

SOIL

Simple Object Interaction Language

Language Reference Manual – March 10
th

, 2009

COMS W4115: Programming Languages and Translators
Professor Stephen A. Edwards

Richard Zieminski

rez2107@columbia.edu

 2

Contents:

1 Introduction ...3

2 Conventions In The Document ...3

3 Lexical Conventions..3

3a Comments...3

3b Whitespace ..3

3c Line Breaks and Semicolons ...3

3d Identifiers ..3

3e Keywords and Reserved Words ..4

3f. Built in Functions..4

3g Built in Objects ...5

3h Operators ...5

3i Scope ..5

3j Constants ..5

4 Primitive Data Types...6

4a Text..6

4b Shape ...6

5 Expressions..6

5a Additive Expressions...7

6 Declarations...7

7 Functions ...7

8 Conditional Statement...8

9 Shape Definition, Creation, Destruction, and Operations ..8

10 Sample Program..10

 3

1 Introduction

SOIL is a computer language which can be used to teach the concepts of basic object
interactions. Using a minimum of operations, a user can create simple objects which are
composed of basic shapes, and then assign basic properties which characterize them.
Simulations can then be run to see the outcome of the interactions between objects.

2 Conventions In The Document

Text in standard type indicates a keyword or literal. Text in italics indicates a
placeholder for some other piece of code.

3 Lexical Conventions

3a Comments

Comments begin with the // character sequence and end with a line feed. Comments may
be placed on the same line as source code. Multi-line comments will always begin with
the // character sequence.

3b Whitespace

Whitespace characters which include spaces, tabs, and line feed characters may used to
separate keywords, operators, and code tokens in the input but are discarded during
parsing.

3c Line Breaks and Semicolons

Semicolons serve as a statement separator, and line breaks serve as a terminator.
Multiple statements may be put on a single line of source code using semicolons in
between each statement.

3d Identifiers

Identifiers represent the names of user defined variables and functions. All identifiers
begin with a letter or underscore, followed by zero or more letters, digits, and
underscores. Identifiers are case-sensitive. Identifiers can be up to 32 characters in
length.

 4

3e Keywords and Reserved Words

The following words are reserved as keywords and may not be used as identifiers. They
are case sensitive. Valid keywords are:

if then else
create destroy
or and
true false

 run
 world
 function
 for
 shape extends

text number boolean shape
 elastic

3f. Built in Functions

SOIL also contains several built in functions which may not be redefined. Valid function
names are:

a. toScreen text, number, etc.

This function will handle combinations of text and numbers for output to the screen. It
will parse the provided text for verbatim output (anything within “”) and variables to be
output as set.

Example:

x = 5;
toScreen “This is a simulation that will run “ x “ times”;

Output:
This is a simulation that will run 5 times

b. go(number seconds)

This is used to run a simulation. The number of seconds to run is the only parameter.

 5

3g Built in Objects

SOIL also contains built in objects which may not be redefined. Valid function names
are:

a. world

*world the extents of the interactive environment in 2 dimensional coordinates (x, y) and
needs to be set before running any simulation. It is defined as:

world(number value, number value, number value, boolean value){
 width = $1;
 height = $2;
 strength = $3;
 elastic=$4;
}

Once defined, objects can be passed as parameters to other functions and their elements
referenced using the ‘.’ operator.

3h Operators

+ -
/ *
> <
>= <=
+= -=
= != *shape, boolean or number comparison
. * dereference fields of a shape
()
{ }

3i Scope

There are two types of scope, local and global. Identifiers declared within a function are
local only to that function and may not be used otherwise. Global identifiers which are
declared outside any functions may be used anywhere in the program.

3j Constants

Constants are a sequence of digits representing a number or string of characters.
Constants can be defined anywhere within the program using the following notation:

 6

#identifier = value

#identifier = “Hello”

Constants are valid from the point of declaration forward. Constants cannot be changed
once defined by a following declaration.

4 Primitive Data Types

Supported types will be text, number, boolean, and shape.

number is a 32 bit whole number (+/-). Only whole numbers are supported.
boolean (true/false)

4a Text

Text is a sequence of characters surrounded by double quotes. Text literals may not
contain double quotes or span multiple lines.

4b Shape

Shape is a type that may contain any number of user defined fields of possible data types,
along with several pre-defined fields and functions. These are:

width, height, speed, direction, symbol, position

These are predefined to give a shape its basic characteristics and therefore, allow it to be
compatible for interactions with other shape objects.

Shapes can be defined from base shapes by using the ‘extends’ keyword.

 shape identifier extends shape identifier

Functions defined in base shape objects cannot be redefined in extended shape objects.
Variables defined in base shape objects can be redefined (overridden) in extended shape
objects.

5 Expressions

Expression can be a combination of operators, identifiers and literals. Upon evaluation,
an expression will return a value. The value type is dependant on the expressions being
combined. Precedence of expressions is as listed in the operators section of this
document.

 7

5a Additive Expressions

text + text = text
text + number = text
number + number = number

Only text and numbers can be combined.

6 Declarations

Declarations are used to assign a value (text, number) to an identifier. They have the
form:

identifier = value

A text declaration is defined by enclosing the value in quotes “”. There is no need to
specify a type.

7 Functions

Functions will be defined through the use of the ‘function’ keyword and only can be
added to shape types. This convention was chosen to allow shapes to interact based on
their defined functionality as stand alone entities. Function parameters will be accessible
via. the ‘.’ dot operator as with many other common languages.

Functions have the form:
function identifier (parameter-list)
{ body }

or

function identifier ()
{ body }

A function does not return a value. The parameter-list will be of the form (identifier,

identifier, ..). Parameters are passed by reference and can be modified within the calling
function.

To allow for interaction between objects, any function with a ‘shape’ parameter defined
in the formal parameter list will be processed on each iteration during a go operation.

Function nesting is supported, but recursive operations are not.

 8

Functions can access only variables that are passed in as arguments as well as locally
declared variables.

8 Conditional Statement

There are two forms of the conditional statements:

a. if (expression) then

{
statement1;

statement2;

…
}
else
{

statement1;

statement2;

…
};

b. if (expression) then

{
statement1;

statement2;

…
};

*Brackets are always used to enclose conditional statements.

9 Shape Definition, Creation, Destruction, and Operations

Shapes may be created anywhere, even within a shape function, although they will be
automatically destroyed upon leaving the function.

A shape is defined and created with the keyword:

shape identifier{
}

Shape contains no formal parameters as it is meant to act as an autonomous object.

 9

Shapes creation/destruction is done as follows:

Assignment/creation of a shape object:
identifier = create shape identifier

Destruction of an object:
destroy shape identifier

Shapes can extend their properties from other shape objects. This is done using the
‘extends’ keyword upon defining a shape object:

shape shape identifier extends shape identifier{

}

Upon compilation, the extended shape identifier code will be available in the new shape
declaration.

 10

10 Sample Program

This program creates two objects, one static, one mobile. Upon issuance of the ‘go’
command, shapes will begin in motion (if defined) and any function with a ‘shape’ type
defined in it’s function(s) parameter list will be called an evaluation on every iteration.
This allows shapes to be autonomous while allowing for interactions with other shapes
and the environment.

shape generic{
 strength = 0; // Placeholder – will be defined in extended shapes

waitCount = 0;
hardness = 0; // Placeholder – will be defined in extended shapes
originalSymbol = symbol;

// Wait to react until shape has had time to process the last change for x iterations
if (waitCount == 0) then
{

function close (shape){
 // If objects are close (1/10 overall world), switch our direction 90
 // degrees

if (position – shape.position > (world.width / 10) or
 position – shape.position > (world.height / 10))
// Try to get out of the way
then
{
 direction = shape.direction + 90;
 // Go faster in another direction
 speed = shape.speed + 1;
 waitCount = 2; // delay another reaction for x iterations
}

 }

function far (shape){
 // If objects are far (1/4 overall world), switch our direction 180

// degrees and try to return
if (position – shape.position > (world.width / 4) or
 position – shape.position > (world.height / 4))
// Try to get closer
then

 11

{
 direction = shape.direction;
 // Go faster
 speed = shape.speed + 1;
 waitCount = 2; // delay another reaction for x iterations
}

}

function touches (shape){

// If objects touch, reduce health based on evaluation of several
// variables
if (position = shape.position) then
{
 // If we are elastic, then accept minimal damage
 if (!elastic and !shape.elastic) then
 {
 // Take into account two factors for strength reductions
 strength-= shape.strength * hardness;
 }
 else

{
 strength-= 1;
 }
 waitCount = 2; // delay another reaction for x iterations
}

}
}else
{
 waitCount-=1;
}

}

shape shape1 extends generic{
 strength = 9;

hardness = 3;
elastic = true;

// Default operations
function default (shape){
 // Change symbol to originalSymbol to indicate no change has occurred

 12

 symbol = originalSymbol;
 // Am I damaged beyond repair?
 if (strength <= 0) then
 {
 destroy shape1;
 }
}

}

shape shape2 extends generic{
 strength = 5;

 hardness = 2;
 elastic = false;

// Default operations
function default (shape){
 // Change symbol to originalSymbol to indicate no change has occurred
 symbol = originalSymbol;
 // Am I damaged beyond repair?
 if (strength <= 0) then
 {
 destroy shape1;
 }
}

}

go (5); // Run a simulation for x seconds

