DiGr: Directed Graph Processing Language

Ari Golub
Bryan Oemler
Dennis V. Perepelitsa

Columbia University
COMS WA4115: Programming Languages and Translators

22 December 2010
Final Project Presentation

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Introduction to DiGr

@ What can DiGr do?

o Represent trees, graphs, walks, (mirrors, knots, etc).

e Model everything from basic computer science constructs to
network-based problems in engineering and industry.

e Store information in nodes and edges without overhead or
hassle.

e Recursively or iteratively walk and modify directed graphs in e
user-specified ways. 2 gb

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Introduction to DiGr

@ What is the DiGr language / compiler like?

Imperative.

Compiled. Target language is C++, which is in turn compiled
with g++ and linked against the DiGr backend.

Statically (and locally) scoped.

Specific graph-related objects (nodes, edges, walks) on top of
a typed C-like base.

Strongly typed. L{é

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Primitive types and opts

o Integers, floating point numbers and strings are primitive

types.
this is a comment
str name = "Ari"!
int age!
age = 22!
flt gpa = 4.0! : statements end with a !

@ Opts have no return types, but have in (not globally bound)
and out (in-scope from the program that called them)
variables.

opt times_two(in int n; out int doubled){
doubled = n * 2!

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Nodes and edges

@ The high-level objects in DiGr are nodes and edges:

node nl!
node n2!
nl -> n2! : nl and n2 are now connected :

@ Node and edge identifiers are handles. Edges are usually
created anonymously:

edge e = nl.outedge(0)!
node target = e.innode! ﬁ":;

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Connection contexts and attributes

@ Attributes are created as soon as they are referenced or
assigned:

node city!

city.population = 60000!
print(city.population)! : prints 60000
print(city.area)! : defaults to O :

@ Connection contexts efficiently create graphs, and store the
handles to the nodes in an array:

node binaryTree[7] = |3->(1->0,2),(5->4,6)| ! Z

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Crawls and rules

@ A crawl is an opt run on a node, and can call a rule that
tells it where to go next.

crawl markNode(in int marker) {
current.mark = marker!
call! }

@ Rules modify the queue of nodes to visit when called:

rule followLighterEdge{
edge el = current.outedge(0)!
edge e2 = current.outedge(1)!
if (el.weight < e2.weight)
{ add(el.child(0))! }
else { add(e2.child(0))! }

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr in one slide

crawl printNode() { print(current.id)! call! }
print the node id and call the rule

rule preOrder { addByFront(node.id,’2)! }
add up to two children, smallest id first

opt main() {
node treel[5] = [3->(1->0,2),4] !
tree[0].id = 0! treel[l].id = 1! +tree[2].id = 2!
tree[3].id = 3! treel[4].id = 4!
printNode() from tree[3] with preOrder!
prints 310 2 4 :

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Compiler Front End

DiGr AST
definition

DiGr AST verified

DiGr AST

tokens interpreter

parser

DiGr code

@ Scanner turns DiGr program from standard input into tokens.
Lexical correctness.

@ Parser creates initial AST (nested OCaml tree of typed

tuples). Syntactical correctness. 57:;
@ Interpreter verifies AST. Semantic correctness. % 3
!

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Static Semantic Checking

@ The interpreter has several duties:

o Create global scope for opt/rule/crawl signatures.

o Create symbol table for all local scopes (inside functions and
blocks).

o Check the scope of all identifiers.

o Check typing for all statements (recurse into expressions),
including assignment, function calls, etc.

o After the front-end stage, intermediate representation of a ﬁ”ﬁ

sensible program (instance of DiGr AST). éﬁé

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Compiler Back End

DiGr C++

verified backend bl
g++ executable
DiGr AST C++ code

minimal C++
AST definition

o C++ AST: stripped-down, holds intermediate representation
of C++ program. A few shortcuts, but largely extensible.
C++ AST assures syntactical correctness of output.
@ Translator: converts DiGr AST to C++ AST. Does no
semantic checking. SEL

o Compiler: crawls the C++ AST and outputs C++ code. %ﬁé
@ g++: turns compiled DiGr code into an executable.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr code pre-compilation

rule myrule {
int n = 0!
while (n < current.outedges) {
edge tmp_edge = current.outedge(n)!
if (tmp_edge.mark == 1) {
node destination = tmp_edge.innode!
add (destination)!
}
n=n+ 1!
}
}

crawl thecrawl() {
print (current.id)!

call!

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr compiler output

#include "digr.h"

#include <iostream>

void myrule(DiGrNode *current, deque<DiGrNode*> *returnQueue) {
int n =0 ;

while(n < current->OutEdges())

{DiGrEdge *tmp_edge = current->getOutEdge(n);

if (tmp_edge->getAttribute("mark") == 1)

{DiGrNode *destination = tmp_edge->inNode();
returnQueue->push_back(destination) ;

else{}
n=n + 1 ;

}

void thecrawl(DiGrNode *current, void (xrule) (DiGrNode*, deque<DiGrNodex>*)) {
deque<DiGrNode*> *queue = new deque<DiGrNode*>();

queue->push_back(current) ;

do {

current=queue—>front();

queue->pop-front () ;

std::cout << current->getAttribute("id") << std::endl;

rule(current, queue);

} while (queue->size() > 0);

Golub, Oemler, P i i Directed Graph Processing

DiGr Test Plan

@ For each test program, we have a gold standard that
execution should output. Every build, we compile and execute
all tests and compare output with the gold standard.

@ Test atomic DiGr elements from low-level (basic types,
arithmetic, function calls, etc.) to high-level (graphs,
attributes, connection contexts, etc.).

@ Test programs which integrate a wide cross-section of features.

run-time.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

