David Golub (drg2112)

Carmine Elvezio (ce2236)
Muhammad Ali Akbar (maa2206)
Ariel Deitcher (ayd2102)
Computer Science 4115

Project Proposal

LAME: Linear Algebra Made Easy

We propose to develop a language with built-in support for linear algebra and matrix
operations. The language will provide functionality similar to MATLAB from The MathWorks, Inc.
However, the syntax will be similar to C, C++, or Java.

Our language will provide four primitive data types, scalar, vector, matrix, and string.
These data types will do as their names suggest. A scalar will hold a double-precision floating point
number. A vector or amatriXx will store a one- or two-dimensional array of double-precision
floating point values. Vectors will be declared using the array declaration syntax from C, C++, and Java.
Matrices will be declared using commas to separate columns and semicolons to separate rows. For
example, the code

matrix A = {
1, 2, 3;
4, 5, 65
7, 8, 9
};

will correspond to the matrix

>

Il
~N AP
o U1 N
© o w

in the standard notation from linear algebra. Individual elements of a matrix variable will be able
to be access and modified using the syntax A[1, J] for the element in the ith row and the jth
column. Keywords will be provided to obtain the dimensions of a matrix.

Operators will be provided for addition, subtraction, multiplication, division, and
exponentiation. There will also be a pair of concatenation operators to support combining pairs of
matrices to form larger matrices. The operators will be interpreted appropriately for various
combinations of operand types, as long as they are mathematically meaningful. Combinations of
operand types that are not mathematically meaningful, such as division of two matrices, will yield a
compiler error. When matrix or vector operations are performed, a check will be done at runtime
to ensure that the dimensions are compatible. If the check fails, a runtime error will be thrown.

The language will follow the imperative paradigm and will provide constructs for variable
assignment, decisions, loops, function calls, and basic I/0. Programs will be compiled to bytecode
and then interpreted from the bytecode.

Code Example

/-k
* Rodrigues — find a rotation matrix about a given vector by
* a given angle using Rodrigues’s formula
*/

matrix Rodrigues(vector omega, scalar theta)

{

matrix omegahat
matrix identity
1, 0, O;
0, 1, O;
0, 0, 1
}:
return identity + omegahat * sin(theta) +
omegahat N 2 * (1 — cos(theta));

CrossProductMatrix(omega);

{

