUTEDGE

INNODE
OUTNODE

%token EXC LPAREN RPAREN LBRACE RBRACE COMMA SEMI NEG PLUS MINUS TIMES

DIVIDE
MOD

%token LBRACK RBRACK OR AND EOF DOT QUOTE DOLR

%token ASSIGN EQ NEQ LT LEQ GT GEQ CNCT REDGE LEDGE UEDGE
%token ADD ADDBY ADDFRONT ADDBYFRONT COMP CRAWL EDGE ELSE
%token FOR FLOAT FROM IN INT IF NODE OPT ORDER OUT PRINT QUEUE RULE STR

CALL
htoken CALL SET
htoken WHILE WITH
%token <int> LITINT
htoken <float> LITFLT
%token <string> ID
htoken <string> LITSTR

%nonassoc NOELSE
%nonassoc ELSE
%nonassoc NOPAREN
%right ASSIGN

%left AND OR

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD

%hstart program

%type <Ast.program> program

hh
/ *
program:
| program fdecl
*/
program:

/* nothing */
| program fdecl
fdecl:

OPT ID LPAREN

{ fst $1, ($2

{0032
{ $2 :: $1 3}

formals_opt RPAREN LBRACE stmt_list RBRACE

o1

snd $1) }

47

48
49

50
ol
52

53
54
99
96
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

3

/* dvp:

{ { func_type = "opt"; fname = $2; formals = $4; body = List.rev
$7 + }

CRAWL ID LPAREN formals_opt RPAREN LBRACE stmt_list RBRACE

{ { func_type = "crawl"; fname = $2; formals = $4; body = List.rev
$7 %

RULE ID LBRACE stmt_list RBRACE

{ { func_type = "rule"; fname = $2; formals = []; body = List.rev
$4 }

the List.rev is from how we untangle the formals in

formal_list */

formals_opt:

/* nothing */ {03
| formal_list { List.rev $1 }
formal:

QUT INT ID { Validate (Out,Int,$3) 2
| OUT NODE 1ID { Validate (Out,Node,$3) }
| OUT EDGE ID { Validate (Out,Edg,$3) }
| 0UT STR ID { Validate (Out,Str,$3) 1}
| OUT FLOAT ID { Validate (Out,Flt,$3) }
| IN INT ID { Validate(In,Int,$3) }
| IN NODE ID { Validate(In,Node,$3) 2
| IN EDGE ID { Validate(In,Edg,$3) }
| IN STR ID { Validate(In,Str,$3) }
| IN FLOAT 1ID { Validate(In,Flt,$3) }
formal_list:

formal { [$11 }
| formal_list SEMI formal { $3 :: $1 %
stmt_list:

/* nothing x/ { 0013}
| stmt_list stmt { $2 :: $1 3}
variable:

ID { Varid(s1) }
| variable DOT 1ID { RecVar ($1, $3) 1}
| ID LBRACK LITINT RBRACK { ArrayIndStat($1,$3)}
| ID LBRACK variable RBRACK { ArrayIndDyn($1,$3)}
stmt :

expr EXC { Expr($1)

52

95

96
97

98
99
100
101

102
103

104
105

106
107

108
109

110
111

112
113

114
115

116
117

118
119

120
121
122
123
124
125

126
127
128
129
130
131
132

| IF LPAREN expr RPAREN LBRACE stmt_list RBRACE Jprec NOELSE { If($3

List.rev $6,[]1) 1}

| IF LPAREN expr RPAREN LBRACE stmt_list RBRACE ELSE LBRACE
stmt_list
RBRACE { If($3, List.rev $6, List.rev $10) 1}
| WHILE LPAREN expr RPAREN LBRACE stmt_list RBRACE {
While ($3, List.rev $6) }
| INT variable EXC { Declare_Only(Int
, $2)
}
| NODE variable EXC { Declare_0Only(
Node,
$2) }
| EDGE variable EXC { Declare_0Only (Edg
, $2)
}
| STR variable EXC { Declare_0Only(Str
, $2)
}
| FLOAT variable EXC { Declare_Only(F1lt
, $2)
}
| INT variable ASSIGN expr EXC { Declare(Int, $2,
$4)
}
| NODE variable ASSIGN expr EXC { Declare(Node, $2
, $4)
}
| EDGE variable ASSIGN expr EXC { Declare(Edg, $2,
$4)
}
| STR variable ASSIGN expr EXC { Declare(Str, $2,
$4)
}
| FLOAT variable ASSIGN expr EXC { Declare(Flt, $2,
$4)
}
| NODE variable ASSIGN CNCT tree CNCT EXC { CreateGraph($2, $5) }
| ID LPAREN actuals_opt RPAREN EXC { Call($1, 3$3) }
| PRINT LPAREN actuals_opt RPAREN EXC { Print($3) }
| ID LPAREN actuals_opt RPAREN FROM variable WITH ID EXC {Crawl ($1,
$3, $6, $8)1}
| variable LEDGE variable EXC {EdgeCreation($1, Ledge, $3) }
| variable REDGE variable EXC {EdgeCreation($1, Redge, $3) 1}
| variable UEDGE variable EXC {EdgeCreation($1l, Uedge, $3) 1
| variable ASSIGN expr EXC { Assign($1, $3) 1}
| CALL EXC { CallRule }
| SET ID EXC { SetRule($2) }
| ADD LPAREN variable RPAREN EXC { RAdd ($3) }

93

133 | ADDFRONT LPAREN variable RPAREN EXC
{ RAddFront ($3) }

134 | ADDBY LPAREN NODE DOT ID COMMA DOLR COMMA LITINT RPAREN EXC{
RAddBy ($5, AddByNode, Dolr, $9) 1

135 | ADDBY LPAREN NODE DOT ID COMMA NEG COMMA LITINT RPAREN EXC {
RAddBy ($5, AddByNode, Tilde, $9) }

136 | ADDBYFRONT LPAREN NODE DOT ID COMMA DOLR COMMA LITINT RPAREN EXC{
RAddByFront ($5, AddByNode, Dolr, $9) 1}

137 | ADDBYFRONT LPAREN NODE DOT ID COMMA NEG COMMA LITINT RPAREN EXC{
RAddByFront ($5, AddByNode, Tilde, $9) 1}

138

139

140 expr:

141 LPAREN expr RPAREN { %2 }

142 | plainString { Lit_Str($1) 1

143 | LITINT { Lit_Int($1) }

144 | LITFLT { Lit_F1t($1) }

145 | expr PLUS expr { Binop($1, Add, $3) 12

146 | expr MINUS expr { Binop($1, Sub, $3) }

147 | expr TIMES expr { Binop($1, Mult, $3) 1}

148 | expr DIVIDE expr { Binop($1, Div, $3) }

149 | expr EQ expr { Binop($1, Equal, $3) }

150 | expr NEQ expr { Binop($1, Neq, $3) }

151 | expr LT expr { Binop($1, Less, $3) }

152 | expr LEQ expr { Binop($1, Leq, $3) }

153 | expr GT expr { Binop($1, Greater, $3) }

154 | expr GEQ expr { Binop($1, Geq, $3) }

155 | expr AND expr { Binop($1, And, $3) }

156 | expr OR expr { Binop($1, Or, $3) }

157 | expr MOD expr { Binop($1, Mod, $3) }

158 | LBRACE actuals_list RBRACE { Actuals($2)}

159 | variable DOT OUTEDGE LPAREN expr RPAREN { NodeOutEdge ($1,$5) }

160 | variable DOT INEDGE LPAREN expr RPAREN { NodeInEdge($1,$5) 1}

161 | variable DOT CHILD LPAREN expr RPAREN { NodeChild ($1,$5) 1}

162 | variable DOT PARENT LPAREN expr RPAREN { NodeParent ($1,$5) 1}

163 | variable DOT OUTEDGES { NodeOutEdges ($1) }

164 | variable DOT INEDGES { NodeInEdges($1) }

165 | variable DOT INNODE { EdgeInNode ($1) }

166 | variable DOT OUTNODE { EdgeOutNode ($1) }

167 | variable { Variable($1) }

168

169 tree:

170 headnode {Leaf ($1) %}

171 | headnode REDGE children {SubTree ($1, Redge, $3)}

172 | headnode LEDGE children {SubTree($1, Ledge, $3)}

173 | headnode UEDGE children {SubTree ($1, Uedge, $3)}

174

175 headnode:

176 LITINT {$1}
177

178 children:

o4

179 nodetree {[$1]}

180 | nodetree COMMA children {$1 :: $3}%}
181

182 nodetree:

183 LITINT {Leaf($1)}

184 | LPAREN tree RPAREN {$2%}

185

186 plainString:

187 LITSTR { %1}

188

189 actuals_opt:

190 /* nothing */ { 01 %

191 | actuals_list { List.rev $1 }
192

193 actuals_list:

194 expr { [$1] 1}

195 | actuals_list SEMI expr { $3 :: $1 }

95

0O 1 O UL i W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

8.3 ast.ml

type op = Add | Sub | Mult | Div | Equal
Geq |
And | Or | Mod
type typ = Node | Int | Flt | Str | Edg
type edg = Ledge | Redge | Uedge
type paren = Rparen | Lparen
type dir = In | Out
type ruleProp = Dolr | Tilde
type variable =
VarId of string
(¥ all recvars are attributes! x*)

| RecVar of variable * string
| ArrayIndDyn of string * variable
| ArrayIndStat of string * int

| Neq | Less | Leq

(* these are for inside connection contexts ONLY x*)

type tree = Leaf of int | SubTree of int
type expr =
Lit_Flt of float
| Lit_Str of string
| Lit_Int of int
| Variable of variable
| Binop of expr * op * expr
| Actuals of expr list
| NodeInEdge of variable * expr
| NodeOutEdge of variable * expr
| NodeInEdges of variable
| NodeOutEdges of variable
| EdgeInNode of variable
| EdgeOutNode of variable
| NodeChild of variable * expr
| NodeParent of variable * expr

type con(Obj =

Lit_Int_Con of int
| Edge of edg
| Paren of paren
type addByType = AddByNode | AddByEdge
type stmt =

Expr of expr
| EdgeCreation of variable * edg *
| Declare_0Only of typ * variable
| Declare of typ * variable * expr

o6

* edg * tree list

variable

Greater

49
50
51
52
53
54
95
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Call of string * expr list
CallRule

Print of expr 1list

While of expr * stmt list
Assign of variable * expr
SetRule of string

RAdd of variable
RAddFront of variable

type formal =

Crawl of string * expr list * variable * string
CreateGraph of variable * tree

If of expr * stmt list * stmt list

RAddBy of string * addByType * ruleProp * int
RAddByFront of string * addByType * ruleProp * int

Validate of dir * typ * string

type func_decl = {

func_type : string;
fname : string;
formals : formal list;
body : stmt 1list;

X

type program = func_decl list

o7

00 O UL~ W N+

N N N N N N N R R R R R R R R R N Ul I I T T R N N e S i gty Sy S Y
C O TN RO P OIS RERORS DTN E WL, OO U R WN RO ©

8.4 interpret.ml

let verbose = false
open Ast

module ST =
let error=

Map.Make (String)
[false |]

let operation_role (o op) = match o with
Add -> "add"
| Equal -> "any"
| Neq -> "any"
| Less -> "basic"
| Leq ->"basic"
| Greater -> "basic"
| Geq ->"basic"
| And -> "int"
| Or ->"int"
| Mod ->"int"
| Sub -> "num"
| Mult ->"num"
| Div ->"num"
let dir2str (d dir) = match d with
In ->"in"
| Out ->"out"
let type2str (t typ) = match t with
Node -> "mnode"
| Int -> "int"
| F1t -> "f1lt"
| Str -> "str"
| Edg -> "edg"
let rec var2str (v variable) = match v with
VarId s -> s
| RecVar (v,s) -> var2str v
| ArrayIndDyn (s,v) -> s
| ArrayIndStat (s,i) -> s
let drop_arr s =

let substr =

match substr with
llnodll _> llnodell

| lledgll _> |Iedgl|

| _-> substr

String.sub s 0 3 in

o8

50 let rec get_variable_type map (v : variable) = match v with
51 VarId(s) ->

52

53 if ST.mem s map then ST.find s map else "error"

54

55 | RecVar(v,s1l) ->

o6 let vtyp = (get_variable_type map v) in

57 if vtyp = "node" || vtyp ="edg"

58 then "int"

59 else "error"

60 | ArrayIndDyn (s,v) ->

61 if ST.mem s map && (get_variable_type map v) = "int"

62 then drop_arr (ST.find s map)

63 else "error"

64 | ArrayIndStat (s,i) ->

65 if ST.mem s map

66 then drop_arr (ST.find s map)

67 else "error"

68

69 let check_node (v: variable) map =

70 if (get_variable_type map v) = "node"

71 then true

72 else (error.(0) <- true; print_endline ("Argument is not a node")
;false)

73

74 let check_edge (v: variable) map =

75 if ((get_variable_type map v) = "edg")

76 then true

T else (error.(0) <- true; print_endline ("Argument is not a edge")
;false)

78

79 let check_index v map =

80 (get_variable_type map v) = "int"

81

82 let addVar (v: variable) (t: typ) map = match v with

83 VarId(s) -> (ST.add s (type2str t) map)

84 | ArrayIndStat (s,i) ->(ST.add s ((type2str t) "arr") map)

85 | ArrayIndDyn (s,v) -> if check_index v map

86 then (ST.add s ((type2str t) "arr") map)

87 else (print_endline ("Array size not int")

; map)

88 | _-> map

89

90

91

92 let check_con_var (v : variable) map=match v with

93

94 ArrayIndStat (s,i) ->

95 if (ST.mem s map)

96 then (error.(0) <- true; print_endline (s =~ "

already declared"); map)

29

97 else (print_endline (s "~ " declared with
connection context");

98 ST.add s "nodearr" map)

99

100

101

102 | ArrayIndDyn (s,v) ->

103 if (ST.mem s map) || not (check_index v map)

104 then (error.(0) <- true;print_endline (s =~ "
problem with connection context"); map)

105 else (print_endline (s "~ " declared with
connection context");

106 ST.add s "nodearr" map)

107 | _-> (error.(0) <- true;

108 print_endline ((var2str v) ~ " not proper variable
for connection context");

109 map)

110

111

112

113

114 1let op_check typl typ2 optyp =

115 match optyp with

116 "basic" -> typl = "str" || typl = "int" || typl = "flt"

117 | "num" -> +typl = "flt" Il typl = "int"

118 | "int" -> typl = "int" && typ2 = "int"

119 | "add" -> typl = "str" || typl = "int" || typl = "flt"

120 | "any" -> true

121 | -> true

122

123

124

125 let rec get_expr_type map (e : expr) = match e with

126 Lit_Flt £ -> "flt"

127 | Lit_Int i -> "int"

128 | Lit_Str s -> "str"

129 | Variable v -> (get_variable_type map v)

130 | Binop (el, op, e2) ->

131 let optyp = operation_role op in

132 let typl = get_expr_type map el in

133 let typ2 = get_expr_type map e2 in

134 if (op_check typl typ2 optyp)

135 && (typl = typ2

136 [l ¢ (typl = "int" || typl ="£f1lt")

137 && (typ2 = "int" || typ2 = "flt")

138))

139 then if optyp = "basic" || optyp = "any"

140 then "int"

141 else typl

142

143 else (error.(0) <- true;

60

144

145
146
147
148
149

150
151
152
153
154
155
156
157
158

159

160
161
162
163
164

165

166
167
168
169

170
171
172
173

174
175
176
177

178
179
180
181

print_endline ("cannot operate on typl
= " and " ° typ2 ° " with " ~ optyp
" operation");
"error")

| Actuals(el) ->
List.fold_left (fun tp tc-> if (get_expr_type map tc) =
tp
then tp
else "error")
(get_expr_type map (List.hd el))
el
| NodeInEdge(v,e)->
if (check_node v map)

then if (get_expr_type map e) = "int"
then "edg"
else (error.(0) <- true;print_endline ("
Inedge indexed with non int"); "error")

else (error.(0) <- true;print_endline("Cannot call
InEdge on variable") ;"error"
| NodeOutEdge (v,e)->
if (check_node v map)

then if (get_expr_type map e) = "int"
then "edg"
else (error.(0) <- true;print_endline ("
Outedge indexed with non int"); "error
II)

else (error.(0) <- true;print_endline("Cannot call
outedge on variable");"error")
| NodeInEdges (v)->
if (check_node v map)
then "int"
else (error.(0) <- true;print_endline("Cannot call
inedges on variable");"error")
| NodeOutEdges (v)->
if (check_node v map)
then "int"
else (error.(0) <- true;print_endline("Cannot call
outedges on variable");"error")
| EdgeInNode (v)->
if (check_edge v map)
then "node"
else (error.(0) <- true;print_endline("Cannot call
innode on variable") ;"error")
| EdgeOutNode (v)->
if (check_edge v map)
then "node"
else (error.(0) <- true;print_endline("Cannot call
outnode on variable") ;"error")

61

182
183
184
185
186
187

188
189

190
191
192
193
194
195

196
197

198
199
200
201
202
203

204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225

NodeChild(v,e) ->
if (check_node v map)
then if (get_expr_type map e) = "int"
then "node"
else (error.(0) <- true;
print_endline ("Nodechild indexed
with non int");
"error")
else (error.(0) <- true;print_endline("Cannot call
Nodechild on variable") ;"error")
NodeParent (v,e) ->
if (check_node v map)
then if (get_expr_type map e) = "int"
then "node"
else (error.(0) <- true;
print_endline ("NodeParent indexed
with non int");
"error")
else (error.(0) <- true;print_endline("Cannot call
NodeParent on variable") ;"error")

(* keep track of the type as well as the variable name x)
let get_formals_from_fdecl formals =
let m (f : formal) =

match f with Validate(d, t, s) -> (s, (type2str t)
)

in List.map m formals

let extract_type_from_formal (f : formal) =
match f with Validate(d, t, s) -> ((dir2str d) ,(type2str t))

let get_tuple_from_fdecl (f : func_decl) =
(f.fname, (List.fold_right (fun a b -> (extract_type_from_formal a

Y::b) f.formals []))

let assign_method (fdecl : func_decl) crawlh ruleh opth =
match fdecl.func_type with

"rule" ->
(fun a -> Hashtbl.add ruleh (fst a) (snd a))
(get_tuple_from_fdecl fdecl)

"opt" ->
(fun a -> Hashtbl.add opth (fst a) (snd a))
(get_tuple_from_fdecl fdecl)

"crawl" ->
(fun a -> Hashtbl.add crawlh (fst a) (snd a))
(get_tuple_from_fdecl fdecl)

_ => (error.(0) <- true; print_endline "cannot identify
method type")

62

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274
275

let use_var name hash =
if ST.mem name hash
then true
else false
let check_assign vtyp (e expr) map =
let exprtyp = (get_expr_type map e) in
exprtyp = vtyp
[l (exprtyp = "int" && vtyp = "flt")
[l (exprtyp = "flt" && vtyp = "int")
let add_special_var mtyp map =
if mtyp = "rule" || mtyp = "crawl"
then ST.add "current" "node" map
else map
let check_argument map (e expr) (dir, typ) =
if dir = "out"
then match e with Variable(v) ->
if (get_variable_type map v) = typ
then true
else false
| _-> false
else
if (get_expr_type map e) = typ
then true
else false
let rec check_args map explist arglist =
if (List.length explist = List.length arglist
&% ((List.length explist) =0
|| (check_argument map (List.hd explist) (List.hd
arglist))
))
then
if ((List.length explist) = 0)
then true
else check_args map (List.tl explist) (List.tl arglist)
else
false
let make_table f g crawlh ruleh=

let formals_st =
let addtomap smap word =

63

276 match word with

277 (s, t) ->

278 if not (ST.mem s smap)

279 then (print_endline ("adding opt
argument to symbol table: " ~ s);

280 ST.add s t smap)

281 else (error.(0) <- true;print_endline ("
Argument name " ~ s ° " used multiple
times") ;

282 smap)

283 in

284 List.fold_left addtomap (add_special_var f.func_type ST.

empty)

285 (get_formals_from_fdecl f.formals)

286 in

287 let checkvar map (v : variable) =

288 if ST.mem (var2str v) map

289 then map

290 else

291 if Hashtbl.mem g (var2str v)

292 then map

293 else (error.(0) <- true;

294 print_endline ("ERROR: undeclared variable
: "~ (var2str v));

295 map)

296 in

297

298 let rec checkexp map (e : expr) =

299 match e with

300 Lit_Fl1t f -> map

301 | Lit_Str s -> map

302 | Lit_Int i -> map

303 | Actuals a -> List.fold_right (fun m n -> checkexp n m) a map

304 | Variable v -> checkvar map v

305 | Binop (el, o, e2) -> checkexp (checkexp map el) e2

306 | _ -> (print_endline "unimplemented expression"; map)

307 in

308

309 let rec checkstmt map (s : stmt) =

310 match s with

311 (¥ check declarations *)

312 Declare_0Only (t, v) ->

313

314 if ST.mem (var2str v) map

315 then

316 (error.(0) <- true; print_endline ("ERROR:

duplicate local declaration: " ~ (var2str v));

317 map)

318 else

319 if Hashtbl.mem g (var2str v)

320 then (error.(0) <- true;

64

321

322
323
324
325
326
327
328
329

330
331
332
333

334
335
336
337
338
339
340
341

342
343
344
345
346
347

348

349
350
351

352
353
354
355

356
357
358
359
360
361
362

print_endline ("ERROR: duplicate GLOBAL
declaration: " -~ (var2str v));
map)
else addVar v t map

| Declare (t, v, e) —->
if ST.mem (var2str v) map

then
(error.(0) <- true;
print_endline ("ERROR: duplicate local declaration
: "~ (var2str v));
map)
else

if Hashtbl.mem g (var2str v) then
(error.(0) <- true;print_endline ("ERROR:
duplicate GLOBAL declaration: " ~ (var2str v))
map)
else

if check_assign (type2str t) e map
then addVar v t map
else
(error.(0) <- true;
print_endline ("Expression not of type "“(type2str
t)~", variable not declared ");
map)

| Assign (v, e) ->
if ST.mem (var2str v) map

then
if check_assign (drop_arr (get_variable_type map
v)) e map
then (print_endline ((var2str v)~ " assigned
value") ;
map)
else (error.(0) <- true;
print_endline ((var2str v) "’s type did not
match type");
map)
else

(error.(0) <- true;
(print_endline ((var2str v)~
Cannot assign value"));
map)
| CreateGraph (v,t) -> check_con_var v map

" not defined.

(¥ check expressions *)
| Expr (e) ->
checkexp map e
(¥ check when we call functions? *)

65

363
364
365
366
367
368
369
370

371
372

373
374
375
376
377
378
379
380
381
382
383
384

385
386

387
388
389
390
391

392
393

394

395
396
397
398
399
400
401
402
403
404
405

| Call (c, elist) ->

if Hashtbl.mem g c
then (print_string ("calling opt: " ~ ¢ ~" :");
(let argtypes = Hashtbl.find g c
in
if check_args map elist argtypes
then print_endline(c " call passed with proper
arguments")
else (error.(0) <- true;
print_endline (c call passed with
incorrect arguments")));
map)

else
(error.(0) <- true;
print_endline ("ERROR: undefined opt: " ~ c);
map)
(* if/while %)
While (e, sl) ->
(if not ((get_expr_type map e) = "int")
then (error.(0) <- true;
print_endline ("While expression is not
evaluating to an int"))
else ()
let _ = (List.fold_left checkstmt (checkexp map e) (sl))
in map)

If(e,sl1,s812) ->
(if not ((get_expr_type map e) = "int")
then (error.(0) <- true;
print_endline ("If expression is not evaluating to
an int"))
else print_string (""));

(let _ = (List.fold_left <checkstmt (checkexp
map e) sl1) in
let _ = (List.fold_left <checkstmt (checkexp
map e) sl2) in
map)
Crawl (cn , el, no ,ru) ->
if Hashtbl.mem crawlh cn
then
let argtypes = Hashtbl.find crawlh cn
in
if check_args map el argtypes
then if (check_node no map) && (Hashtbl.mem ruleh ru)
then map

else (error.(0) <- true;
print_endline ("Wrong arguments passed to "

“cn” " crawl in from-where clause");

66

406
407
408

409
410
411
412
413
414
415

416
417
418
419

420
421

422
423

424

425
426
427
428
429
430
431
432
433

434

435
436
437
438

439
440
441

442
443
444

445

map)
else (error.(0) <- true;
print_endline("Crawl " “cn” " called with improper

arguments"); map)
else (error.(0) <- true;

print_endline ("Crawl " “cn” " undefined");
map)
CallRule ->
if f.func_type = "crawl"
then map
else (print_endline(f.fname ~" is not a crawl. Cannot use

call"); map)
Print (el) ->
List.fold_left (fun m e-> let etyp = get_expr_type m e in

match etyp with

"edg" ->(error.(0) <- true;
print_endline

("Edges cannot be printed"); m)

|"node" ->(error.(0) <- true;
print_endline

("Nodes cannot be printed"); m)

|"error" ->(error.(0) <- true;
print_endline

("Expression could not be printed

") m)
| _-> m
)
map
el
SetRule(rl) ->
if f.func_type = "crawl"
then if Hashtbl.mem ruleh rl
then map

else(error.(0) <- true;print_endline(rl ~" is not
a declared rule"); map)
else (error.(0) <- true;print_endline(f.fname ~" is not a

crawl. Cannot use SetRule");
map)
RAdd(v) -> if check_node v map
then map

else (error.(0) <- true;print_endline ("Adding
variable not of type node"); map)
RAddFront (v) -> if check_node v map
then map
else (error.(0) <- true;print_endline("Adding
variable not of type node"); map)
RAddBy(s,a,rp,i)-> map
RAddByFront(s,a,rp,i)-> map
EdgeCreation (vl, edg, v2) -> if check_node vl map &&
check_node v2 map
then map

67

446

447
448
449
450
451
452
453
454
455
456
457
458

459
460
461
462
463
464
465
466
467

468
469
470
471
472
473
474
475
476
477
478
479
480

481
482
483
484
485
486

487
488
489

490

in

else (error.(0) <- true;print_endline("Non nodes

passed to variables");
map)

List.fold_left checkstmt formals_st f.body

let dump_table t =

print_endline "==================";
print_endline "symbol table dump: ";

ST.fold (fun k v 1 -> print_endline ("--> " =~k =~ ": " =~ v)) t QO

let dump_tuple t =
(

print_endline

("==-=-> " " (fst t) = ": " ° (string_of_int (List.

length (snd t))));
List.map print_endline (snd t);

)

let dump_hash h =

print_endline "==================";

print_endline "global signature dump: ";

Hashtbl.iter (fun a b -> (print_string (a =~ ": ");

h;

List.fold_right

(fun ¢ d -> print_string ((fst c)

~nn A(Snd C) -~ n ")) b ();
print_endline "";))

print_endline "o================="

let check_ast (p

program) =

match p with

(fdecllist)
let
let
let
(

->

funcHash = Hashtbl.create 100 in
crawlHash =Hashtbl.create 50 in
ruleHash = Hashtbl.create 50 in

List.fold_right

(fun a b -> assign_method a crawlHash ruleHash
funcHash)

(fdecllist)

O 5

dump_hash funcHash;

if not (Hashtbl.mem funcHash "main")

then (error.(0) <- true; print_endline("No main function

declared"))

else (print_endline("Starting")));
List.fold_right (fun a b -> dump_table a)

(List .map (fun a -> make_table a funcHash
crawlHash ruleHash)
(List.rev fdecllist))

68

491
492
493
494
495
496

O3
if error. (0)
then print_endline "an error!"
else print_endline "mno error!";
error. (0)

69

00 O UL~ W N+

0 W W W W W W WWWRNDNDDNDDNEDNDDNDDNDDNDNDDN = = = =
O OO TR WNHEOOWWIDDUR WNHEOOWIOD U R W= OO

41

42
43
44
45
46

8.5 translate.ml

open Ast
open Cast

let rec varname_from_variable v = match v with
VarId s -> s

| RecVar (v,s)

| ArrayIndDyn

-> (varname_from_variable v)
(s,v) => s =~ "[" = (varname_from_variable v)

-~ II'II -~ s

| ArrayIndStat (S,i) -> s - "[" - (String_of_int i) ~ n]n

let addtoend 1 e = List.rev (e

let cop_from_op (o

op) = match o with

Add -> CAdd

Greater ->

|
|
|
|
|
|
|
|
|
|
| 0r -> COr
|

Sub -> CSub
Mult -> CMult
Div -> CDiv
Equal -> CEqual
Neq -> CNeq
Less -> CLess
Leq -> CLeq

CGreater

Geq -> CGeq
And -> CAnd

Mod -> CMod

let trans_dir d = match d with
Redge -> CRedge
| Ledge -> CLedge
| Uedge -> CUedge

let num_from_leaf £
Leaf p ->
| -> -1

let gethead (s : tree) treename = match s with
,e,tl) -> CId (Cvar (treename

SubTree (i
S
| Leaf (i)
)

let rec cstmtlist_of_edge_declarations name size

if size = 0
then []
else

= match f with
P

)

-> CId (Cvar (treename

70

(List.rev 1))

n [II

Il] n

"[" ~ (string_of_int 1)

(string_of_int i)

II] ll)

47

48
49
50
o1
92
53
54

95
96
o7
o8
59
60
61
62
63
64

65
66
67

68
69
70
71
72

73
74
(0]
76
7

8
79
80

81
82

83

84

85
86

(CAssign(CArrayStat (name, size
", 01) D

(cstmtlist_of_edge_declarations name (size-1))

let rec cstmtlist_of_tree_declarations name size
if size = 0
then []

else
(CAssi

) i

1),

(cstmtlist_of_tree_declarations name (size -

let cstmtlist_from_tree tree treename =
let rec treefold element stmt_list treename
Leaf (i) -> stmt_list

SubTree (i,e,

(

tl) ->

match e with
Redge ->

[CId (Cvar (treename ~ "["
(gethead f treename)])))

(fun f -> CExpr (CCallNew
("DiGrEdge",[(gethead f treename);

in

CId (Cvar (treename

t1))

(st
t1))

Ledge

Uedge

List.fold_right (fun b a -> treefold b a

treename)

ring_of_int i)

->

List.fold_right (fun b a -> treefold b a

treename)

->

List.fold_right (fun b a -> treefold b a

treename)

tl

CCallNew ("DiGrEdge

1)

match element with

(stmt_list @ (List.map

(fun £ -> CExpr (

CCallNew ("
DiGrEdge",

|I]Il));

tl

(stmt_list @ (List.map

"[* ~ (string_of_int i)

tl

(stmt_list @ (List.map (fun f -> CExpr (
CCallNew

("DiGrEdge",[CId (Cvar (treename ~ "["

string_of_int i)
(gethead f treename);

true")])))

71

t1))

"1"));
CLiteral_String ("

gn(CArrayStat (name, size - 1), CCallNew("DiGrNode",[]))

"IN)

(

87
88
89
90
91
92
93

94

95
96
97
98
99
100
101
102

103
104

105
106

107
108

109
110

111
112

113
114
115
116
117
118
119
120

121
122

123

let rec

let rec

treefold tree [] treename

cvar_from_var v = match v with
VarId (s) -> Cvar(s)
| ArrayIndStat (name, index) -> CArrayStat(name, index)
| ArrayIndDyn (name, index) -> CArrayDyn(name, (cvar_from_var

index))
| RecVar (v, s) -> (print_endline "ERROR: this should never be
called?!";
Cvar(s))
cexpr_from_expr (e : expr) = match e with
Lit_Flt f -> CLiteral_Float (f)
| Lit_Str s -> CLiteral_String(s)
| Lit_Int i -> CLiteral_Int (i)
| Actuals a ->

(print_endline ("ERROR: can’t assign list to
single object");
CNoexpr)
| Binop (el, o, e2) -> CBinop (cexpr_from_expr el, cop_from_op o,
cexpr_from_expr e2)
| NodeInEdge (v,e) ->
CObjCall(Cvar (varname_from_variable v), "
getInEdge", [cexpr_from_expr e])
| NodeOutEdge (v,e) ->
CObjCall(Cvar (varname_from_variable v),
getOutEdge", [cexpr_from_expr e]l)
| NodeChild (v,e) ->
CObjCall(Cvar (varname_from_variable v), "getChild", [
cexpr_from_expr e])
| NodeParent (v,e) ->
CObjCall(Cvar (varname_from_variable v), "getParent", [
cexpr_from_expr e])
| NodeInEdges v -> CObjCall(Cvar (varname_from_variable v)
, "InEdges", []1)
| NodeOutEdges v -> CObjCall(Cvar (varname_from_variable v
), "OutEdges", [1)
| EdgeInNode v -> CObjCall(Cvar (varname_from_variable v),
"inNode", [])
| EdgeOutNode v -> CObjCall(Cvar (varname_from_variable v)
"outNode", [1)
| Variable v ->

(

match v with
VarId s -> CId (Cvar s)
| RecVar (v,s) ->
CObjCall(Cvar(varname_from_variable v),
getAttribute", [CId(Cvar ("\"" ~ s ~
"\""))1)
| ArrayIndStat (s,i) -> CId(CArrayStat(s,i))

72

124

125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149

150
151

152
153
154
155
156

157
158

159
160
161

162
163

| ArrayIndDyn (s,v) -> CId(CArrayDyn(s, Cvar(
varname_from_variable v)))

)
let rec cexprlist_from_actualsexpr e = match e with
Actuals a -> CActuals(List.map (fun m -> cexpr_from_expr m
) a)

| _ =-> CActuals ([])

let ctype_from_typ (t : typ) = match t with
Node -> CDiGrNode
| Int -> CInt
| Flt -> CFloat
| Str -> CString
| Edg -> CDiGrEdge

let rec cstmt_from_stmt (s : stmt) = match s with
Print 1 -> CPrint(List.map cexpr_from_expr 1)
| Call (s, 1) -> CExpr(CCall (s, (List.map cexpr_from_expr 1)))
| CallRule -> CExpr(CCall ("rule", [CId(Cvar("current"));
CId(Cvar ("queue"))1))
| SetRule r -> CAssignRule("rule", CId(Cvar(r)))
| Assign (v, e) -> (
match v with
VarId (s) ->
CAssign(Cvar(s),
cexpr_from_expr e)
| ArrayIndStat (name, index) ->
CAssign(CArrayStat (name,
index), cexpr_from_expr
e)
| ArrayIndDyn (name, index) ->
CAssign(CArrayDyn (name, (
cvar_from_var index)),
cexpr_from_expr e)
| RecVar (v, s) -> CExpr(CObjCall(
Cvar (varname_from_variable v),
"setAttribute" |,
[CId(Cvar ("\"" =~ s = "\""));
cexpr_from_expr e]
))
)
| RAdd n -> CExpr(CObjCall(Cvar("returnQueue") ,"push_back", [CId(
Cvar ((varname_from_variable n)))]))
| RAddFront n -> CExpr (CO0bjCall(Cvar ("returnQueue"),
"push_front",
[CId(Cvar ((
varname_from_variable n

)))1))

| RAddBy (s, t, rp, i) -> CExpr(

73

164

165
166

167
168
169

170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185

186
187
188
189
190
191

192
193
194

195
196
197

198
199
200
201

202
203

|
(

CCall ("DiGrAddBy", [CId(Cvar("current")); CId(Cvar ("
returnQueue")) ;
CId(Cvar ("BACK"));
(match t with AddByNode -> CId(Cvar ("ADDBY_NODE")) |
AddByEdge ->
CId(Cvar ("ADDBY_EDGE")));

CLiteral_String ("\"" =~ s = "\"");
(match rp with Dolr -> CId(Cvar ("DESCENDING")) | Tilde
->

CId(Cvar ("ASCENDING")));
CLiteral_Int (i)]
))
RAddByFront (s, t, rp, i) -> CExpr(
CCall ("DiGrAddBy",
[CId(Cvar ("current")); CId(Cvar ("returnQueue"));
CId(Cvar ("FRONT"));
(match t with AddByNode -> CId(Cvar ("ADDBY_NODE")) |
AddByEdge ->
CId(Cvar ("ADDBY_EDGE")));
CLiteral_String("\"" =~ s =~ "\"");
(match rp with Dolr -> CId(Cvar ("DESCENDING"))
| Tilde -> CId(Cvar ("ASCENDING")));
CLiteral_Int (i)]
))
Crawl (s, el, al, a2) -> CExpr(CCall (s,
[CId(Cvar ((varname_from_variable al))); CId(Cvar(a2))] @ (List.
map cexpr_from_expr el)
))

CreateGraph (variable, tree) ->

match variable with

RecVar (vi, v2) ->
(print_endline "ERROR: only arrays can be
assigned to a connection context";
CExpr (CNoexpr))
| VarId s->
(print_endline "ERROR: only arrays can
be assigned to a connection context" ;
CExpr (CNoexpr))
| ArrayIndDyn (s,i) ->
(print_endline "ERROR: only statically-sized
arrays can be assigned to a connection context"

CExpr (CNoexpr))
| ArrayIndStat (name, size) ->
CBlock (
CDeclare (CSigArr (CTypePointer (CDiGrNode) ,CArrayStat (
name , size)))
(
(List. rev (cstmtlist_of_tree_declarations name
size)) @

74

204
205
206
207
208
209
210
211
212
213
214

215
216
217

218
219

220
221
222
223

224
225

226
227
228
229
230
231
232
233
234
235

236
237

238
239

240
241
242

Edg
(

->

(cstmtlist_from_tree tree name)

)
)

)
| Declare_Only (t, v) ->
(

match t with

Node ->

(

match v with
VarId (s) -> CDeclareAssign (CSigPtr (CDiGrNode,s)
, CCallNew ("DiGrNode",[1))
| ArrayIndStat (name, size) -> CBlock(

CDeclare (CSigArr (CTypePointer (
CDiGrNode) ,CArrayStat (name,size
)))

(

(List.rev (
cstmtlist_of_tree_declarations
name size))

)
ArrayIndDyn (s, e) ->
(print_endline ("ERROR: cannot declare a type for
an element of array" ~ s);
CExpr (CNoexpr))
RecVar (v, s) -> (print_endline ("ERROR: cannot declare a
type for an attribute" ~
(varname_from_variable v));
CExpr (CNoexpr))

match v with

VarId (s) ->
CDeclareAssign (CSigPtr (CDiGrEdge,s), CCallNew ("
DiGrEdge",[1))
ArrayIndStat (name, size) -> CBlock(
CDeclare (CSigArr (CTypePointer (CDiGrEdge) ,
CArrayStat (name,size)))
(

(List.rev (
cstmtlist_of_edge_declarations
name size))

)
)
ArrayIndDyn (s, e) ->

5

243

244
245

246
247
248
249
250
251
252
253
254

255
256

257
258
259
260
261
262
263
264
265
266
267
268

269

270
271

272
273

274

(print_endline ("ERROR:
an element of array"

CExpr (CNoexpr))

cannot declare a type for
s);

| RecVar (v, s) -> (print_endline ("ERROR: cannot declare a

type for an attribute"

(varname_from_variable v));

)
I

CExpr (CNoexpr))

match v with

VarId (s) -> CDeclare (CSigVar(ctype_from_typ t,s))

| ArrayIndStat (s,i)

)

| _ ->

(

)
Declare(t,

(

CArrayStat (s, 1i)))
| ArrayIndDyn (s, i) ->
CDeclare (CSigArr(ctype_from_typ t, CArrayDyn (s,

v,

cvar_from_var i)))
| _ -> CExpr(CNoexpr)

e) —>

match t with
Node ->
(
match v with
VarId (s) ->

(

-> CDeclare(CSigArr (ctype_from_typ t,

match e with
Variable a ->

76

CDeclareAssign
(CSigPtr (CDiGrNode
»8),
cexpr_from_expr
e)
EdgeInNode a ->
CDeclareAssign (
CSigPtr (
CDiGrNode,s),
cexpr_from_expr
e)
EdgeOutNode a ->
CDeclareAssign (
CSigPtr(
CDiGrNode,s),
cexpr_from_expr
e)
NodeChild(_,_) ->
CDeclareAssign (CSigPtr
(CDiGrNode,s),
cexpr_from_expr e)

275

276
277
278
279

280

281
282
283
284
285
286
287
288
289

290
291
292
293

294
295
296
297
298
299

300
301
302
303
304
305
306
307

308

cexprlist_from_actualsexpr e)
| _ ->
)
| Edg
(

| NodeParent(_,_) ->
CDeclareAssign (CSigPtr
(CDiGrNode,s),
cexpr_from_expr e)
- -> CExpr (CNoexpr)
)
| ArrayIndStat (name,size) ->
CDeclareAssign (CSigArr (
CTypePointer (CDiGrNode) ,
CArrayStat
(name,
size)),

CExpr (CNoexpr)

->

match v with

VarId (s) -> (
match e with
Variable a ->
CDeclareAssign (
CSigPtr (CDiGrEdge,s),
cexpr_from_expr e)
| NodeOutEdge(_,_) ->

CDeclareAssign (CSigPtr (CDiGrEdge ,s), cexpr_from_expr e)

cexprlist_from_actualsexpr e)
| _ ->

)
| ->
(

| NodeInEdge(_,_) ->

CDeclareAssign (
CSigPtr(
CDiGrEdge ,s),
cexpr_from_expr

e)
-> CExpr (CNoexpr)
)

| ArrayIndStat(s,z) ->
CDeclareAssign (CSigArr (CDiGrEdge,
CArrayStat
(s,2)),

CExpr (CNoexpr)

match v with
VarId (s) ->
CDeclareAssign(CSigVar (
ctype_from_typ t, s),
cexpr_from_expr e)
| ArrayIndStat(s,z) ->

7

309

310

311
312
313
314
315
316
317
318
319
320

321
322
323

324
325

326

327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

CDeclareAssign (CSigArr(
ctype_from_typ t,
CArrayStat
(s,2)),

cexprlist_from_actualsexpr e)

Expr e
EdgeCr
(

-> CExpr (CNoexpr)
)

-> CExpr (cexpr_from_expr e)
eation (s1, e, s2) ->

match e with

)
If (e,

Redge ->
CExpr (CCallNew ("DiGrEdge",[CId (Cvar (
varname_from_variable s1));
CId (Cvar (varname_from_variable s2))]1))
Ledge ->
CExpr (CCallNew ("DiGrEdge",[CId (Cvar (
varname_from_variable s2));
CId (Cvar (varname_from_variable s1))1))
Uedge -> CExpr(CCallNew ("DiGrEdge",[CId (Cvar (
varname_from_variable s1));
CId (Cvar (varname_from_variable s2));
CLiteral_String("true")1))

sll, sl2) ->

CIf(cexpr_from_expr e, List.map cstmt_from_stmt sll, List.map
cstmt_from_stmt sl2)
| While (e, sl)
CWhile(cexpr_from_expr e, List.map cstmt_from_stmt sl)

let auto_crawl_formals =
CFuncFormal (

)]

let auto_rule_formals =
CSigPtr (CVector (CTypePointer (CDiGrNode)) ,"returnQueue")]

->

[CSigPtr (CDiGrNode ,"current") ;
CVoid,
"rule",
[CTypePointer (CDiGrNode); CTypePointer (CVector (
CTypePointer (CDiGrNode)))]

[CSigPtr (CDiGrNode ,"current") ;

let csigvar_from_formal f = match f with

Validate (4, t,

In -> (match

Int ->

| F1t ->

| Str ->

| Node -

| Edg ->

)
Out -> (mat
Int ->

s) -> (match 4 with

t with

CSigVar (CInt,s)
CSigVar (CFloat ,s)
CSigVar (CString,s)

> CSigPtr (CDiGrNode, s)
CSigPtr (CDiGrEdge, s)

ch t with
CSigRef (CInt,s)

78

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

373
374
375
376

377
378
379
380
381
382
383

384
385
386
387

388
389

390

391
392

393
394

)

let add_to_list e 1 =

let merge_two_lists 11 12 =

let cfdecl_from_fdecl (f
(if f.func_type
then

(

else

if f.fname =

then

else

)

if f.func_type =

then

{ cfname =
creturntype =
cformals =

cbody

cfname =
creturntype =
cformals =

cbody =
cfname =
creturntype =

cformals =

cbody =

Flt -> CSigRef (CFloat,s)
Str -> CSigRef (CString,s)
Node -> CSigPtr (CDiGrNode, s)
Edg -> CSigPtr (CDiGrEdge, s)

1
List.fold_right add_to_list 11 12

func_decl) =
= n Opt n

"maln n

f.fname;

CInt;

(List.map csigvar_from_formal f.formals)
[CTryCatchBlock(List.map cstmt_from_stmt f.
body)] }

f.fname;
CVoid;
(List.map csigvar_from_formal f.formals)

(List.map cstmt_from_stmt f.body) 1}
"crawl"

f.fname;

CVoid;

auto_crawl_formals @ (List.map
csigvar_from_formal f.formals);

[
CDeclareAssign(CSigPtr (CVector (CTypePointer
(CDiGrNode)) ,"queue"),
CCallNew ("deque<DiGrNodex*>",[]1)) ;
CExpr (CObjCall (Cvar ("queue") ,"push_back", [
CId(Cvar ("current"))]1)) ;
CDoWhile (CBinop (CId(Cvar ("queue->size()"))
, CGreater, CLiteral_Int (0)),
(
CAssign(Cvar ("current"),
("queue->front () ")))

CId(Cvar

CExpr (CId(Cvar ("queue->
pop_front () ")))

79

395

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

(List.map cstmt_from_stmt f.

body)))
)]
}
else
{ cfname = f.fname;
creturntype = CVoid;
cformals = auto_rule_formals;
cbody =
(List.map cstmt_from_stmt f.body)
}

let cast_from_ast (p : program) = match p with
(fdecllist) ->
List.map cfdecl_from_fdecl (List.rev fdecllist)

80

w

0 3 O U

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

8.6 cast.ml

type cop = CAdd | CSub | CMult | CDiv | CEqual

CGreater | CGeq | CAnd | COr | CMod
type cdirection = CLedge | CRedge | CUedge
type ctype = CVoid | CInt | CFloat | CString
CVector of ctype | CTypePointer of ctype

type cvar =

Cvar of string
| CArrayStat of string * int
| CArrayDyn of string * cvar
| CPointer of string

type cexpr =
CLiteral_Int of int
| CLiteral_Float of float
| CLiteral_String of string
| CActuals of cexpr list
| CId of cvar
| CBinop of cexpr * cop * cexpr
| CCallNew of string * cexpr list
| CCall of string * cexpr list
| CObjCall of cvar * string * cexpr list
| CIdAddr of string
| CNoexpr
type csigvar =
CSigVar of ctype * string
| CSigVect of ctype * string
| CSigPtr of ctype * string
| CSigRef of ctype * string
| CSigArr of ctype * cvar
| CFuncFormal of ctype * string * ctype list

type cstmt =
CTryCatchBlock of cstmt list
| CBlock of cstmt list
| CExpr of cexpr
| CDeclare of csigvar
| CDeclareAssign of csigvar * cexpr

CAssign of cvar * cexpr

CAssignRule of string * cexpr

CReturn of cexpr

CIf of cexpr * cstmt list * cstmt list
CWhile of cexpr * cstmt list

CDoWhile of cexpr * cstmt list

CPrint of cexpr 1list

type cfunc_decl = {

81

| CNeq |

CDiGrNode

CLess | CLeq

CDiGrEdge

48 creturntype : ctype;

49 cfname : string;

50 cformals : csigvar list;
51 cbody : cstmt list;
52}

53

94 type cprogram = cfunc_decl list

8.7 compile.ml

1 open Cast

2

3 let string_of_cop o = match o with
4 CAdd -> "+"

5 | CSub -> "-"

6 | CMult -> "x"

7 | CDiv -> "/"

8 | CEqual -> "=="

9 | CNeq -> "!="

10 | CLess -> "<

11 | CLeq -> "<="

12 | CGreater -> ">"

13 | CGeq -> ">=r

14 | CAnd -> "&&"

15 | ¢COr -> "||"

16 | CMod -> "%"

17

18 let rec string_of_ctype t = match t with
19 CVoid -> "wvoid"

20 CInt -> "int"

21 CFloat -> "double"
22 CString -> "string"

I
I
I
23 | CDiGrNode -> "DiGrNode"
I
I
I

24 CDiGrEdge -> "DiGrEdge"

25 CTypePointer p -> string_of_ctype p =~ "x"

26 CVector v -> "deque<" ~ string_of_ctype v =~ ">"

27

28

29 let string_type_of_formal (s : csigvar) = match s with

30 CSigVar (t, n) -> (string_of_ctype t)

31 | CSigVect (t, n) -> "vector<" ~ (string_of_ctype t) ~ ">"
32 | CSigPtr (t, n) -> (string_of_ctype t) ~ "x*"

33 | CSigRef (t, n) -> "&" ~ (string_of_ctype t)

34 | CSigArr (t, n) -> string_of_ctype t

35 | CFuncFormal (t, n, a) -> string_of_ctype t

36

37 let rec string_of_cvar v = match v with

38 Cvar s-> s

39 | CArrayStat (n, i) -> " " =~ n =~ "[" ~ string_of_int i ~ "]"
40 | CArrayDyn (n, i) -> " " ~ n ~ "[" ~ (string_of_cvar i) ~ "]"
41 | CPointer s -> " %" "~ g

42

43

44

45 let rec string_of_csigvar (s : csigvar) = match s with

46 CSigVar (t, s) -> (string_of_ctype t) =~ " " ~ s

47 | CSigPtr (t ,s) -> (string_of_ctype t) ~ " *" "~ s

48 | CSigArr (t, a) -> (string_of_ctype t) -~ " " ~

49 (

83

50
o1
52
53
54

95
56
o7
58
99
60
61

62
63
64
65
66
67
68
69
70

71

72
73
74
7
76

7

78
79
80
81
82
83
84

85
86

87
88
89
90
91

let array_size v =

match a with

Cvar s -> s

| CArrayStat (s, i)
| CArrayDyn (s, c)
| CPointer (mn)

->

-> s
-> (print_endline ("ERROR:

S

n [ll

[ll

str
stri

-~ Il] n
-~ Il] n

tried to make

ing_of_int i
ng_of_cvar c

pointer to indexed array" "~ n); "BAD")
)
| CSigRef (t, s) -> (string_of_ctype t) "E" T s
| CSigVect (t, s) -> "vector<" ~ (string_of_ctype t) ~ "> " "~ s
| CFuncFormal (t, s, a) -> (string_of_ctype t) ~ " (x" ~ s ~")("

(

if ((List.length a) > 0) then

(List.fold_left (fun b c
string_of_ctype c)) (string_of_ctype (List.hd a))
List.tl a))

| Cvar (n)
not an array!");
| CPointer (m)
and not

CArrayStat (n, 1)

| CArrayDyn (n, i)
| Cvar (mn)
not an array!");

| CPointer (mn)

and not an array!");

let signature_of_fdecl f =
(string_of_ctype f.creturntype)

(

an array!");

else nn
y -
Il)ll
let array_mname v = match v with
CArrayStat (n, i) -> n
| CArrayDyn (n, i) -> n

IIBAD")

"BAD")

match v with
-> i
-> int_of_string (string_of_cvar i)
is a variable and

-1)

-1)

-> (print_endline ("ERROR!

-> (print_endline ("ERROR!

-> b ~

n -~ n

-> (print_endline ("ERROR! "

n -~ n

-> (print_endline ("ERROR! "

f.cf

if ((List.length f.cformals) > 0)

then

(List.fold_right
string_type_of_formal a))

(fun a b

->

n s n -~ (

n is a pointer

n is a pointer

Il(ll -~

name

b -~ n , n -~ (

is a variable and

el
)

se nn

) ;\n\n"

84

(List.tl f.cformals)

(string_type_of_formal (List.hd f.

cformals))

92 let rec string_of_cexpr e = match e with

93 CLiteral_Int i -> " "“string_of_int i~" "
94 | CLiteral_Float f-> " "“string_of_float £~ " "
95 | CLiteral_String s -> s
96 | CActuals a ->
97 {r ot (
98 List.fold_left (fun b a -> (string_of_cexpr a) ~
", " 7 b)
99 (string_of_cexpr (List.hd a))
100 (List.tl a)
101) Tt
102 | CId s -> (string_of_cvar s)
103 | CBinop (el, o, e2) -> (string_of_cexpr el) ~ " " = (
string_of_cop o) = " " ° (string_of_cexpr e2)
104 | CCall (s, 1) ->
105 s 7o T
106 (
107 if ((List.length 1) > 0)
108 then
109 (List.fold_left (fun b a -> b ~ ", " =~ (
string_of_cexpr a))
110 (string_of_cexpr (List.hd 1))
111 (List.tl 1))
112 else ""
113) -~ ll)ll
114 | CCallNew (s, 1) -> "new " ~ string_of_cexpr (CCall (s,1))
115 | CObjCall (os, s, 1) -> (string_of_cvar os) ~ "->" ~
string_of_cexpr (CCall(s,l))
116 | CNoexpr -> "/x caught a NOEXPR! x*/"
117 | CIdAddr s -> " &" =~ g =~ v "
118
119 let rec init_nodes name size =
120 if size == 0 then name "~ "[" ~ (string_of_int size) ~ "] = new
DiGrNode () ;\n"
121 else name ~ "[" ~ (string_of_int size) ~ "] = new DiGrNode () ;\n" ~
(init_nodes name (size - 1))
122
123 let rec string_of_cstmt s = match s with
124 CTryCatchBlock stmtlist -> "try{\an" ~
125 (
126 if List.length stmtlist > O then
127 (List.fold_left (fun b a -> b ~ (string_of_cstmt a
))
128 (string_of_cstmt (List.hd stmtlist
))
129 (List.tl stmtlist))
130 else ""
131) = "I\ ncatch(const char *e) {\nstd::cout << e << std::endl;\n}\n"
132
133 | CPrint 1 -> "std::cout << " ~ (List.fold_right (fun a b -> (

string_of_cexpr a) =~ " << " b) 1 "std::endl;\n")

85

134
135
136
137

138
139
140
141
142
143
144
145
146
147
148

149
150
151
152

153

154
155
156
157
158
159
160
161
162

163
164

165
166
167
168
169
170

171
172
173
174

175
176

CExpr e -> (string_of_cexpr e) ~ ";\n"
CDeclare s -> (string_of_csigvar s) "5;\n"
CAssignRule (s, e) -> s =~ " =" ° (string_of
CAssign (s, e) -> (string_of_cvar s) =~ "=" -

_cexpr e) ~ ";\n"

(string_of_cexpr e)

~ wo\g
CWwhile (e, s) ->
"while (" (string_of_cexpr e) "D\n{" -~
(
if List.length s > 0
then
(List.fold_left (fun b a -> b (string_of_cstmt a))
(string_of_cstmt (List.hd s))
(List.tl s))
else ""
) -~ I’}ll
| CIf (e,s1,s2) -> "if (" ~ (string_of_cexpr e) ~ ")\n{"
(
if List.length s1 > 0
then
(List.fold_left (fun b a -> b =~ (
string_of_cstmt a))
(string_of_cstmt (List.hd
s1))
(List.tl s1))
else ""
)
- "}\n"
~ "else{" ~
(
if List.length s2 > 0
then
(List.fold_right (fun a b -> (
string_of_cstmt a) ~ b)
(List.tl s2)
(string_of_cstmt (List.hd
s2)))
else ""
)
“"I\n"

| CBlock s ->
(if List.length s > 0 then
(List.fold_left (fun b a -> b
(string_of_cstmt (List.hd s)
else ""
)

CReturn e -> "return "

(string_of_cexpr e)

CDeclareAssign (s,e) -> (string_of_csigvar s)

string_of_cexpr e) "5;\n"
CDoWhile (e, s) -> "do {\n" -~
(

86

(string_of_cstmt a))
) (List.tl s))

“ll;\nll

||=n—~(

177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223

if List.length s > O

then
(List.fold_left (fun b a -> b ~ (string_of_cstmt a
))
(string_of_cstmt (List.hd s))
(List.tl s))
else ""
) ~ "} while (" - (string_of_cexpr e) ~ ");\n"
let string_of_c_fdecl cf =
(string_of_ctype cf.creturntype) ~ " " ~ cf.cfname ~ "(" ~
(
if ((List.length cf.cformals) > 0)
then
(List.fold_left (fun b a -> b =~ ", "~ (
string_of_csigvar a))
(string_of_csigvar (List.hd cf.
cformals))
(List.tl cf.cformals))
else ""
)
=) {\a" -
(List.fold_right (fun a b -> (string_of_cstmt a) ~ Db)
cf.cbody
")
= "\n}\n\n"
let string_c_includes = "#include \"digr.h\"\n#include <iostream>\n"
let string_of_c_program (p : cprogram) =

let

match p with
(cfdecllist) ->
"/* actual definition of C++ functions */\n"
(List.fold_right (fun a b -> (string_of_c_fdecl a) ~ b)
cfdecllist "")

print_endline "/*begin formal AST verification";

let lexbuf = Lexing.from_channel stdin in

let program = Parser.program Scanner.token lexbuf in
let error = Interpret.check_ast program

in

let c_program =

(

print_endline "begin translation to CAST";
Translate.cast_from_ast program

87

224
225
226
227
228
229
230
231
232
233

234
235

236

in

if error then

(

print_endline
print_endline
print_endline

else (
print_endline

print_endline

print_endline (string_c_includes

c_program))

"FAILED STATIC SEMANTIC CHECK";
"NO TARGET LANGUAGE OUTPUT =x*/"

"passed static semantic checking, begin code
generation";

E===================== */";

88

(string_of_c_program

00 O UL~ W N+

N N N N N N N S R R R R R R R R R N Ul I I T T R N N S G S gy S WY
C O TN E RO P OIS RERORSOXDTONE WL, OO U S WN RO ©

8.8 digr.h

#include <deque>
#include <vector>
#include <string>
#include <algorithm>

#include <exception>
#include <map>

// dvp: boo, is there no clever way to implement unions with strings
// as members?

typedef int AttributeType;

using std::string;
using std::vector;
using std::deque;
using std::sort;

class DiGrEdge;
class DiGrNode;

class DiGrNode {

private:

// vector to store pointers to associated edges in
vector<DiGrEdge*> _inEdges;

vector<DiGrEdge*> _outEdges;

std::map<std::string, AttributeType> _attributes;

public:

DiGrNode () ;

void setAttribute(string attrName, AttributeType attrValue);
AttributeType getAttribute(string attrName);

void addInEdge (DiGrEdge x*e);
void addOutEdge (DiGrEdge *e);

DiGrEdge* getInEdge (int index);
DiGrEdge* getOutEdge (int index) ;

DiGrNode* getParent (int index);
DiGrNode* getChild(int index);

int InEdges();
int OutEdges) ;
// int Parents () ;
// int Children();

89

50
o1
52
53
54
95
96
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

class DiGrEdge {

private:
// pointers to nodes
DiGrNodex*x _inNode;
DiGrNode* _outNode;
// hashmap of attributes
std::map<std::string, AttributeType> _attributes;
public:
DiGrEdge) ;
DiGrEdge (DiGrNode* fromNode, DiGrNode* toNode, bool Uedge = false);
// attribute setters and accessors
DiGrNode* inNode () ;
DiGrNode* outNode () ;
void setAttribute(string attrName, AttributeType attrValue);
AttributeType getAttribute(string attrName);
3
enum AddByObject {ADDBY_NODE, ADDBY_EDGE};

enum AddByOrder {ASCENDING, DESCENDINGI};
enum AddByWhere {BACK, FRONT};

void DiGrAddBy(DiGrNode *current, deque<DiGrNode*> *queue, AddByWhere

addWhere, AddByObject add0Obj, string property, AddByOrder order, int
max) ;

90

00 O UL~ W N+

I I I R N O Y S g S g S Gy S G Y
SUE WRN RO OO0 U Wk = O ©

27
28
29
30
31

32
33
34
35
36

37
38
39
40
41

42
43
44
45

8.9 digr.cpp

#include "digr.h"

L7771 77777777777777777777777777777777777/77777/77777/777777777
DiGrNode::DiGrNode () {

}

void DiGrNode::addInEdge (DiGrEdge *e) {
_inEdges.push_back (e);

}

void DiGrNode::addOutEdge (DiGrEdge x*e) {

_outEdges.push_back(e);
}

int DiGrNode::InEdges () {

return _inEdges.size();
3
int DiGrNode::0OutEdges () {
return _outEdges.size();
}
DiGrEdge* DiGrNode::getInEdge (int index) {
if (index < O || index >= _inEdges.size()) {throw "DiGr run-time error:
attempting to index an incoming edge which doesn’t exist!"; }
return _inEdges[index];
}
DiGrEdge* DiGrNode::getOutEdge (int index) {
if (index < O || index >= _outEdges.size()) {throw "DiGr run-time error:
attempting to index an outgoing edge which doesn’t exist!"; }
return _outEdges [index];
3
DiGrNode* DiGrNode::getParent (int index) {
if (index < O || index >= _inEdges.size()) {throw "DiGr run-time error:
attempting to index a parent node which doesn’t exist!"; }
return (getInEdge (index))->outNode () ;
3
DiGrNode* DiGrNode::getChild (int index) {
if (index < O || index >= _outEdges.size()) {throw "DiGr run-time error:
attempting to index a child node which doesn’t exist!"; }
return (getOutEdge (index))->inNode ();
¥
void DiGrNode::setAttribute(string attrName, AttributeType attrValue) {

91

46

47 if (_attributes.count (attrName) == 0) {

48 // create this attribute for the first time

49 _attributes.insert(std::pair<std::string,AttributeType>(attrName,
attrValue));

50

51 } else {

52 // find the attribute and modify it

53 _attributes [attrName] = attrValue;

54 %}

55 }

56

57 AttributeType DiGrNode::getAttribute(string attrName) {
58

59 if (_attributes.count (attrName) == 0) {

60 // create this attribute for the first time

61 _attributes.insert(std::pair<std::string,AttributeType>(attrName, (
AttributeType) 0));

62 return O0;

63

64)} else {

65 // find the attribute and return it

66 return _attributes[attrName];

67 }

68

69 }

70

TSI

72

73 DiGrEdge ::DiGrEdge (DiGrNode *fromNode, DiGrNode #*toNode, bool Uedge) {
74 (x*fromNode) .add0utEdge (this) ;

(0] (*toNode) .addInEdge (this);

76 _inNode = toNode;

77 _outNode = fromNode;

78

79 if (Uedge) {

80 new DiGrEdge (toNode, fromNode, false);
81 }

82

83 }

84

85 DiGrEdge::DiGrEdge () {

86 _inNode = new DiGrNode ();

87 _outNode = new DiGrNode () ;
88 }

89

90 DiGrNode* DiGrEdge::inNode () {
91 return _inNode;

92 }

93

94 DiGrNode* DiGrEdge::outNode () {

92

95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130

131
132
133

134
135
136

137
138
139

return _outNode;

void DiGrEdge::setAttribute(string attrName, AttributeType attrValue) {

if (_attributes.count (attrName) ==

// create this attribute for the

_attributes.insert (std::pair<std
attrValue));

} else {
// find the attribute and modify

0)

{

first time
::string ,AttributeType >(attrName,

it

_attributes [attrName] = attrValue;

3

AttributeType DiGrEdge::getAttribute(string attrName) {

if (_attributes.count (attrName) ==
// create this attribute for the

_attributes.insert(std::pair<std:

AttributeType) 0));
return O;

} else {

// find the attribute and return
return _attributes[attrName];

string globalProperty;

bool edgeSorterDescending (DiGrEdge x*el,

0)

{

first time

it

:string,AttributeType >(attrName, (

DiGrEdge *e2) {

return el->getAttribute(globalProperty) < e2->getAttribute(

globalProperty) ;
}

bool edgeSorterAscending (DiGrEdge *el,
return el->getAttribute(globalProperty) > e2->getAttribute (

globalProperty);
}

bool nodeSorterDescending (DiGrNode *nl,

DiGrEdge *e2) {

DiGrNode *n2) {

return nl->getAttribute(globalProperty) < n2->getAttribute(

globalProperty);
}

bool nodeSorterAscending (DiGrNode =*nl,
return nl->getAttribute (globalProperty) > n2->getAttribute(

globalProperty) ;

93

DiGrNode *n2) {

140 void DiGrAddBy(DiGrNode *current, deque<DiGrNode*> *queue, AddByWhere

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163

164
165
166
167
168
169
170

171
172

173
174
175
176
177
178
179
180
181 }

addWhere, AddByObject addObj, string property, AddByOrder order, int
max) {

// set the global property & check how many to return
globalProperty = property;

if (max > current->0OutEdges()) max = current->0utEdges () ;
if (max == 0) max = current->0utEdges();

// push back edges and nodes

vector<DiGrEdgex*> allEdges;

for (int e = 0; e < current->0utEdges(); e++) {
allEdges.push_back(current ->getOutEdge (e));

}

vector<DiGrNode*> allNodes;
for (int n = 0; n < current->0utEdges (); n++) {
allNodes.push_back (current->getChild(n));

}
// sort pointers as appropriate
if (add0bj == ADDBY_NODE) {
if (order == DESCENDING) sort(allNodes.begin(), allNodes.end(),

nodeSorterDescending) ;
else sort(allNodes.begin(), allNodes.end(), nodeSorterAscending);
for (int n = current->0OutEdges() - max; n < current->0utEdges(); n++)
{
if (addWhere == FRONT) queue->push_front(allNodes[n]);
if (addWhere == BACK) queue->push_back(allNodes[n]);
}
}

if (add0bj == ADDBY_EDGE) {
if (order == DESCENDING) sort(allEdges.begin(), allEdges.end(),
edgeSorterDescending) ;
else sort(allEdges.begin(), allEdges.end(), edgeSorterAscending);
for (int n = current->0OutEdges() - max; n < current->0utEdges(); n++)
{
if (addWhere == FRONT) queue->push_front(allEdges[n]->inNode());
if (addWhere == BACK) queue->push_back(allEdges[n]->inNode ());
}
}

// TODO: implement reverse sort with reverse iterator

94

