DINO

A Friendly ‘Dinosaur’ Language for Kids

Final Project Report

Author: Manu Jain

Table of Contents
1. Introduction
1.1. Whatis DINO
1.2. Purpose
1.3. Basicldea
1.4. Evolution of Concepts

2. Language Tutorial

2.1. Basics

2.2. A Simple Program

2.3. A More Complex Program

3. Language Manual

3.1. Introduction

3.2. Syntax Notation
3.3. The Big Picture
3.4. Language Rules

3.5. Lexical Conventions
3.5.1. Tokens
3.5.2. Comments
3.5.3. Identifiers
3.5.4. Keywords
3.5.5. Constants
3.5.6. Operators

3.6. Meaning of ldentifiers
3.6.1. Basic Types
3.6.2. Derived Types

3.7. Conversions

3.8. Expressions
3.8.1. Primary Expressions
3.8.2. Function Call

©Wo® © o™ wo~Nyg~N~N~N O 0 0o o o U A M N N M DM B

3.8.3. Dino Method Call 10
3.8.4. Dino Property Accessor 10
3.8.5. Multiplicative Operators 10
3.8.6. Additive Operators 10
3.8.7. Increment and Decrement Operators 10
3.8.8. Relational Operators 11
3.8.9. Equality Operators 11
3.8.10. Assignment Expression 11
3.9. Definitions 12
3.9.1. Function Definition 12
3.9.2. Dino Method Definition 12
3.9.3. Property Definition 13

3.10. Variable Creation

[EEN
w

3.10.1. Creating Integers
3.10.2. Creating Strings
3.10.3. Creating Dinosaurs
3.10.4. Creating Lists

13
13
13
13

14
14

14

15
15
15
15
15
16
16
17
17
17
17
17

17

18
19
20
21
21
21
22

22
22
22

23
23

3.11. Statements

3.11.1. Selection Statement

3.11.2. Iteration Statement
3.12. External Declarations
4. Project Plan
4.1. Process
4.2. Programming Style
4.3. Show your project timeline
4.4, Roles and Responsibilities
4,5. Software Development Environment
5. Architectural Design
5.1. Major Components
5.2. Developers
6. TestPlan
6.1. Hello World Test with String Literal
6.2. Hello World Test with String Variable
6.3. Integer Operators Test
6.4. Simple Dino Test
6.5. Complex Dino Test
6.6. Do-Times Test
7. Lessons Learned
7.1. Beneath the Covers
7.2. It's not Easy to Make it Simple
7.3. OCaml Really is Different!
7.4. Be Less Ambitious
7.5. Develop All Parts Together Iteratively
7.6. Working Alone is Boring
8. Appendix — Code Listing
8.1. Scanner.mll
8.2. Parser.mly
8.3. AST.ml
8.4. Interpret.ml
8.5. Dino.ml

23
24
27
29
32

1. Introduction

1.1. What is DINO
DINO is intended to be a fun, easy-to-learn languiag kids.

It is created by the author as a project for th& Plass of fall 2010 at Columbia
University taught by Prof. Stephen Edwards.

1.2. Purpose

The purpose behind creating DINO is to get kideresgted in programming. The
language is aimed at getting young kids (ages@¢eyested in programming,
teaching them the basics of programming, and mgkiagramming fun for them.

1.3. Basic Ildea

The basic idea of the language is to give the yquongrammers simple types like
integers and strings to play with, along with jase other type called “dino” whose
properties and behavior they can “build” as peirtben liking and as they go along.

1.4. Evolution of Concepts

The concepts around how the language should betsteal, what its syntax should
be and what features it should provide have unaergmnificant changes since
when the project proposal was first given, on t@wthe language reference manual
was created, and through the development phasdampeage started out looking
more VB-like, and ended up looking more C-like!

2. Language Tutorial

2.1. Basics
DINO programs look like simplified C programs, atheith a few differences.

DINO supports only four types — bool, integer,rggrand dino. It has support for
built-in expressions that operate on one or mothade types.

DINO provides the ability to create C-like functgrit also provides the ability to
definemethodswhich add behavior to the dino type gdperties which add data
to the dino type.

The main entry point of a DINO program is thmainfunction.

2.2. A Simple Program

A simple DINO program can consist of just the mfainction. An example is the
“hello world” program below —
main()

{
}

Another way the hello world program may be writieiby using a string variable —
main()

print(“hello world!”);

{
string hello;
hello = “hello world!”
print(hello);

}

2.3. A More Complex Program

A typical DINO program will have methods and prdje for the dino type defined
preceding the main function, followed by a main moek

/*

Properties defined on the dino type.

These add data members to each dino object,

with default values assigned at object creation tie

*/

property int Height;

property string Name;

/*
Methods defined on the dino type.
These add behavior to each dino object.

*/
method bool IsSameHeight(dino saurus)
{
if(me.Height == dino.Height)
{
return true;
{
else
{
return false;
}
}
main()
{
dino trex;

trex.Height = 50;

trex.Name = “T-Rex”,

dino sauropod;
sauropod.H/eight = 100;
saurpod.Name = “Sauropod”;

print(tostring(trex.IsSameHeight(sauropod)));

3. Language Manual

3.1. Introduction

This manual describes the DINO language, develbydtie author as a project for the
PLT class of spring 2010 at Columbia Universitygtaiuby Prof. Stephen Edwards.

This manual is modeled after the C language referemanual, which forms Appendix A
of the “The C Programming Language” book by Keraigland Ritchie.

3.2. Syntax Notation

The syntax in this document is written in a variahExtended Backus-Norm Form
(EBNF), using regular expression repetition operato

3.3. The Big Picture

DINO programs are written in a single source f#NO source files have “.dino” file
extension.

The entry point of a DINO program is the ‘main’ tion. Functions, methods and
properties are defined outside and preceding tla@nnfunction.

Statements in DINO may appear inside any functromethod definition, and imain

A DINO program has the following high-level structu

[function definition]*
[method definition]*
[property definition]*

main program =

main I(l, ‘)!’ ‘{‘

[expression, ‘;']* [white-space]*
[statement, *;']* [white-space]*

Y

3.4. Language Rules
DINO uses static scoping.

It evaluates expressions and parameters fromdeigght, i.e. it is left-associative.

It follows applicative-order argument evaluationddhus evaluates parameters before
executing the body of the function.

It performs short-circuit evaluation, evaluating thody of statements and operands of
operators if needed.

It follows normal operator precedence rules.

3.5. Lexical Conventions

Converting a program written in DINO to executatdele is a multi-step process. The
first step involves running the scanner over thegpam, which outputs a sequence of
tokens. This is known as lexical transformation.

3.5.1. Tokens

There are five types of tokens — comments, idemsifikeywords, constants and
operators. Tokens are separated by white spaca@ltabs, new-lines). Comments
are ignored.

token = comment | identifier | keyword | constaspdrator

3.5.2. Comments

A comment starts with the characters /* and endi thie characters */. Comments
do not nest.

comment = /* [ascii character]* */

3.5.3. Identifiers
An identifier is a sequence of letters and digitarting with a letter. Case distinctions

are ignored.
identifier = (‘a’-'z’ ‘A’-‘Z") ['a’-'2’ ‘A-'Z" '0-'9*

3.5.4. Keywords
The following identifiers are reserved as keywoats] may not be used otherwise:

int do while main
listof times method me
dino if property return

string else tostring nothing

3.5.5. Constants
Integer and string constants (string literals)saneported.

constant = [0 =9+ ** [nt constant **
| “[a-'z ‘A-'Z0-'9+, " ** string constant **

3.5.6. Operators

Supported operators are additive operators, inaneara decrement operators,
multiplicative operators, relational operators, &gy operators and assignment
operator.

3.6. Meaning of Identifiers

Identifiers can refer to many different things gdaf types (basitypes or derived types),
functions, and objects or variables of types.

identifier = tags of basic type
| tags of derived type
| function-name
| property-name
| variable-name

3.6.1. Basic Types

The fundamental types supported ao¢hing, bool, intstring, dinosaut

The typenothingrepresents an empty value. It is the type retubyefdinctions and
methods that don’t return any value.

The typeint represents signed integer values.

The typestring represents a sequence of characters. Strings raoeisded by double
quotes.

The typedino represents a dinosaur.

basic type = nothing | bool| int | string | dino

3.6.2. Derived Types
There may be an infinite class of derived typesta@ from the basic types, by
creating lists of basic types, and by creating fioms that operate on basic types or
list of basic types and return either a basic typa list of basic type.

derived type = list<basic-type>
| function<basic-type>
| function<list<basic-type>>
| property <basic-type>
| property<list<basic-type>>

3.7. Conversions

Conversion from one type to another is generallysapported. Integers can be
converted to a string literal through ttostringmethod.

3.8. EXpressions

expression = identifier | constant ** primarypegssion **
| function call
| dino method call
| property accessor
| multiplicative operator
| additive operator
| increment and decrement operator
| relational operator
| equality operator
| assignment expression

3.8.1. Primary Expressions
Primary expressions are identifiers and constants.

primary expression = identifier | constant

3.8.2. Function Call

A function call is an expression that containsdantifier that represents a defined
function, followed by zero or more arguments.

function call = function-name, ‘(‘, [expressio]*,)’

A function call evaluates to one of the basic tyesa list of one of the basic type. In
other words, a function call returns a basic typa list of a basic type.

Each argument of a function call may be an expoessiat evaluates to any basic
type, or a list of a basic type.

3.8.3. Dino Method Call

A dino method call is an expression that contam&lantifier (that represents an
object ofdinosaurtype), followed by a dot, followed by an identifigrat represents a
defined function, followed by zero or more argunsent

method call = variable-name, ‘.,
method-name, ‘(‘, [expression, ‘T*, ‘)

A method call evaluates to one of the basic types,list of one of the basic type. In
other words, a method call returns a basic typelat of a basic type.

Each argument of a method call may be an expredisairevaluates to any basic type,
or a list of a basic type. When a function is ahlié automatically gets thdino

object on which it is called as the first argumdiitis object is calledthewithin the
function body.

3.8.4. Dino Property Accessor

A property accessor is an expression that contairidentifier (that represents an
object ofdinosaurtype), followed by a dot, followed by one of thdided properties.

property accessor = variable-name, ‘., propedme

A property accessor expression evaluates to otfeedfasic types excluding the
nothingtype, or a list of a basic type.

3.8.5. Multiplicative Operators

Supported multiplicative operators are multiplioat(*) and division (/). The
operands of these operators must be of iypend the result is also amt type. For
division, the result is rounded off to the neametdger.

multiplicative = operand, white-space*, (*'/[); white-space*, operand

3.8.6. Additive Operators

Supported additive operators are plus (+) and mijuFhe operands of these
operators must be of typet, and the result is also ant type.

additive = operand, white-space*, (‘+’|‘-‘White-space*, operand
3.8.7. Increment and Decrement Operators

Supported increment operator is ++ and decremesratgr is --. The operands of
these operators must be of type and the result is also ant type.

increment = operand, “++”
decrement = operand, “—*

3.8.8. Relational Operators

Supported relational operators are < (less), >afgr¢ <= (less than or equal) and >=
(greater than or equal). The operands of theseatprermust be of typiat, and the
result is either O if condition is false or 1 ifrmhtion is true.

lessthan = operand, white-space*, ‘<’, whipase*, operand
less than or equal = operand, white-space*, ,'<white-space*, operand

greater than = operand, white-space*, ‘>', wgpace*, operand
greater than or equal = operand, white-space¥”,“ white-space*, operand

Relational operators are only allowed within thandwhile expressions.

3.8.9. Equality Operators

The = =(equal to) and != (not equal) operatorssarelar to relational operators,
except that they also support comparisostohg types in addition tint types.

equal to = operand, white-space*, “==", whifgse*, operand
not equal to = operand, white-space*, “I1=", tehspace*, operand

Equality operators are only allowed within thandwhile expressions.

3.8.10. Assignment Expression

The assignment operator (=) requires a variabtgbf@ct of a basic type (except the
nothingtype) or a property as the left operand, with tgbtrhand side operand being
an expression that evaluates to the same type.

assignment =
identifier, white-space*, ‘=", white-space*, expssn

As a result of the assignment, the left hand satéble or object takes the value of
the evaluated expression on the right-hand side.

3.9. Definitions

3.9.1. Function Definition

function definition =

return-type, white-space+,

function-name, white-space+,

‘(‘, white-space+,[argument, ‘,’, white-space*]*,)
t{i’
[expression]*, ‘;’, white-space*

[statement]*, ‘;’, white-space*

return, white-space+expression, ‘;’, white-space*

t}’
Function definitions are used to define new funtiio

An function definition consists of the functionuet-type, followed by an identifier
(function name), followed by a list of argumentglesed in brackets, followed by
the function-body.

The function return-type may be any basic type listaf a basic type.

The identifier in the function definition becomée tfunction-name of the newly
defined function. Function-names must be unique.

3.9.2. Dino Method Definition

method definition =

methodwhite-space+,

return-type, white-space+,

method-name, white-space+,

‘(, white-space+,[argument, ‘,’, white-space*]¥, White-space+,
i{t

[expression]*, *;’, white-space*

[statement]*, ‘;’, white-space*

return, white-space+expression, ‘;’, white-space*

i}’
Method definitions are used to define new methadthe dino type.
An method definition consists of the keywongthod followed by the method
return-type, followed by an identifier (method nagnfellowed by a list of arguments

enclosed in brackets, followed by the function-hody

The method return-type may be any basic type mt afl a basic type.

The identifier in the method definition becomes filmection-name of the newly
defined method. A method-name must be unique arathmgethods and properties.

3.9.3. Property Definition

property definition =
property,white-space+,
type, white-space+,
property-name, ‘;’

Property definitions are used to define new propeiidata members) on thao
type.

A property definition consists of the keywqodbperty, followed by the property type,
followed by an identifier (property name), followbg a semicolon.

The property type may be any basic type or a fist loasic type.

3.10. Variable Creation
New variables are created by writing the type foéd by an identifier.

3.10.1. Creating Integers

New integers are created by using ititkeyword, followed by an identifier,
followed by a semicolon.

integer creation= int, white-space+, identifier, *;’

3.10.2. Creating Strings

New strings are created by using #teng keyword, followed by an identifier,
followed by a semicolon.

string creation = string white-space+, identifier, *;’

3.10.3. Creating Dinosaurs
New dinosaur objects are created by usinglthe keyword, followed by the
identifier.
dino creation= dino, white-space+, identifier, *;’
3.10.4. Creating Lists

Lists are created by using thstof keyword.

3.11. Statements
Statements are executed in sequence. They argarbséypes.

3.11.1. Selection Statement
Selection statements may be of two different forms

In both forms of théf statement, if the expression evaluates to non-tdeedjrst sub-
statement is executed. In the second form, thensesab-statement is executed if the
expression evaluates to 0.

3.11.2. Iteration Statement
Iteration statements may be of two different forms

do-times statemen =

do, white-space*, ‘(‘, expression, ‘)’, white-spacéimes
i{.

sub-statement

y

while statement=

while, white-space*, ‘(‘, expression, ‘)’, white-space*,
l{l

sub-statement

y

In thedo statement, the sub-statement is executed as nmaag as the expression
specifies. The expression evaluates to an integer.

In thewhile statement, the sub-statement is executed repeatetillyhe value of the
expression evaluates to 0.

3.12. External Declarations

External declarations are not supported. All thes® code for a DINO program must
reside in a single unit of input.

4. Project Plan

4.1. Process

| worked alone on this project, developing theetiint pieces in an ad-hoc
manner, as time permitted.

In terms of software development process, | inititdllowed the water-fall
process, which turned out to be a mistake (as vaditatways is!). | backtracked
and started following the iterative developmentcess, where | had more success.

4.2. Programming Style
Since | used the MicroC project as the startingnppadiused its coding style.

4.3. Show your project timeline

Concept Phase (Sept 2010):

| started out by thinking of a concept for the laage that would be interesting
for me. | came up with the DINO language becausave young kids and | want
to get them interested in programming. The exisimguages seem too complex,
with many types and a lot of features, for a yoliag Therefore | thought it

would be interesting if | could develop a languadech | could use to teach my
kids the basics of programming.

4.4,

4.5,

Initial Proposal Phase (Sept 2010)

Once | decided on the concept, the next step weididg the structure of the
language, the syntax and the grammar. This wasestteg since | struggled to
make the language easy to use, yet at the samdi¢ixitde and powerful enough
to be useful and allow programmers to create “lngidblocks”.

LRM Phase (Oct — Nov 2010)

Next step was creating the Language Reference M@okM). This required me
to think more realistically about the language asdyntax. | revised my initial
proposal and made several significant changesnfexample, | took out the
support for custom types derived from dinosaur.

Scanner — Parser (Nov 2010)

After the LRM, | started on the scanner and pawien. developed these pieces, |
realized that my project proposal needed even mamisions. | again made
significant changes to my language proposal, fangde taking out support for
the ‘thing’ type, removing the ‘end’ keyword angla&cing it with parenthesis, etc.

Translator (Dec 2010)

The last step was creating the complete translBtorthis, | backtracked and
started afresh, using the MircoC translator astise, and making one change at
a time. This was the most time-consuming part efgdtoject and after some time,
| had to drop supporting the compiler and byte-cgeleerator since | simply ran
out of time. | developed test cases in parallehwlie development effort.

Final Project Report (Dec 2010)

The last step was creating the final project re@tthough the development went
on in parallel, and is still continuing! | am camiing to face difficulties in
developing the interpreter.

Roles and Responsibilities
Since | worked alone on this project, | took onrales and responsibilities.

Software Development Environment

| used the Eclipse IDE, with the OcalDE plugin @Caml development
(http://www.algo-prog.info/ocaidg/

The OCamlLex Lexical Analyzer was used to genditatdexical analysis
module.

The OCamlYacc Syntactical Analyzer was used to iggaehe syntactical
analysis module.

The OCaml compiler was used to generate modulestii@r source files.

The version of OCaml used for development was 3.12.

5. Architectural Design

5.1. Major Components

| could not continue development of the compiled bgte-code generator, due to
lack of time. The major components of the finalgurct are —

DINO Program

Scanner

Parser

AST

Interpreter

5.2. Developers
Since | worked alone on this project, | developktha components.

6. Test Plan

| developed multiple test cases, each one to t#fsteht features of the language. The
test cases were run manually.

6.1. Hello World Test with String Literal

This test case tested that the simple “Hello Wopdigram was translated
successfully and the output was as expected.

Test Program:
main()

{
}

Expected Output:
hello world!

print(“hello world!”);

6.2. Hello World Test with String Variable
This test case tested that the translator procestgad variables successfully.

Test Program:

main()

{
string hello;
hello = “hello world!”;
print(hello);

}

Expected Output:
hello world!

6.3. Integer Operators Test
This test case tests that the integer binary aadyusperators work as expected.

Test Program:
main()

{
int X;
inty;

X=2:
y=3;

/* test addition */
y=Xx+y;
print(tostring(y));

[* test subtraction */
y=y-—-Xx
print(tostring(y));

[* test multiplication */
y=y*Xx
print(tostring(y));

[* test division */
y =yIx
print(tostring(y));

[* test post-increment */
y = y++,;
print(tostring(y));

[* test post-decrement */
y=y-

print(tostring(y));

[* test greater-than */

if(x >y)
{
print(tostring(x));
}
else
{
print(tostring(y));
}
[* test less-than */
if(x <)
{
print(tostring(x));
}
else
{
print(tostring(y));
}
/* test equals */
if(x ==y)
print(“x ==y");
[* test not-equal-to */
if(x 1=y)
print(“x 1= y™);

}

Expected Output:

X NWWkrhWwWwo wao

6.4. Simple Dino Test

This test case tests whether the translator presaino types and dino properties
successfully.

Test Program:
property string Name;

main()

{

dino trex;
trex.Name = “T-Rex”;

print(tostring(trex.Name));

}

Expected Output:
T-Rex

6.5. Complex Dino Test

This test case tests whether the translator presaBeo types, dino methods and dino
properties successfully.

Test Program:
property int Height;
property string Name;

method int IsSameHeight(dino saurus)

{
if(me.Height == dino.Height)
{
return 1;
{
else
{
return O;
}
}
main()
{
dino trex;

trex.Height = 50;

trex.Name = “T-Rex”;

dino sauropod;
sauropod.H/eight = 100;
saurpod.Name = “Sauropod”;

print(tostring(trex.Name));
print(tostring(sauropod.Name));

print(tostring(trex.IsSameHeight(sauropod)));
}

Expected Output:
T-Rex
Sauropod
0

6.6. DO-Times Test

This test case tests whether the translator preseks do-times statement
successfully.

Test Program:

main()
Lt
inti;
do 4 times
{
i=i+1
print(tostring(i));
}
}
Expected Output:
1
2
3
4

. Lessons Learned
I learned a lot of lessons while doing this praj&dme of them are given below.

7.1. Beneath the Covers

One thing the PLT class and this project taughtand,for which | am grateful, is
what lies under the cover of a language. This esaspect of software development
about which | had never given much thought.

| have learned that beneath the covers, most |gyeguare very similar. They have the
same building blocks, and are even built usingsdrae set of tools.

7.2. It's not Easy to Make it Simple

| tried to design a language that is simple andiEmgdike to some extent, since it is
targeted towards children.

| discovered the hard-way that making the grammambiguous for the translator
takes some doing. Those ugly parentheses areftiveagurpose! It takes a lot of
time and effort to make a language that is Endlighand easy to write and read, and
yet unambiguous. In the end, | had to make chatwgge syntax of DINO to make it
more C-like.

7.3. OCaml Really is Different!

One thing about which | was very proud of befokertg the class was my ability to
pick up any language, learn it quickly, and bec@masluctive in it in no time. | have
previously learned and used FORTRAN, PASCAL, COBOLC++, BASIC, Visual
Basic, C#, Java, and a few others.

OCaml threw me off since it was so different frony @ther language | had learned.
It took me some time to get used to its syntax@ngadnization. Even though | learned
to understand it and write a few lines in it, | aegrew comfortable with it.

| find that even today, | can't “think” in OCaml. Mgn trying to add a feature to my
language, | think about how | would do it in C#Jawva, and it’s trivial. But
attempting to do the same in OCaml consumes & kohe, and in many cases | find
that my proficiency in OCaml is just not enough &ffail to achieve what | set out
for.

In retrospect, | should have spent much more tintie the language to make the
project a success.

7.4. Be Less Ambitious

| should have understood my limitations of timdl¢fume job, two courses during
fall 2010 semester at Columbia, and family committag resources (I am working
alone) and unfamiliarity with OCaml and the devehgnt tools, and chosen a less
ambitious project idea.

For a long time, | had the confidence that | woeNéntually master OCaml and
would become as productive in it as | am in C#awa) but that didn’t happen. |
found that | couldn’t achieve even simple thinggheaut spending a lot of time and
effort.

| should have been less ambitious.

7.5. Develop All Parts Together Iteratively
| started with the MicroC project as my base.

8.

I made the mistake of developing only the scanndrparser first. | spent a lot of
time on it, refining and changing my ideas as | inadang.

By the time | came to the interpreter and complléound that | had completely
broken them. | got a ton of errors that | just coull resolve.

This meant that | had to start over afresh. | m@atesmall change at a time, but in all
the pieces, so that the complete project kept clomgpall the time.

But | had lost a lot of time because | raced aheigtd the scanner and parser without

taking the other parts along.

7.6. Working Alone is Boring

One thing | sorely missed in this project was argar

I don’t think | understood the reason why CVN studehad to do the project alone.
In contrast, in the other class I took this seme$ber CVN students sitting in
different parts of the country completed the grpupect successfully and without
any major issues.

In this project, not having a partner made develgphe language that much more
boring and also increased the work load. | fourad thvas not as committed or
motivated as when doing a project with partners.

At the least, choosing partners could be made ogtio

Appendix — Code Listing

8.1. Scanner.mll

{ open Parser }

rul

[

e token = parse
] { token lexbuf } (* Whitespace *)

Vi { comment lexbuf } (* Comments *)

{ LPAREN }
{ RPAREN }
{ LBRACE }
{ RBRACE }
{ SEMI }

{ DOT }

{ COMMA}
{ PLUS }

{ MINUS }
{ TIMES }
{ DIVIDE "}

" { INCR }
{ DECR }

ASSIGN }
EQ }
NEQ }
LT }

{

{

{

{
<= { LEQ }
> {GT }
>=" [GEQ}

{IF }

{ ELSE }
"for" { FOR }

{

I
I
I
I
I
I
I
| "if
I
I
| "while" WHILE }
I
I
I
I
I
I
I
I
I
I

"else"

"do" { DO }
"times" { TIMES }
"return” { RETURN }

"int" { INT }
"string"” { STRING }
"dino" { DINO }

"method" { METHOD}
"property" { PROPERTY}
[

- 1+ asIxm { LITERAL (int_of_string Ixm)

[- - - * as Ixm { STR_LITERAL (Ixm) } (*
["M as Ixm {STR_LITERAL (Ixm) } *)
| [- - 1 - - - I* aslxm {ID (Ixm) }
| eof { EOF }
| _ aschar { raise (Failure ("illegal character " N Char . escaped
char)) }

and comment = parse
"** { token lexbuf }
| _ { comment lexbuf }

8.2. Parser.mly
%{ open Ast %]}

% oken SEMI LPAREN RPAREN LBRACE RBRACE COMMA DOT
% oken PLUS MINUS TIMES DIVIDE ASSIGN

% oken EQ NEQ LT LEQ GT GEQ

% oken INCR DECR

% oken RETURN IF ELSE FOR WHILE DO TIMES
% oken INT STRING DINO

% oken METHOD PROPERTY

% oken <int > LITERAL

% oken <string > STR_LITERAL

% oken <string > 1D

% oken EOF

%monassoc NOELSE
%monassoc ELSE

% i ght ASSIGN

% eft EQ NEQ

% eft LT GT LEQ GEQ
% eft PLUS MINUS

% eft TIMES DIVIDE
% eft INCR DECR

Ust art program
% ype <Ast. program > program

%%
/* a program consists of lists of variables, functi on-declrations,
method-declarations, property-declarations, in that order */
program
/* nothing */ {0 0 0 0°4
| program vdecl { &2 = (fun(a,b,c,d) ->a) $1), (fun(a,b,c,d) ->b)

$1, (fun(a,b,c,d) ->c) $1, (fun(a,b,c,d) ->d) $1 }

| program fdecl { (fun(a,b,c,d) ->a) $1, ($2 == (fun(a,b,c,d) > b)
$1), (fun(a,b,c,d) ->c) $1, (fun(a,b,c,d) ->d) $1 }

| program mdecl { (fun(a,b,c,d) ->a) $1, (fun(a,b,c,d) ->b) $1,
$2 = (fun(a,b,c,d) ->c) $1), (fun(a,b,c,d) ->d) $1}

| program pdecl { (fun(a,b,c,d) ->a) $1, (fun(a,b,c,d) ->b) $1,
(fun(a,b,c,d) >c) $1, (($2 : (fun(a,b,c,d) >d) $1) }

fdecl :
ID LPAREN formals_opt RPAREN LBRACE vdecl_list s tmt_list RBRACE
{ { fname = $1;
formals = $3;
locals =List .rev $6;

body =List .rev $7 } }

formal s_opt:

* nothing */ {10}
| formal_list { List .rev $1 }
formal |ist:
formal_decl { $1] }
| formal_list COMMA formal_decl { $3 = %1}

formal _decl:
INT ID { Formal_Int ($2) }
| DINOID { Formal Dino ($2) }
| STRINGID { Formal_String ($2) }

/* dino method declaration */

ndecl :
METHOD ID LPAREN formals_opt RPAREN LBRACE vdecl _list stmt_list
RBRACE
{ { mname = $2;
mformals = $4;
mlocals =List .rev $7;
mbody =List .rev $8 } }
/* dino property declaration consists of a type and identifier*/
/* TODO - replace first ID with type */
pdecl :

PROPERTY ID ID SEMI

{ { ptype = $2;
pname = $3; } }

vdecl _list:
/* nothing */ {0}
| vdecl_list vdecl { $2 = $1}

vdecl :

INT ID SEMI {Var_Int ($2) }
| STRING ID SEMI { Var_String
| DINO ID SEMI { Var_Dino ($2) }

stm _|ist:
* nothing */
| stmt_list stmt

stnt:
expr SEMI

{ Expr ($1) }
| RETURN expr SEMI

LBRACE stmt_list RBRACE
IF LPAREN expr RPAREN stmt

|
| IF LPAREN expr RPAREN stmt ELSE stmt
|

| WHILE LPAREN expr RPAREN stmt

| DO expr TIMES stmt

{ Return ($2) }

$2) }

{ Block (List .rev $2) }

%prec NOELSE { If ($3, $5, Block ([1)) 1

{IF ($3, $5, $7) }

FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RP
{ For ($3, $5, $7, $9) }

{ Do($2, $4) }

{ While ($3, $5) }

expr _opt:
[* nothing */ { Noexpr }

| expr { $1}

expr:
LITERAL { Literal ($1) }

| STR_LITERAL { Str_Literal $1) }

| ID {Id $1) }
| expr PLUS expr { Binop ($1, Add, $3) }
| expr MINUS expr { Binop ($1, Sub, $3) }
| expr TIMES expr { Binop ($1, Mult , $3) }
| expr DIVIDE expr { Binop ($1, Div , $3) }
| exprEQ expr { Binop ($1, Equal , $3) }
| expr NEQ expr { Binop ($1, Neq, $3) }
| expr LT expr { Binop ($1, Less, $3) }
| expr LEQ expr { Binop ($1, Leq, $3) }
| expr GT expr { Binop ($1, Greater , $3) }
| expr GEQ expr { Binop ($1, Geq, $3) }

| expr INCR
| expr DECR
| 1D ASSIGN expr

| 1D LPAREN actuals_opt RPAREN

{ Unaryop ($1, Incr
{ Unaryop ($1, Decr) }
{ Assign ($1, $3) }

{ call

| ID DOT ID LPAREN actuals_opt RPAREN

/* dino method call */
| IDDOTID

actual s_opt:
[* nothing */
| actuals_list

actual s_Ilist:
expr

)}

($1, $3) }

{ MethodCall

{ Get ($1, $3) } /*dino property get*/
| LPAREN expr RPAREN { $2 }

{0}

{ List .rev $1 }

| actuals_list COMMA expr

AREN stmt

($1, $3, $5) }

8.3. AST.ml

typeop = Add | Sub | Mult | Div | Equal | Neq |

Geq
typeunary op = Incr | Decr
typevar =
Var_Int of string
| Var_String of string
| Var_Dino of string
type expr =
Literal of int
| Str_Literal of string
Id of string

Binop of expr * op * expr
Unaryop of expr * unary_op
Assign of string * expr
Call of string * expr list
| MethodCall of string * string
| Get of string * string
| Noexpr

typestmt =
Block of stmt list

| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

| Do of expr * stmt

t ype formal =
Formal_Int of string
| Formal_String of string
| Formal Dino of string
t ype func_decl = {
fname . string
formals . formal list ;
locals var list ;
body . stmt list ;
}
t ype method_decl ={
mname : string
mformals . formal list ;
mlocals var list ;
mbody . stmt list ;
}
t ype property_decl = {
ptype . string
pname . string

}

* expr list

Less

Leq |

Greater

t ype program = var list * func_decl list * method_decl list *
property_decl list

| et rec string_of_expr = function
Literal (1) -> string_of int|
| Str_Literal (s) > s
| Id(s) ->s
| Binop (el, o, e2) ->
string_of_expr el A
(matcho wth
Add -> "+" | Sub -> "" | Mult -> ™" | Div -> "M
| Equal -> "==" | Neq -> "I="
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">=") ~""
AN

string_of_expr e2
| Unaryop (el, o) ->

string_of_expr el n
(matcho with
Incr -> "++" | Decr -> "--")
| Assign (v, e) ->v N "=" Astring_of expre
| Call (f, el) ->
f A" AN String .concat ;" (List . map string_of _expr el) A~
| MethodCall (o, f, el) ->
0 Ammoonf oo~ ™ N String . concat M, (List . map
string_of_expr el) A~
| Get(o, p) ->
o ~"" ~p
| Noexpr -> "™
| et rec string_of stmt = function
Block (stmts) ->
"\n" ~ String .concat "™ (List . map string_of_stmt stmts) A "An"
| Expr (expr) -> string_of_expr expr Attt
Return (expr) -> 'return” N string_of_expr expr At\nt
| If (e, s, Block () > i (" N string_of_expr e A"\t A
string_of _stmts
| If (e, s1,s2) -> "if(" N string_of_expr e A\t A
string_of_stmt sl N "else\n” N string_of_stmt s2
| For(el, e2, e3,s) ->
"for (" N string_of_expr el A N string_of_expr e2 Ao
N
string_of_expr e3 AMy" o ANostring_of _stmts
| While (e, s) -> "while (" N string_of_expr e AmMt A ostring_of_stmt
S
| Do(e, s) -> "do" ~ string_of expre N "times " A string_of_stmt s
| et string_of vdecl = function
Var_Int (s) -> "int" Aso A At
| Var_String (s) -> "string" Ns o A\t
| Var_Dino (s) -> "dino" As o A mAnt
| et string_of formaldecl = function
Formal_Int (s) -> "int" NS
| Formal_String (s) -> "string" NS
| Formal Dino (s) -> "dino" NS

| et string_of_formal = function

Formal_Int (s) -> s
| Formal_String (s) -> "string" NS
| Formal Dino (s) ->s

| et string_of fdecl fdecl =

fdecl .fname ~ "(" ~ String .concat " " (List . map
string_of_formaldecl fdecl formals) ~ "\n{\n" A
String . concat "™ (List . map string_of vdecl fdecl .locals) ~
String . concat "™ (List . map string_of stmt fdecl . body) »
ll}\nll
| et string_of mdecl mdecl =
mdecl . mname ™ "(" " String .concat "," (List . map
string_of_formaldecl mdecl . mformals) ~ "\n{\n" A
String . concat "™ (List . map string_of vdecl mdecl . mlocals) *
String . concat "™ (List . map string_of _stmt mdecl . mbody) ~*
Mn"
| et string_of pdecl pdecl =
pdecl . ptype ~ "" A~ pdecl .pname * "\n"
| et string_of_program (vars , funcs , methods , properties) =
String . concat "™ (List . map string_of vdecl vars) A "\n" A
String . concat "n" (List . map string_of fdecl funcs) A"\t
String . concat "\in" (List . map string_of _mdecl methods) A "\n" A
String . concat "\n" (List . map string_of pdecl properties) A~ "\n"

8.4. Interpret.ml
open Ast

nodul e NameMap= Map. Make(st ruct
typet =string

| et compare xy = Pervasives .compare Xy
end)
excepti on ReturnException of int *int NameMapt

(* Main entry point: run a program *)

I et run (vars , funcs , methods , properties) =
(* Put function declarations in a symbol table *)

| et func_decls = List . fold_left
(fun funcs fdecl -> NameMap add fdecl . fname fdecl funcs)
NameMap empty funcs
in

(* Put method declarations in a symbol table *)

| et method_decls = List . fold_left
(f un methods mdecl -> NameMap add mdecl . mname mdecl methods)
NameMap empty methods

in

(* Put property declarations in a symbol table *)
| et prop_decls = List . fold_left
(fun properties pdecl -> NameMap add pdecl . pname pdecl properties

NameMap empty properties
in

(* Invoke a function and return an updated global s ymbol table *)
(* TODO: change code below to treat 'globals' param eter as
Ast.var list instead of NameMap.t *)
| et rec call fdecl actuals globals methods properties =

(* Evaluate an expression and return (value, update d environment) *)
| et rec evalenv = function
Literal (i) ->1i , env

| Str_Literal (s) -> 1, env (*TODO: add support for
string type *)
| Noexpr -> 1, env (* mustbe non-zero for the for loop predicate

*

| Id(var) ->
| et locals , globals =env in
i f NameMap mem var locals t hen
(NameMap find var locals), env
el se i f NameMap mem var globals t hen
(NameMap find var globals), env
el seraise (Failure ("undeclared identifier " Nvar)
| Binop (el, op, e2) ->
let vi, env =evalenvel in
let v2, env =evalenve2 in
| et booleani =ifi then 1 else 0 in

(matchop with
Add -> vl +v2
| Sub -> vl - v2
| Mult -> vl *v2
| Div -=>vl [v2
| Equal -> boolean (vl =v2)
| Neqg -> boolean (vl != v2)
| Less -> boolean (vl <v2)
| Leg -> boolean (vl <=v2)
| Greater -> boolean (vl >v2)
| Geq -> boolean (vl >=v2)), env
| Unaryop (e, op) ->
let vi, env =evalenve in
(matchop wth
Incr ->vl + 1

| Decr ->vl - 1), env
| Assign (var, e) ->
let v, (locals , globals) =evalenve in
i f NameMap mem var locals t hen
v, (NameMap add var v locals , globals)
el se i f NameMap mem var globals t hen
v , (locals , NameMapadd var v globals)
el se raise (Failure ("undeclared identifier " Nvar)
| Call ("print" , [e]) ->
let v, env =evalenve in
print_endline (‘string_of_int v); (* TODO: modify print to
support all types *)
0, env
| MethodCall (o, f , actuals) -> 0, env
(* TODO: Implement case for MethodCall - a method s hould

get a diff. env. than a functional call. *)

(* For each dino object, need to maintain a
list of properties and their values. *)
(* A method should be given the list of
properties of the dino object on which it is called (‘0").
(* A dino method should also be able to access
all globals *)
| Get(o, p) -> 0, env
(* TODO: Implement case for Property Get. *)
(* Maintain a list of properties and their
values for each dino object. *)
(* When a property 'Get' call is made, return
the value of that property for the given dino objec t'o"*)
| Call (f, actuals) ->
| et fdecl =
try NameMap find f func_decls
wi th Not found -> raise (Failure ("undefined function ")
in
| et actuals , env = List . fold_left
(fun (actuals , env) actual ->
l et v, env =evalenvactual inv I actuals , env)
(I, env) (List .revactuals)
in
l et (locals , globals) =env in
try
| et globals = call fdecl actuals globals methods properties
in 0, (locals , globals)
wi t h ReturnException (v, globals) -> v, (locals , globals)
in

(* Execute a statement and return an updated enviro nment *)
let recexecenv = function
Block (stmts) -> List . fold_left exec env stmts
| Expr(e) -> let , env =evalenve inenv
| If (e, s1,s2) ->
let v, env =evalenve in
exec env (ifv !I= 0thensl elses2)
| While (e, s) ->
| et rec loopenv =
let v, env =evalenve in
ifv I= 0thenloop (execenvs) elseenv
i nloop env
| For(el, e2, e3,s) ->
let , env =evalenvel in
| et rec loopenv =
let v, env =evalenve2 in
ifv 1= 0then
let _, env =eval (execenvs) e3 in
loop env
el se
env
i nloop env
(* implementation of do-times logic *)
| Do(e, s) ->
leti, env =evalenve in
[et recloopjenv =
ifi >0 then
loop (i-1) (execenvs)

el se
env
i nloopienv
| Return (e) ->
let v, (locals , globals) =evalenve in
raise (ReturnException (v, globals))
in

(* Enter the function: bind actual values to formal arguments *)
| et locals =
(* iterate over 2 lists (formals, actuals), and bin
each formal argument to its value *)
try List .fold_left2

(f un locals formal actual -> NameMapadd (string_of _formal
formal) actual locals)
NameMap empty fdecl . formals actuals
wi t h Invalid_argument () ->
raise (Failure ("wrong number of arguments passed to " N
fdecl . fname))
in
(* Execute each statement in sequence, return updat ed global symbol
table *)
snd (List . fold_left exec (locals , globals) fdecl . body)

(* Run a program: find and run "main" *)
intry
call (NameMapfind "main" func_decls) [] vars methods properties
wi th Not found -> raise (Failure ("did not find the main()
function")

8.5. Dino.ml
t ype action = Ast | Interpret

let =
| et action =
if Array .length Sys.argv > 1 then
List .assoc Sys.argv .(1) [("a" , Ast);

("-i" , Interpret)]
el se Interpret in
| et lexbuf = Lexing . from_channel stdin in
| et program = Parser . program Scanner . token lexbuf in
mat ch action with
Ast -> | et listing = Ast . string_of _program program
i n print_string listing
| Interpret -> jgnore (Interpret . runprogram)

