|IPCorelL

Programming Language Reference Manual

Phillip Duane Douglas, Jr.
11/3/2010

The IPCorelL Programming Language Reference Manualiges concise informaticabout the gramma
syntax, semantics, and functionality of this nekymogramming language. The intent of IPCoreL ipitovide
an intuitive network programming experience to hagr, novice network enthusiasts and professic

1 Introduction to IPCorelL

The IPCoreL programming language reference marardhins a summary of the grammar, syntax,
semantics, and functionality of the programminglzage. IPCoreL provides basic arithmetic
operations, conditional statements, iterative statgs, relational expressions, declarations and
declarators, and type specification. The main featd IPCoreL is the ability of the language to

perform network calculations, socket calls, andgmaission of custom data packets. The intent of
IPCorelL is to provide beginner and novice netwadgpammers an intuitive, easy-to-implement
programming language with none of the difficultieand in other languages, e.g. C, Java, and Python.
Some of the basic operations of IPCoreL are li&dw.

¢ Network Performance Simulation
= Throughput Calculation
= Latency Calculation
= Jitter Calculation
= Round Trip Time (RTT) Calculation

¢ Packet Creation
= |Pv4 Header
= |Pv6 Header
= User Datagram Protocol (UDP) Header
= Transmission Control Protocol (TCP) Header

¢ Socket Calls and data packet transmission using'@®QOaix module

The remainder of this manual contains informatiarthe lexical convention, syntax, semantics,
expression usage, statements, declarations, anthgraof IPCorelL.

2 Lexical Conventions

This section introduces the fundamental elemermiisittakeup a IPCoreL program. Lexical elements,
or tokens, are utilized to construct statementsniiens, and declarations, which are required to
construct complete programs.

2.1 Tokens

A token is the smallest element of the IPCoreL progning language and are essential in the
compilation of an IPCoreL program. The parser @dReL is designed to recognize and accept the
following types of tokens:

Identifiers
Comments
Whitespace
Punctuations
Operators

* & & o o

Identifiers
Keywords
Constants
Ambiguities

* & o o

2.1.1 Identifiers

Identifiers are represented in IPCoreL as sequerfdesters, digits, and *_’ (underscore character)
Identifiers can only begin with a letter and tham e followed with a sequence of letters, digits,

‘ . Ifa‘_is used to start an identifier, anrer in compilation will result. The following repsents the
accepted types of identifiers:

identifier — letter [letter | digit | *_]
letter — ['A’-'Z’‘a’-'2’]
digit — ['0-'9’]

2.1.2 Comments

IPCoreL comments are delimited with the followiregieence of charactef’sand //, with no
intervening blanks. Staying consist with the natafreomments in programming languages, IPCoreL
comments are treated as blanks during lexical aalZomments do not occur inside string or
character literals and nested comments are haedfiegently in IPCorelL.

2.1.3 Blanks/Whitespace

The following character constants will be handlgdh®e lexical analyzer as blanks, or whitespaces:

Space

Newline character constant
Carriage return

Horizontal tabulation

* & o o

Blanks separate adjacent identifiers, literals, keenydvords, which requires them to be ignored by the
lexical analyzer to lessen confusion for the paocséPCoreL.

2.1.4 Punctuators

The following character constants will be handlgdh®e lexical analyzer as punctuation input symbols

Left parentheses> (*
Right parentheses ‘)’
Left brace— ‘{*

Right brace— ‘}’

Comma— °,

* & & & o

¢ Semicolon— *;
¢ Single quote—’
¢ Double quote» “

2.1.5 Operators

IPCoreL includes operators that are commonly fanrmther proven programming languages. These
operators specify an evaluation to be performedranof the following:

¢ One operand (unary operators)
¢+ Two operands (binary operators)

Unary Operators

The following tokens represent the unary operatbi®CoreL (w/ left-right associativity):

++ (postfix/prefix incrementation operator)
— (postfix/prefix decrementation operator)
I (prefix equality operator)

() (function call member initialization)

* & & o

Binary Operators

The following tokens represent the binary operabdi®CoreL (w/ left-right associativity):

¢ Integer Operators
= k¥ (exponentiation)
= + (addition)
= — (subtraction)
= > (multiplication)
=/ (division)
= % (modulo)
¢ Floating-Point Operators
= k. (floating-point exponentiation)

= + (floating-point addition)

= —. (floating-point subtraction)
= 3 (floating-point multiplication
= /. (floating-point division)

2.1.6 Prefix, Postfix and Infix Symbols

The following represent prefix, postfix, and iniymbols in IPCoreL arithmetic and logical operasgion

Infix-symbol— [= | <[> | <=|>=|=|!=|& ||| |+ |+ |- |-~ |*|* | / |/ |
% | k| kx]

Prefix-symbol— [~ | ++ | — | |]

Postfix-symbol> [++ | — | O]

2.1.7 Keywords

IPCorelL contains keywords, whose usage as regigatifiers will result in compilation errors, that
define variable types, conditional statementsattee statements, and standard functions in the
programming language. Below are the reserved keysvofr IPCorelL.

string char int float if

else elseif while for bool

The following operators are considered keywordaals:

+ +. - —. %k
* / /. % =
++ — Kok %k, 0
< <= > <= ==
= && | !

2.1.8 Constants

IPCoreL contains constants that define integeositithg-point, character constants, and stringdiger

Integer Constants

Integer constants of IPCoreL are defined as cotstamsisting of a sequence of digits. Variables, o
identifiers, defined as typnt will be capable of holding integer values onlys&ging non-integer
values to variables, or identifiers, of typet will result in compilation errors due to incorresgintax.

The following characters are legal integer constant
0 1 2 3 4 5 6 7 8 9

Floating-Point Constants

Floating-point constants are accepted in IPCorgiréwide representation for numbers that would be
too large or too small to be represented as insedérese constants are in general represented

approximately to a fixed number of significant dsgand scaled using an exponent. The following
provides information on how exactly floating-poaunstants are represented in IPCof@lIL; 1.0,
2.95, 3.41569

Character Constants

Character constants are delimited by single quoéeacters. The two single quotes enclose either one
character different from ‘ and ¥, or one of the escape sequen&egnewline constant)ir (carriage
return)or¥t (horizontal tabulation).

The following characters are legal character consta

a b c d e f g h i J k 1 m

2 3 4 5 6 7 8 9

String Literals

String literals are delimited by* (double quote) characters. The two double quatelse a sequence
of characters constants, different frofnand¥, or escape sequences from the character constants
described above.

2.1.9 Ambiguities

Ambiguities in the lexical conventions of IPCoreie aesolved by referencing the “longest-match”
rule:

When a character sequence can be decomposed intiokens in several different ways, the
decomposition retained is the one with the lon§esdttoken.

3 IPCoreL Syntax

The syntax of IPCoreL was designed to provide Suitglto novice network programmer. The set of
rules, which define the combinations of symbolsegted as correct by the IPCoreL compiler, will be
referenced through this document in the followiogrfat:

¢ Syntactic categories are identified by the usagbeitalic type
¢ Literal words and characters are identified inthgewriter style.

Example:
stmt— if exprthen stmt
| if exprthen stmtelse stmt
| expr

4 Conversions

Many programming languages available today offerdbinversion, or coercion, of the value of an
operand from one data type to another. This seatibbrexplain the coercion functions available and
the results to be expected from the coercion.

4.1 Integer to String Literal Coercion

IPCorelL offers the coercion of integer values tmagtliterals using the following function:
¢ int_to_string(arg)
This function takes an argument of type integer r@tains as a result a string literal comprisinghef

integer value enclosed in double quotes, mg. to_string (123 — “123" .

4.2 String Literal to Integer Coercion

IPCorelL offers the coercion of string literals mbeiger values using the following function:
¢ string to_int (arg)
This function takes a string literal as an argunaam returns as a result an integer comprisedeof th

contents of the string literal within the doubleotps, e.gstring to_int (* 123') — 123

4.3 Floating-Point to String Literal Coercion

IPCorel offers the coercion of floating-point vadue string literals using the following function:
¢ float_to_string(arg)

This function takes an argument value of type flagpoint and returns as a result a string literal
comprising of the floating-point value enclosediouble quotes, e.gf loat_to_string(1.23 —
“1.23 .

4.4 String Literal to Floating-Point Coercion

IPCorelL offers the coercion of string literals koafting-point values using the following function:
¢ string to_float (arg)

This function takes a string literal as an argunaamd returns as a result a floating-point value
comprised of the contents of the string literahwitthe double quotes, e.g.
string to_float(“1.23) — 1.23

5 Expressions

IPCoreL expressions consist of a combination ofiexwalues, constants, variables, operators, and
functions that operate under the rules of precesland of association. Values can be of type ioatfl
string, or char. IPCoreL affords for a multitudeesforessions including postfix, unary, incremeotati
decrementation and operational expressions.

5.1 Primary Expressions

Primary expressions within IPCoreL consistd#ntifiers variables defined asnstantsstrings
expressiopand (expressiop.

5.2 Postfix Expressions

Postfix expressions in IPCoreL groups operatomnsfieft to right. The following outlines the
utilization of postfix expressions within IPCoreL

expression:
expression
expressiofnexpression
expressiofiexpression-opt
expressionr variable-identifier
expressiorr integer-lvalue | float-lvalue | character-lvalustring-lvalue
expressiof+
expression—

expression-list:
expression
expression-optexpression

5.3 Unary Operators

IPCoreL groups operators that unary in nature frigimt-to-left. Aside from parenthesis pairs,

incrementation and decrementation operators, theather unary operator is . The following
defines the handling of unary expressions withi@dreL.

unary-expression:
expression
+HInary-expression
——unary-expression
unary-operator expression

unary-operator:— !

5.4 Array References

A postfix expression followed by an expressiondnare bracketgostfix-expressiorexpression-opt,
is a postfix expression denoting a subscriptedyasserence.

5.5 Function Calls

A function call is an expression containing a sienyjpe name and a parenthesized argument list. The
argument list can contain any number of expresseparated by commas. The function call may also
be empty. The type of a function call expressiaiésreturn type of the function. This type caheit

be of primitive type or of type void.

Arguments of a function call are referred td@asction argumentsThesdunction argumentare
expressions used within the parentheses of a imcall.Function parametermake up théunction
argumentswithin a function call.

IPCoreL handles function calls in the following man

function-identifie{argument-list
function-identifiex)

5.6 Postfix Incrementations

IPCoreL expresses postfix incrementation expressiothe following manner using the postfix
operator;++.

unary-expressiontr
The value of the postfix-expression is the valuthefoperand. After the value is noted, the opersand

incremented by 1. The operand must be of integeieva order for thgostfix-expressioto compile
properly.

5.7 Prefix Incrementations

IPCoreL expresses prefix incrementation expresgiotige following manner using the prefix
operatorsi+. Prefix operators are handled in the same maaspostfix operators.

+funary-expression
The value of the prefix-expression is the valuéhefoperand. After the value is noted, the operand

incremented by 1. The operand must be of integeieva order for thgrefix-statemento compile
properly.

5.8 Postfix Decrementations

IPCoreL expresses postfix decrementation expressiotine following manner using the postfix
operator;—.

unary-expression-

The value of the postfix-expression is the valuthefoperand. After the value is noted, the operand
decremented by 1. The operand must be of intedee via order for thgostfix-expressioto compile

properly.

5.9 Prefix Decrementations

IPCoreL expresses prefix incrementation expressiotige following manner using the prefix
operators;—. Prefix operators are handled in the same maaspostfix operators.

——unary-expression

The value of the prefix-expression is the valuéhefoperand. After the value is noted, the operand
decremented by 1. The operand must be of intedee wa order for thgrefix-statemento compile

properly.

5.10 Multiplicative Operators

IPCoreL multiplicative operators,and/, are grouped from left-to-right. The following defs how
IPCoreL handles multiplicative operators:

multiplicative-expressions:
multiplicative-expressiork unary-expression
multiplicative-expressiony unary-expression
multiplicative-expressiork* unary-expression
multiplicative-expressiork. unary-expression

multiplicative-expression. unary-expression
multiplicative-expressionk*. unary-expression

The multiplicative operators are of arithmetic typ®l can handle both integer and floating-poinésyp
The result of

5.11 Additive Operators

The additive operators and - possess left associativity and have the same tdyekcedence. If and
only if expressions and operands are of arithntggie can they be used with additive operators. The
arithmetic types consist of integer and floatingrporl he following defines how IPCorelL handles
additive operators:

additive-expression:
multiplicative-expression
additive-expressiorr multiplicative-expression
additive-expressiorr. multiplicative-expression
additive-expression- multiplicative-expression
additive-expression-. multiplicative-expression

5.12 Relational Operators

Relational operators in IPCoreL group left-to-riginid evaluate to eith@ror 1. The following details
the manner in which relational operators are hahoiéPCorel:

relational-expression:
relational-expressior< unary-expression
relational-expression> unary-expression
relational-expressiorK= unary-expression
relational-expression>= unary-expression

The operators, >, <=, and=> all yield 0 if the specified relation is false andf the relation holds
true. The type of the resultiat.

5.13 Equality Operators

IPCoreL handles= and thé= operators in the same manner as relational agsratxcept for their
lower precedence. Equality operators follow the esanhes as relational operators.

equality-expression:
relational-expression
equality-expressioh= relational-expression
equality-expression= relational-expression

5.14 Logical AND/OR Operators

The&& and| | operators group left-to-right in IPCoreL. Tt operator returns if both its operands
compare unequal to zero, ahdtherwise. The same rule applies to theperator.

logical-expression:
logical-expressio&& expression
logical-expression | expression

5.15 Assignment Operators

IPCoreL uses several assignment operators to agaiges to identifiers. All assignment operators
group left-to-right

expression:
expressions unary-expression
expression> function-identifieparameter-list

The= operator assign values to identifiers. Fheoperator is used in IPCoreL to create IP headsts a
IP packets.

5.16 Sequences

A pair of expression separated by a comma is etadueft-to-right in IPCoreL, with the value of the
left expression being ignored. The type and valub@result are the type and value of the right
operand. All side effects from the evaluation & t&ft operand are completed before beginning the
evaluation of the right operand.

expression-list:

expression
epression-list expression

6 Declarations

A declaration in IPCoreL specifies the interpretatgiven to a particular identifier. IPCoreL contsi
ability to declare functions and variables, andehthe following form:

function-decl:
function-type-specifier function-identifiéformal-opd {variable-decl-list statement-list;

variable-decl-list
empty-variable-list

variable-decl-list variable-decl

variable-decl:
variable-type-specifier variable-identifier;

Declarators in théormal-optcontains the optional identifiers that are beiegldred in the
declarations. Declaration specifiers consist offthewing:

formal-opt:
empty-formal-list
formal-list

formal-list;
variable-identifier
formal-list variable-identifier

IPCorelL utilizes few #type-specifierswhich consist of the following:

function-type-specifier:
void
int
float

variable-type-specifier:
int
float
char
string
bool

6.1 Declarators

Declarators are components of a declaration thetifgpnames of objects or functions within an
IPCoreL program. These components also identifythdrea named object is a variable or array. When
applied to functions, declarators work with theegpecifier to explicitly specify the return typeso
function.

IPCoreL arrays may be declared using the folloveyigtax example:

float x[10]; [* empty array of type float with 10 elements */

int x[3] = {1, 2, 3}; [*array of type int with 3 elements initialized 19 2, and 3
respectively*/

string str = “Hello World” ;

string str = (“Hello World”);

6.2 Function Declarators

IPCoreL affords programmers the ability to definadtions containing a function declaration and the
body of a function.

function-decl:
function-type-specifier function-identifieformal-opt) Avariable-decl-list statement-list

Function declarations in IPCoreL must follow thédwing rule in order for a program to properly
compile:
+ Only one type specifier is required for a functaeclaration. The type specifier
determines the type of value return after executifaihe function is complete.

¢ Afunction declaratory must consist of a functianre followed by a parenthesized list
of optional parameters

¢ |If afunction is declared of typent or float then it must be terminated withraturn
expressior

Examples of function declarations:
int f(int a, int b) {
return a + b;
}
or
void f(a, b) {
a=a+hb;
}
or
intx=1;
void f() {
print x;
%
The syntax of parameters is the following:

parameter-list:
parameter
parameter-list parameter

parameter:
expression

6.3 Initialization

When initially defined, declarators have the optadispecifying the initial value of the objects fgi
declared in the program. The grammar of IPCorefiaiimation is the following:

expression:
expressiorr expressiohexpression-opt
expressiorr (expression
expressiorr expression
expression> function-identifie(parameter-list

7 Statements

Statements are executed in sequence in IPCorelarandbne so for their effect. The grammar of
IPCoreL statements is:

statement:
expression-statement
block-statement
conditional-statement
iterative-statement

7.1 Expression Statement

Majority of IPCoreL programs consist of expressstatements that are either assignments or function
calls. All side effects from the expression are ptated before the next statement is executed in the
program. Expression statements take the followimmfin IPCorelL:

expression-statement:
empty-expression
expression

7.2 Block Statements

Block statements, or compound statements, are thbyerouping several statements together in a
“block” bounded by{}. The grammar of block statements in IPCorelL isftflewing:

block-statement:
{statement;
{statement-list statement;

If identifiers in theexpression-lisare in scope outside the block, the outer dectaratare suspended
within the block statement. The following rule applto all block statements:

An identifier may be declared only once in the safoek. Declarations consisting of the same
identifier within the same block will result in cpitation errors.

7.3 Conditional Statement

IPCoreL conditional statements resemble conditistetements used in other programming languages,
e.g., C, C++, Java, and Python. The following dbssrthe grammar of IPCoreL conditional
statements:

conditional-statement:
if (expressioh {statement;
if (expressioh{statement else {statement;
if (expressioh{statement elseif (expressioh{statement else {statement;

If usingif statements in programs, the expression must batbmetic type. The expression is
evaluated and if it compares unequal to O, theé dubstatement is executed. In the second form, the
second substatement is executed if the expressiequial to O.

The last conditional statement, containiigeif keyword, is a combination aff andelse and
extends the f statement to execute a different statement in tteeseriginali f expression evaluates to
false Theelseif statement will execute an alternative expressigp ibthe elseif conditional
expression evaluates tiwe.

7.4 Iterative Statements

The grammar of IPCoreL iterative, looping, statetaes the following:

iterative-statement:
while (expression{statement} ;
for (expression-opt expression-optexpression-opt {statement;

Thewhile loop consists of a test that occurs before eaebiwgion of the statement within the iterative
statement. In théor statement, the first expression is evaluated andespecifies the initialization for
the loop. The second expression must be of aritierhgte and it is evaluated after before each
iteration. If the second expression becomes equa| thefor loop is terminated. The third expression
of thefor loop is evaluated after each iteration, specifyng-initialization for the loop.

If users of IPCoreL wish not to user loops, the following is its equivalent usingtai le loop.

for (expression-opt expression-optexpression-opt {statement;

expressionl

while (expression®{
statemenit
expression3

8 IPCorelL Functions

IPCoreL affords programmers certain functions tatulate network behavior. The following
grammar describes the functions that are includéBCorelL.:

Network calculation functions:
throughput (parameter-list ;
jitter (parameter-list ;
latency (parameter-list ;
rtt (parameter-list ;

Header creation functions:
header (paramater-lis} ;

Packet creation:
packet (parameter-list ;

Socket functions:
opensock (parameter-list ;
sendmsg (parameter-list ;
recvmsg (parameter-list ;

8.1 Function Definitions

The following defines native functions providedire IPCoreL Programming Language.

throughput: performs throughput calculation based on user-ddfparameters listed in the
function call.

¢ Throughput is the average rate of successful messelyery over a
communication channel

jitter: performs jitter calculation based on user-definathmeters listed in the function
call.

¢ Jitter is the time variation of a periodic signakélecommunications.
Jitter may be observed in characteristics suchafequency of
successive pulses, the signal amplitude, or phiasermdic signals.

latency: performs latency calculation based on user-defpardmeters listed in the
function call.

¢ Latency is the measure of time delay experienceddommunication
network.

rtt: performs round-trip time calculation based on wedimed parameters listed in
the function call.

¢ RTT (Round-trip Time) is the measure of time tak@na packet to reach
each its destination from its source.

header: creates an IPv4, IPv6, UDP, or TCP header basesser-defined parameters
listed in the function call.

¢ Headers are supplemental data placed at the bagiohan IP packet
containing data to be stored and/or transmitteoldin a communication
network.

packet: creates a custom IP packet based on user-defimathpters, containing headers,
listed in the function call.

¢ Packets are formatted units of data that are tsagethough
communication networks. Packets created in IPCetglport IPv4 and
IPV6.

opensock: makes a socket call when functional is made; sdgketis based on user-
defined parameters listed in the function call.

sendmsg: packages the IP packet created wihket function and transmits the packet
outside the Network Interface Card (NIC) of is@cC.

recvmsg: receives incoming IP packets unpacks the datagoaimfbrmation processing
based on user parameters listed in function call

9 Scope

The scope, in a program, is the enclosed contegtavine values and expressions are associated. The
type of a scope determines what kind of entitiesit contain and how it affects them. Scopes within
IPCoreL may consist of the following:

4 declarations or definitions of identifiers
¢ statements or expressions which define an exeeutddpbrithm
4+ nests of declarations or functions

Variables are associated within scopes. Differeapmg types affect how local variables in a blo€k
statements are bound.

Lexical Scoping

In lexical scoping, or static scoping, a name akuafers to its local lexical environment. Lexical
scoping occurs when the scope of an identifieixisdf at compile time to some region in the source
code containing the identifier's declaration, megrthat an identifier is only accessible withinttha
region of code it is currently residing in.

Local Scope

Variables or methods that have local scope aresaiie only in the current block of statements in
which the variable was defined. These variableshaeefore limited to the most current block of epd
and outer blocks of code surrounding it may notehascess to the variable.

Global Scope

With global scope, all variables defined at thepnezginning of a program are available to the entir
program. The same rule applies to functions dedlare program. All variables declared at the
beginning of the function are available to the remmg code of said function.

Duplicate Variable Declaration

In IPCorel, it is possible to “override” a localnable that is defined just before the current kloc
being accessed by the program. This is accomplisfetkclaring another variable of the same name
and data type inside the current block. The newalbde will naturally have more scope than the first
declaration outside the current block. This is ttuthe outer variable being temporarily overrid@eil
the new variable's value hiding whatever the ouéeiable's value was previously.

10 Grammar

The following illustrates the grammar of IPCorehtlnas been dissected throughout this reference
manual. Theypewriter style words and symbols are terminals of IPCotkése represent the
keywords and functions.

main-program:
main-program variable-decl
main-program function-decl

function-type-specifier:
void
int
float

variable-type-specifier:
int

float
char

string
bool

function-decl:
function-type-specifier function-identifiéformal-opd {variable-decl-list statement-list;

function-identifier:
variable-identifier
throughput
jitter
latency
rtt
header
packet
opensock
sendmsg
recvmsg

formal-opt:
empty-formal-list
formal-list

formal-list:
variable-identifier
formal-list variable-identifier

variable-decl-list
empty-variable-list
variable-decl-list variable-decl

variable-decl:
variable-type-specifier variable-identifier

statement-list:
statement
statement-list statement

statement:
return expression
expression
(expression-list;
{expression-list;
if (expressioh {statement-list;
if (expressioh {statement-list else {statement-list;

if (expressioh{statement-list elseif (expression{statement-Isjt else {statement-list;
while(expressioh{statement-list;

for (expression-opt expression-optexpression-opt {statement-list;
function-identifie{parameter-list ;

parameter-list:
parameter
parameter-list parameter

parameter:
expression

expression:
integer-lvalue
float-lvalue
string-lvalue
character-lvalue
variable-identifier
additive-expressior multiplicative-expression
additive-expression multiplicative-expression
multiplicative-expressiort expression
multiplicative- expression expression
multiplicative-expressior* expression
floating-additive-expression floating-multiplicative-expression
floating-additive-expression floating-multiplicative-expression
floating-multiplicative-expression floating-expression
floating-multiplicative-expressiort floating-expression
floating-multiplicative-expressio®*. floating-expression
equality-expression=relational-expression
equality-expressiori=relational-expression
relational-expression® expression
relational-expression” expression
relational-expression’=expression
relational-expression=expression
unary-expressiof
unary-expressiof
+HInary-expression
——unary-expression
lunary-expression
expressions unary-expression
expression expressiohexpression-ogt
expressionF (expression
expression> function-identifieK parameter-list

additive-expression:
expression

multiplicative-expression:
expression

floating-additive-expression:
expression

floating-multiplicative-expression:
expression

equality-expression:
expression

relational-expression:
expression

unary-expression:
expression

sequence-expression:
empty-expression
expression-list

expression-opt:
empty-expression
expression-list

expression-list:
expression
epression-list expression

