Examination Generation Grading Language (EGGL)

COMS W4115: Programming Languages and Translators
Project Proposal

Gordon Hew (CVN) (gh2242@columbia.edu)

Introduction

Tests have been used as a measure to gauge a person’s mastery over a particular skill. They
have taken many forms depending on the nature of the skill that is being assessed. As most
students can attest, the majority of examinations follow a basic question and answer format.
In general, instructors create these tests in a WYSWIG text editor such as Word and grade a
student’s answers by hand. This process is error prone and requires a large amount of human
effort. This is largely due to instructors using tools that are not designed for creating tests.

The Examination Generation Grading Language (EGGL) seeks to provide a simple language
that can easily facilitate the creation and scoring of computerized exams. Such a language
would be beneficial to the academic community in that it would allow instructors to quickly write
an interactive exam that can be scored instantly. Such a language can allow more sophisticated
users to create reusable features such as selecting questions at random from a pool, adaptively
selecting questions based difficulty, or dynamically generating new questions.

Language Features

EGGL is a procedural programming language that supports basic data types, control flow,
operations, and user defined routines.

File Declaration

Each EGGL file is defined as a single Exam. Code that resides outside of a function is executed
during runtime.

Data Types

EGGL supports basic data types such as
e string

integer

floating point values (i.e. double)

array

map

Control Flow
EGGL supports basic if-then-else conditional logic. It will also support while and for loops.

Built-in Operations

EGGL supports basic arithmetic functions such as:
e +: addition

e -: subtraction

e ™ multiplication

e /. division

e ==: equality check

e |=: negates equality check

Additional supported built-ins include:
e size: Finds the size of an array or string.
e in: Checks if an element is in an array.
e randomlinteger(x,y): ouputs a random integer. x and y are optional parameters and
define the range of the random value.
Input/Output:
e print: Prints a string to standard out.
EGGL specific built-ins:
e prompt: The actual text of the question being asked. Only one can exist in a question
function.
e choices: The choices that a user can present. If not present, it is assumed that the
choice is free form text. Only one can exist in a question function.
e answer: The correct answer to the question. Only one can exist in a question function.

Functions

EGGL supports the creation of functions that can be used for reusable computation. EGGL also
supports the following custom function types:
e question: This function is used to define Questions that compose an exam. Additionally,
questions can be nested within other question functions to create a multi-part question.
e grade: Only a single grade function can be defined in an exam in order to support
custom grade calculation. If left undefined, the grade reported is a percentile of
questions answered correctly.

Code Examples

The below code snippet defines a simple exam with two questions.
Declare SampleExam.eggl

// custom function declaration
func yesNoChoices () {

” AN

return [“yes”, no” 1;

}

// question definition

func question questionl () {
prompt (“Is the sky blue?”);
choices(@yesNoChoices);
answer (“yes”);

func question question2 () {
prompt (“Who is the largest car maker?”);
answer (“Toyota”);

questionl () ;
question2 () ;

Sample output:

Is the sky blue?
yes

no

Who is the largest car maker?

1

a
b.
> a
2

> Honda
5

0% of questions answered correctly.

