
SOIL
Simple Object Interaction Language

Language Proposal

COMS W4115: Programming Languages and Translators

Professor Stephen A. Edwards

Richard Zieminski

rez2107@columbia.edu

Objective:

To create a language which could be used to teach the concepts of object interactions to

young children. While this is the specified audience, this language could easily be

adapted and used for any number of simulations. To help with understanding, the system

will output the results to the screen in a 2D animation format.

Motivation:

While watching my one year old son try to put a square peg into a round hole I realized

that this action, while learnable could be taught better. If I could somehow show him

how the basic characteristics, such as shape and hardness, affect how objects interact, I

thought I could help accelerate his learning curve. Of course I don’t expect him to be

able to use it directly, but this could be an invaluable aid to the parents as the child

develops.

Features:

• The small size (command set) of the language makes it easier to learn.

• Concepts and commands are presented in a more human friendly way.

Language Overview:

As described, this language is meant to bring simplified learning and experimental

abilities to the average user. A person can create simple objects which are composed of

basic shapes, and then assign basic properties which characterize them. The four basic

shapes are squares, circles, lines, and triangles and can be combined to create more

complex entities. Objects can them be assigned as static or movable, and then put in to

motion to see how they interact with each other. Depending on their preset properties

and described rule sets, the objects will experience any number of changes when

interacting physically with each other. These changes might be result in distortion or

destruction of an object, or an object moving through another through compression. The

objects will be represented by different colors and the shapes (or combinations of) as

defined.

User (non-reserved) identifiers can start with any alphabet character, but not numbers.

All functions parameters are passed by value, not reference. The language is intended to

abstract low level concepts, such as variable types away from the user as much as

possible. To do this simple, everyday terms are being used as much as possible. To

further simply things, loops will be understood, not implemented, so a simple go/stop

command will control movement. While functionality will be supported but only to

control how long motion can take place. While will have the notion of seconds and

minutes of execution only.

When building objects, combinations of two or more objects will results in combined

characteristics along with the assumption that ‘weaker of the overlapping properties will

propagate forward. (i.e. hardness, elasticity, etc.) Adding/subtracting objects will

increase/decrease properties linearly.

Functions will be defined through the use of the whatif keyword. Function parameters

will be accessible via. the ‘.’ dot operator as with other languages.

Language Attributes:

 Blank spaces are used as separators for keywords, operators, and code.

 Reserved keywords:

if, then, else (elseif has been left out to simplify things). All rules will have

only two possible outcomes. Rules than required more outcomes should

extend from other rules. Since rules contain there own if/then behavior,

this allows for a more clear definition of the interaction outcomes.

stop, go, turn

left, right, turnaround

 create, destroy

 combine

compare - (returns =, >, <) based on defined characteristic property

definitions. Weighting of properties will in the end allow for a win/loss

decision as to which object dominates the outcome of the interaction.

 touches/bumps

 inform (similar to printf)

whatif

 or

 and

 world – (the ‘playing field’)

 while

end

true

false

hardness

elasticity

direction

position

qualifiers (these define/qualify characteristics in common terms. Their

default values can be overridden as design time. They give a quick way to

describe characteristics without defining value ranges and let interactions

between objects experience relative outcomes.

low/medium/high

min/max/middle

rigid, pliable

// comments (inline only supported)

 Data Types:

 Text (strings)

 Number (only whole numbers are supported, +/-)

 Boolean

 Operators:

 + (addition)

- (subtraction)

/

*

>

<

=

>=

<=

Sample Interaction/Program:

This program creates two objects, one static, one mobile. Upon creation the mobile

object is then set in motion.

create(shape, color, width, height, max_speed) max_speed 0 = static object

Shape1 = create (circle, RED, 50, 0, 0)

Shape1a = create (square, RED, 50, 50, 0)

Shape1a.rotateLeft

ShapeFinal = combine Shape1 and Shape1a

ShapeFinal.position = random

ShapeFinal.hardness = max

ShapeFinal.elasticity= rigid

Shape2 = create (circle, BLUE, 10, 0, 10)

Shape2.position = center

Shape2.speed = 3

Shape2.direction = left

Shape2.hardness = medium

Shape2.elasticity = rigid

// Parameter based rule – only applied when shapes are passed into it

create whatif Collision (shape_1, shape_2)

If shape1 touches shape_2 then

 loser = compare shape_1, shape_2

 destroy loser

 End

// Parameter based rule – only applied when shapes are passed into it

create whatif Lost (shape_1, shape_2)

If shape_2.position - shape_1.position > 100 then

 destroy shape_2

Else

 inform “I’m lost”

 End

// Assign generic rules to specific objects - the

Collision (Shape1, Shape2)

// Run the simulation

go

while (time < 5)

end

stop

If a shape interacts with the ‘world’ (room constraints) it will interact as with any other

object as the world has a predefined notion of properties (it’s a shape also made up of

lines, which properties can be overridden/modified)

