GRAPL Language Reference Manual

1 Introduction

GRAPL (GRAph Processing Language) is a user-friendly language designed to
simplify the creation and navigation of directed graphs. Creating graphs in existing
languages generally requires building node objects and maintaining arrays or lists of
pointers to other nodes (along with weights); keeping track of this information can
be cumbersome. In addition, the structure of the graph (in the general case where
any node may be connected to any other node) takes a good deal of code to set up.
GRAPL is intended to hide the complexity of graph navigation and to make creating
graphs and adding nodes as simple as possible.

This manual describes the syntax and use of the GRAPL language. It is an unabashed
plagiarism of the C Language Reference Manual (CLRM), published as Appendix A in
Kernighan and Ritchie’s “The C Programming Language.” Where GRAPL and C share
common features, we have sometimes reproduced the corresponding text from the
CLRM verbatim rather than attempt to paraphrase an identical idea.

2 Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, strings, operators,
and other separators. As in C, whitespace characters are ignored except insofar as
they serve to delineate other tokens in the input stream. If the input stream has
been parsed into tokens up to a given character, the next token is taken to include
the longest string of characters which could possibly constitute a token.

2.1 Comments
GRAPL uses C-style, un-nested comments; that is, the characters /* introduce a
comment, which terminates with the characters */.

2.2 Identifiers

A GRAPL identifier must meet the same requirements as a C identifier; that is, it
consists of a sequence of letters, digits, and underscore characters, where the first
character must be either a letter or an underscore. Identifiers are case-sensitive.

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

boolean head length
else if list
forEach isvisited node

from graph number

print unvisit

return unvisited with
tail visit
to visited

2.4 Literals

The only literals in GRAPL are of type number and boolean. A number may
consist of any valid f1loat or decimal int representation in C. (C hexadecimal or
octal integers are not supported.)

3 Expressions
Expressions, along with operators, are essential elements in the formation of code in
the GRAPL language. Here we try to specify all of the expressions with operators.

The precedence of all the operators is the same as the order of the subsections here,
that is to say, all operators in sections 3.1 - 3.5 have higher precedence in
comparison with operators in section 3.6. Besides, all operators in the same
subsection have the same precedence.

We don't assume either left or right associativity for the expressions. For evaluation
of expressions, the order is also set to be undefined.

For handling arithmetic problems, we define that overflow of numbers will be
discarded. In addition, problems like “divided by zero” will cause exception and be

handled in library functions.

The following table summarizes the rules:

Tokens Operators Associativity
Identifiers, parenthesized | Primary

expression

() Function calls Left
head List access (head) Left
tail List access (tail) Left
visit unvisit Node Visitation Right
isvisited

! Negation Right
* / Multiplicative Left
+ - Additive Left
< <= > >= Relational Left
== |= Equality Left
5 List concatenation Right
= Assignment Right

3.1 Primary Expressions
Primary expressions are identifiers, constants, or expressions in parentheses.

primary-expression:
identifier
literal
(expression)

An identifier is a primary expression, with its type specified by its declaration.
A literal constant is a primary expression.

An expression inside parentheses is a primary expression.

3.2 Function calls
Expressions involving function calls associate from left to right. The following is the
syntax used:

fcall-expression:
expression(argument-list-opt)

argument-list-opt:
nothing
argument-list

argument-list:
expression
argument-list, expression

The function call will return the type specified by the function declaration. In order
to be correctly evaluated the function has to be in scope.

3.3 Node operators

There are three unary node operators, visit, unvisit, isVisited.Theare
all right-associative. The first two operators mark a node as having been visited or
unvisited, respectively, while the last returns a Boolean value indicating the
visitation status of the node.

visit-expression:
visit node-identifier

unvisit-expression
unvisit node-identifier

isVisited-expression:
isVisited node-identifier

3.4 Negation Operator
The negation operator returns the opposite boolean value of its argument. The right
hand side must evaluate to a Boolean type.

negation-expression:
! expression

3.5 Multiplicative Operators
The multiplicative operators * and / group left-to-right.
multiplicative-expression:
expression * expression
expression / expression
The operands of * and / must have number type.
Operations are carried on the operands and the result value is returned.
The binary * operator denotes multiplication of the left and right operands.
The binary / operator denotes division. The left operand is divided by the right

operand. If the right operand is 0, the value is undefined and an exception will be
caught.

3.6 Additive Operator
The additive operators + and - group left-to-right.

additive-expression:
expression + expression
expression - expression
The operands of + and - should have number type.
Operations are carried on the operands and the result value is returned.

The binary + operator denotes adding the two operands and getting the sum.

The binary - operator denotes subtracting the right operand from the left operand
and getting the difference between the two.

3.7 Relational Operator
The relational operators group left-to-right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operands must have number type here. The return value also has type
number . For all of the operators < (less than), > (greater than), <= (less than or
equal to), >= (greater than or equal to), the return value is set to be 1 if the specified
relation is true, and it's set to be 0 if the specified relation is false.

3.8 Equality Operator
The equality operators group left-to-right.

equality-expression:
expression == expression
expression != expression

The operands must have number type here. The return value also has type number.
For the operators == (equal to) and != (not equal to), the return value is set to 1 if
the specified relation is true, and it's set to 0 if the specified relation is false.

In addition, equality operators have lower precedence than relational operators.

3.9 Logical AND Operator
The logical AND operators group left-to-right.

logical-and-expression:
expression && expression

The operands and the result should have number type.

The evaluation of the expressions is also left-to-right. The left operand is firstly
evaluated. If its value is 0, then the result value is set to 0. If its value is 1, then the
right operand is evaluated. If the value of the right operand is also 1, then the result
value is set to 1. If the value of the right operand is 0, then the result value is set to 0.

3.10 Logical OR Operator
The logical OR operators group left-to-right.

logical-or-expression:
expression [[expression

The operands and the result should have number type.

The evaluation of the expressions is also left-to-right. The left operand is firstly
evaluated. If its value is 1, then the result value is set to 1. If its value is 0, then the
right operand is evaluated. If the value of the right operand is also 0, then the result
value is set to 0. If the value of the right operand is 1, then the result value is set to 1.

3.11 Assignment Expressions
The assignment operators group right-to-left.

assignment-expression:
identifier = expression

Assignments can be made to identifiers of types 1ist, number, boolean, or node.
The expression on the right-hand side must evaluate to the same type as the
identifier on the left. Besides, the value of the assignment expression is the value of
the left operand after the assignment process.

3.12 List Concatenation Operator
Additional nodes may be concatenated onto the front of an existing list using the ::
operator.

list-concatenation-expression:
node-identifier :: list-identifier
Example:
list 1 = a :: 1; // a is a node; 1 is a list

3.13 List Access Operators
The first node in a list can be accessed with the head operator. The expression
returns a node type.

head-expression:
head list-identifier

Example:
node h = head 1; // h is a node; 1 is a list

The tail of a list can be accessed with the tail operator. The expression returns a list

type.

tail-expression:
tail list-identifier

Example:
list t = tail 1; // t and 1 are lists

4 Declarations

A variable should always be declared first before it can be used. Declarations have
the form:

declaration:
type-specifier declarator ;

type-specifier:
node
graph
list
number
boolean

A variable name cannot be declared twice. It is also illegal to declare multiple
variables in the same line.

The declaration contains exactly one type specifier and one declarator. Each
declarator contains exactly one identifier. Each declarator is taken to be an assertion
that when a construction of the same form as the declarator appears in an
expression, it yields an object of the indicated type.

4.1 Node

Node objects are created automatically in the creation of a new graph, without
explicit declaration (see 4.2). They can also be declared individually. A node
identifier is implicitly a reference to a node, and multiple references may point to
the same node.

Node-declaration:
node identifier
node identifier = node-identifier

Example:
node A; // declare node individually

Nodes can be initialized in the same line in which they are assigned; for instance, by
setting the identifier to point to the same node as another identifier.

Example:
node x = lastNode; // lastNode is already in existence

4.2 Graph

In our compiler, a graph declaration is actually an initialization of the graph at the
same time. Each program has one or zero graphs; because of this, the type-specifier
graph is not followed by an identifier in the declaration/initialization. To define a
graph, one or more nodes must be simultaneously defined, as follows. If more than
one node is defined, then edge definitions are required between each sequential
node in the declaration.

A graph can be declared as follows:
graph-declaration :
graph [constructor-declarations |;

constructor-declarations:
constructor-declaration
constructor-declaration, constructor-declarations

constructor-declaration:
node-id
node-id edge-definitions

edge-definitions:
edge-definition
edge-definitions edge-definition

edge-definition:
>> node-identifier
<< node-identifier
<> node-identifier
>> literal node-identifier
<< literal node-identifier
<>literal node-identifier

Example:
graph [A <<3 B];
graph [A <>2 B >3 C <>4 D <>5 B, C <>1 EJ;
// A, B, C, D, E are nodes

4.3 List
List are like arrays. They are assemblies of Nodes. Lists are declared with the
keyword list:

List-declaration:
list identifier
list identifier = [list |

list:
<nothing>
node-identifiers

node-identifiers:
node-identifier
node-identifiers, node-identifier

Example:
list 1 = [A, B, C, DJ];

5 Statements
In GRAPL, statements are of five different types:
e Expression
* Compound
* Conditional
* [teration
* Return

5.1 Expression
An expression statement has the form:

Expression-statement:
expression ;

[t is important to note that the expression is not optional, so an instruction
consisting of a single semicolon is not considered correct.

5.2 Compound Statements
Compound statements (blocks) are used to group a set of different type of one or
more statements. They follow the form:

compound-statement:
{ statement-list }

statement-list
statement

statement statement-list

Each of the statements in this compound-statement will be executed sequentially
starting from left to right.

5.3 Conditional Statements
Selection statements are used to select which block of statements to execute based
on the evaluation of a controlling expression. They follow the following form:

conditional-statement:
if (expression) then { statements } else { statements }

The else clause in the if-then-else statement is not optional and cannot be omitted;
however, an empty statement may follow the else.

Examplel:
if (nodel == node2) then
{
print(nodel);

}
else { }

ExampleZ:
if (length(listl) < length(list2)) then
print(list2);
else

{

nodel :: listl;
print(listl);

}

5.4 Iteration

GRAPL has a single iteration statement to iterate through the nodes of a given
graph: the foreach statement. This statement allows a user to specify an
instruction set to execute for each of the nodes on the other side of an edge with a
weight that satisfies certain conditions (the predicate) inside a graph. The general
form of the foreach loop is:

iteration-statement:
foreach node-control { statements }

node-control:
qualifiers_opt id fromTo id withStmt

qualifiers_opt:

visited
unvisited

fromTo:
from
to

withStmt:
with (predicate)

predicate:
binary-operator expression

Example:
forEach visited leaf from root with (<= 1000)

{

/*do something*/

}

5.5 Return Statement
The return statement returns a function'’s value to its caller by means of one of the
following forms:

return-statement:
return;
return expression ;

The expression must evaluate to the correct return type for the function.

6 Built-in Functions

GRAPL has several built-in functions, including 1ength and print. The 1length()
function operates on a list and returns the number of nodes in a list. The print()
function prints out a useful representation of its argument (a literal, node, list, etc.).

7 Scope

The scope rules in GRAPL follow these guidelines. An identifier is available after it
has been declared. Additionally, an identifier that was used in a graph initialization
need not be initialized. Every identifier is available from the point where it was used
in the graph initialization until the end of the statement group enclosing it.
Subsequent nested blocks have access to identifiers defined by any parent block. A
variable with the same name as in a parent block cannot be declared.

A function identifier is available at any point after the left bracket of the function
definition starts. After a function is declared, the identifier is locked and cannot be
used to define a variable.

