Doodle Language

Final Report

COMS W4115: Programming Language and Translator
Professor Stephen A. Edward

Yusr Yamani
Fall 2009

Table of Content:

(0 F= 01 =T g A Vo oo ¥ ox o T o S 4
(o =T =T g I T = {UE- Y=L U] o o - | S 5
2 = Y2 1Y] L= P 5
2 00 © TU 1 10 1 AV T g T [1V PP 5

B A = Y2 1Y o] L= PN 6
2 2 R © T 18 Y g T [1Y PP 7
Chapter 3 Language ManUaliiiiiiiiii et e e e e et e et e et e aean 8
0 R) = 0 1[0 - 1 o o PR 8
3.2 LeXICal CONVEISIONS ... et ee et ettt oottt e ettt e ettt oottt e e ettt e e ettt e e et et a e e et eb e e e e eba e e e ee b e e e eeba e eeeeeneas 8
R o T .= o) PP 8
I AT T Ty o - o] PP 8

K I B o] =T 1T P P UPRTUPPPRPPN 8

R I 20 R [[T 0w 1= ST 8
B T (=LY AT o] o L PN 8

B TR 1 (=== o 1] = o 1 (3 8

B T T = X =T - S 9
B N O o 1= =) o] oI PP PRUP 9
I N Y] o k- - | (o] £ T PP PRUP 9

3.3 The StrUCLUIE OF DOOMIE ... ettt ettt ettt e e et e et e e et e e e e e et e e eean e e eaa e e eeaaeeanaaeeas 9
IR 20 0 LYol =T =Y o o PSP UPPPPTRPRP 9
20 700 001 I 0 TTod Y o <Y o o= Y o T o S 9
IR B 0 [[T o) =T D =T o PP URPPPPRPP 9
IR 70 B I o 17011 1 = PP 9
IR 70 B (W] Tot oY1 D LT ol TP 9
R T0 BTN ¥ o ol A= o T PP 9
20 T80 3N ¥ Yol = o Yo L PN 9
e T AT AT Vo Fo RN YAy o 1=l 3 or=) u o o TS 10
3302, WINAOWSIZE ..ottt ettt ettt ettt ettt ettt e e e h e e et e e e e e e e e e e e e e ea e e eea e e na e eeea e enaaanean 10
G T A ©] 1=t { 0o Lo Y PP 10
IR T N 0] (o PP UPPPRTPPP 10

LS IC TR 30 o Y=ot Y=Y o u (o PN 10
TR TR Tt Y = 1 = 0T o PP 10

IR T8 TR 1 o [F=1 L1 Y2 =T ST 10

I 0 TR o =13 [0 11

R o= 1 Y olo T o PPN 12
3.5 Associatively and Precedence Of OPErator cou.iiiiiii e e 12

(0 T =T B oY 1=T ot Al o = o TP 13
I o o Y [=Yox T 411 TSN 13
4.2 Software Development ENVIFONMENT e e e e et e et e et e et e et e et e et e et e et e eseeannns 13
(@ 1= = AT T =YV £) (= o ¢ 13

[T Y =W Y-S =T PP PP 13

N o o = ot o = TP 13
Chapter 5 ArChitECTUIAl DESIZN . .uu ittt e e et e et et e et e e e et e et e et e e e e et e e e e e e eeneennns 14
Lo 2 o Yol D 1=V =T o PP 14
oI A D oo Yo | [N ol T =T o1 (U TP PPPPPR 15
TR = (=T N 15
IV YT o o Lo) TP UPPRPT 15
I B 14 =T o o1 £=1 = PP URUPRRN 15

(0 T =T ST TSy - T o PSPPI 16
(0 =] =T gy A=Yy T o TN =Y T =T o PP 17
(0 T =T - Y o o 1= g Vo 1 PSPPI 18
R Do ToTo | [CT e 14V - TP PPPPPPT 18
A D Lo ToTo | [6o Yo [T TP TPPPPPT 20
A AT or- Yo Yo =T o0 o) | PSPPSR 20
S A o - 1 Y=Y g o YRS 21
A I 1 A 4o | [TP TTTPPP TSP 23
S oY= /Y 1 o | S 24
S R e [oTe o | LNy o PSP PUPPRPT 27

Chapter 1

Introduction

“Doodle” is a programming Language, created using Ocaml. Itis designed to help software developers create
unfocused sketches in a few simple steps. Due to its simple syntax, “Doodle” is suitable for beginners.
Programmers who are familiar with other languages such as C will find Doodle easy to understand.

A full Doodle consists of three primary sections: Declaration, Window, and Object. The Declaration section is
where variables and function are declared, defined and introduced. The Window section sets the size and color
of the output window. The Object section is where shape object functions, and user defined functions are
called. In addition, Doodle supports simple shapes, including ellipses, rectangles, line and text. Flow controls
such as iteration statements, conditionals statements are added to Doodle’s language to give it more flexibility.
Moreover, this language allows users to define their own functions to avoid code redundancy. Further
descriptions of the language are introduced throughout the report.

Chapter 2

Language Tutorial

Two simple examples are being introduced in this chapter to illustrate the overall features of Doodle language:

2.1 Example 1

Declare [Int x=50;]
Window [(200,200) ;Red]
Object [Rectangle (x, x,60,20);]

Doodle Code 2.1

2.1.2 OQutput window:

Figure 2.1

Figure 2.1 illustrates the output window of executing code 2.1 . The first line in this code defines an integer
variable x, and set it to 50 . The second line sets the output window dimensions to 200pixels X 200pixels. The
third line, draws a rectangle of 30w X 20h, with the left bottom corner of it in point (50, 50) on the output
window.

The syntax of Doodle program consists of three sequentially executed sections:

Declare Section: It is used to define variables and user functions, which are declared between brackets.
Variables should be set to an initial value. Though declare section is optional, it should be included at the
beginning of the program file

Window Section: Three parameters state the window specification. The first two parameters are numbers;
they set the size of the output window in pixels. The third sets the shape color.

Ex: Window[(200, 200) ; Red] sets the output window domains to 200 pixelsX 200pixels, and shapes colors to
red.

Object Section: This section is the main section of the program, it includes all the running code. Code varies
form simple shape call , user function call , to flow control code. All statements are included within object
section brackets. Calling a function or a variable is permitted, though they cannot be declared in this section.

In this example a rectangle is displayed on the output window, using the following statement:

Rectangle(30, 20, 50, 50) It has the form Rectangle (x, y, w, h) which means draw a rectangle with width w,
height h, and the lower corner at point (x, y) on the output window.

2.2 Example 2

Declare [Inti=2;
Func draw2shapes

If(i==1)
Ellipse(10, 10, 60, 20) ;
Else
Rectangle(10, 40, 60, 20);
Endif
Endfunc]

Window][(200, 100) ; Red]

Object[Loop (2)
Callf draw2shapes ;
i=i-1;
Endloop
]

Doodle Code 2.2

The Declare part defines an integer variable i, and sets it to 2. It also defines a user function drawZshapse

Func draw2shapes

If(i==1)
Ellipse(50, 25, 100, 200) ;
Else
Rectangle(25, 0, 100, 200);
Endif
Endfunc]

Inside the body there is an if statement, that draws an Ellipse ifi is equal to 1, and draws a rectangle otherwise.
The Window section sets the output window as discussed in example 1. The loop in object section executes
function draw2shapes twice. Ellipse (x, y, rx, ry) draws an ellipse with horizontal radius rx, vertical radius ry

and center at point(x, y)

2.2.1 Output window

D

Figure 2.2

Chapter 3

Language Manual

3.1 Syntax Notation

Regular expressions are used for the syntax notation in this manual. No terminals categories are indicated by
italic style. Quoted or bold style symbols are all terminals. Alternative categories are separated by '|'. An
optional category ends with '?' . ‘a*' indicates that ‘a’ may occur zero or more times. 'a+’ indicates that ‘a’ may
occur one or more times. '(a|b)’ denotes a choice between the categories ‘a’ and ‘b’. Parentheses are used to
group symbols with respect to '?’, "*', and '+'.

3.2 Lexical Conversions

3.2.1 Comments
Comments enhance programs readability. In Doodle, comments begin with '<*' and ends with *>". Any
statement in between those symbols is ignored by the compiler.

3.2.2 Whitespace
Whitespaces, including ASCII space, carriage return and horizontal tab separate tokens. Any sequence of
whitespaces is ignored by the compiler except spaces within a string.

3.2.3 Tokens

There are six classes of tokens: identifiers, keywords, integer constants, string literals, operators, and
separators.

Tokens are case sensitive. Upper and lower case of a letter are different.

3.2.3.1 Identifiers
An identifier is any sequence of letters and digits that begins with a letter. Doodle is case sensitive; two
identifiers are the same if they have the same Unicode character for every letter and digit.

Identifier — Letter(Letter | Digit) *
Letter - ['a’'-'z" 'A"'—='Z"]
Digit » ['0' —'9']

3.2.3.2 Keywords
The following terms are keywords of the language that may not be used otherwise

Declare Rectangle Red Loop If
Window Ellipse Blue Endloop Else
Object Line White Func Endif
Int Text Black Endfunc String

2.3.3 Integer Constants
An Integer constant is a sequence of ASCII digits that represents a decimal number. Integers are positive.

IntegerConstant — digit +
8

3.2.3.4 String Literal
A String literal is a sequence of one or more character, letter or digit, enclosed in double quotes. White spaces
are allowed within the string. However, newline, double quote or any other character is not allowed.

StringlLiteral - ' " ' (Letter | digit|" ")+

3.2.3.5 Operators
Operators are: plus ‘+’ minus - times "*', divide '/’, Assignment ‘=’, Equal “==

”

3.2.3.6 Separators
The following symbols are separators in Doodle:

[T:0C),

3.3 The structure of Doodle:
A Doodle program consists of three main parts: Declaration, WindowSpecification, and ObjectSection

3.3.1 Declaration:
This section is optional. It contains identifiers and functions being declared, which should only be declared in
this section of the program.

Declaration - Declare'['DeclSpecification * ']’

3.3.1.1 DeclSpecification:
DeclSpecification — IdentifierDec | FunctionDec

3.3.1.2 IdentifierDec:
There are 2 types of variables: Integer and String. The following expression shows how an integer, and a string
identifier are declared. It should be always initiated to a value.

IdentifierDec — Int Identifier " =" IntegerConstant;

!

|String Identifier ' =' Stringliteral;

3.3.1.3 identifier
Check section 3.3.1

3.3.1.4 functionDec:

A programmer is able to define his own functions. A function declarations starts with the reserved word Func
followed by a function name, then an optional set of arguments, followed by statements of the function body,
and ends with the Endfunc keyword

functionDec - Func FuncName FuncBody Endfunc

3.3.1.5 FuncName:
FuncName - identifier

3.3.1.6 FuncBody:
Here all statements of a function is specified

FuncBody — statement *

9

For statement, check section 3.3.3.1

3.3.2 WindowSpecification
This section is mandatory. It starts with " Window [" and ends with "]". It sets the general parameters of the
output graphics window

WindowSpecification -» Window '[' WindowSize ';' ObjectColor’;' "]’

3.3.2.1 WindowSize:
WindowsSize sets the size of the output windows in pixels. Itis the first parameter in windowSpecification
(width in pixels, height in pixels)

WindowSize — '(' integer ') integer ')’

3.3.2.2 ObjectColor:
the third parameter is ObjectColor. It sets the color of the drawings
ObjectColor — Color

3.3.2.3 Color:
A window background or a shape color could be one of the following:

Black, White, Blue, Red

Color - Black | White | Blue| Red

3.3.3 ObjectSection

This section is mandatory. It starts with " Object [" and ends with "]". Statements are added to this section.
ObjectSection —» Object'|[' Statement = ']’

3.3.3.1 Statement:
There are 3 kinds of statements. They are executed in sequence according to their appearance in the object
section.

Statement — ConditionalStatement|IterationStatement|Expression
3.3.3.2 ConditionalStatement

Conditional statements is represented by If, else clause. In the first expression, If the the equality test is true,
the first statement is executed, otherwise the second statement is executed. In the second if statement, if the
equality test is true, then the statement is executed otherwise nothing happens.

ConditionalStatement —» If ' ('EqualityTest ')' statement = else statement *+ Endif

|If '('EqualityTest ')’ statement*x Endif

3.3.3.3EqualityTest
Equality test returns 1 if both expressions are equal, 0 otherwise

EqualityTest —» ArithExp ' ==' ArithExp

3.3.3.4 IterationStatement

10

In this iteration statement, The integer between parentheses represents the number of times the list of
statements is executed.

IterationStatement —» Loop '('integer ')’ statement x Endloop

3.3.3.5 Expressions
There are three kinds of expressions: Assignment Expressions, ObjectCalls, and FunctionCalls

Expression - AssingExp ';"|0bjectCall ;' |FunctionCall';’

3.3.3.6 Assignment Expression:
AssingExp — identifier ' =' (ArithExp|StringLiteral)

3.3.3.7 ArithExp:
Operations are left-associative. ‘/’ and *" have higher precedence than ‘+’ and ‘-‘

ArithExp —‘('ArithExp")’
|ArithExp '+'ArithExp
|ArithExp ' —'ArithExp
|ArithExp '='ArithExp
|ArithExp '/" ArithExp
|Identifier
|IntegerConstant

3.3.3.8 Function calls:

FunctionCall -» Callf FuncName '(' actualArguments ")’
actualArguments — ArithExp | actualArguments '," ArithExp

this language supports Applicative-order evaluation which means that the function arguments are evaluated first
from left to right before executing the body of the function.

3.3.3.9 ObjectCall:
To draw shapes, we can use object calls to draw a specific shape. We have 4 main shapes:

Ellipse: To draw an ellipse we need to call the Ellipse functions: Ellipse (rx, ry, X, y)
this function draws an ellipse with horizontal radius rx, vertical radius ry and center at point(x, y)

Rectangle: To draw a rectangle, we need to call: Rectangle (w, h, %, y)
This function draws a rectangle with width w, height h, and the lower corner at point (X, y)

Line: to draw a line, we need to call: Line (x1, y1, x2, y2)
This function Draws a line from point (x1, y1) to point (x2, y2)

11

Text: to type a test in the output window, we need to call Text (" string", x, y);
This function Prints a string starting from point (x, y).

ObjectCall — Ellipse '('ArithExp '/ ArithExp '/ ArithExp '/ ArithExp)
| Rectangle '(' ArithExp ') ArithExp '/ ArithExp '/ ArithExp)
|Line '(' ArithExp ') ArithExp '/ ArithExp ', ArithExp)

Text'('StringlLiteral|identifier '/ ArithExp '/ ArithExp)
g

3.4 Lexical Scope:
Identifiers, objects and keywords all fall into the same name space. If a there are two functions or identifiers of
the same name, then the second one overwrites the first one.

Doodle uses static scoping. All variables are global. their lives begin where it is declared in Declare section,
and ends at the end of Object section.

3.5 Associatively and Precedence of operator:
the following table demonstrates the precedence of operators, starting from the highest to the lowest
precedence.

‘%, 4+, are left associative

‘=’, and ‘==" are right associative

12

Chapter 4 Project Plan

Project Plan

4.1 Project Timeline
The following deadlines were set for this project at the beginning of the semester

Date Module Completed
February 10, 2009 Language Proposal
March 10, 2009 LRM
March 26, 2009 Lexer
April 2, 2009 Parser
April 16,2009 AST
April 23,2009 Code Generation
May 7, 2009 Testing
May 14, 2009 Project Report

4.2 Software Development Environment

Operating system
Both Windows and Linux were used for this project. Windows were used to test each step of the project. Linux
was used for the last part of testing.

Language Used
Ocamllex was used for the scanner, Ocamlyacc was used to the parser, and ocaml was used for the rest of the
code.

4.3 Project Log

Date What I did
April 18, 2009 Working on make file, and scanner
April 25,2009 | Running a complete scanner with a simple parser
and interpreter
April 29, 2009 Testing the graphic library
May 3, 2009 Scanner completed
Working with parser, and AST in parallel
May 6, 2009 Creating Test cases
May 8, 2009 Parser AST completed
May 12, 2009 Final draft of project report
Working on interpreter
May 16, 2009 Interpreter completed
May 18, 2009 Test case completed
May 18, 2009 Final Project completed

13

Chapter 5

Architectural Design

5.1 Block Diagram

Symbol Table

“—>

Input Code

l

Scanner

Parser

Interpreter

|

Output

14

5.2 Doodle Architecture

Doodle was implemented using Ocaml. It consists of several parts: laxer, parser and AST, and interpreter. The
source code of this language has a “.d” extension, and it’s out put is the graphics window.

5.2.1 Lexer:

Alexer reads an input file, converts characters and symbols into token. In this stage white spaces and
comments are removed. Then, tokens are passed to the parser.

5.2.2 Parser and AST:

The parser gets the tokens from the lexer and creates an abstract syntax tree(AST) After assuring that the
sequence of tokens doesn’t violate the grammar rules of the language.

5.2.3 Interpreter:
The interpreter is mainly responsible for:

Walking through the created AST

Creating a symbol table and adding identified variables into it

Type checking

Evaluating arithmetic and Boolean expressions

Executing statements such as iteration, case, function statements, and drawing shapes

v W=

15

Chapter 6

Test Plan

Testing started from early stages of this project, where I tried to check that all files in a simple interpreter were
executed successfully. The second testing was to ensure that the Graphic library worked on this interpreter.
The third part, the main one, was after completing the whole interpreter. I tested all cases of the language to
make sure that all parts of the interpret works successfully by taking inputs from standard in. The last part
was by reading inputs from files.

There are 15 files, each one test a part of the language. The following table represents each input file.

File description File name

No declare part, no global variables Test_nodecl.txt

With declare section, and global variables Test_decl.txt

With declare section No global variables Test_emptydecl

Drawing an ellipse Test_ellipse.txt

Drawing a rectangle Test_rectangle.txt

Drawing a line Test_line.txt

Drawing a text Test_text.txt
Test_ifl.txt
Test_if2.txt

If statement Test_ifelsel.txt
Test_ifelse2.txt

Arithmetic operation Test_arith

Loop Test_loop.txt

User defined function without arguments(local variables) Test_func.txt

16

Chapter 7

LLesson learned

[had learned several programming languages in the past, and always wondered who were behind those
languages, and why was I always learning how to use a language instead of learning how to create one. This
project gave me the opportunity to work with languages from different aspect, which turned out to be both
interesting and challenging at the same time.

The interesting part was having the freedom to choose my own syntax, and the level of complexity in my
language. The challenging part was working with Ocaml. It took me some time to get used to its new style,
and to understand its semantic. But even though I prefer other languages, I'm glad that | was exposed to a
different way of programming. I got the chance to think differently, and code less.

[also learned how time is valuable. If [had the chance to start all over again, [would spend less time in the
scanner part, more time in the interpreter, and testing part.

17

Chapter 8

Appendix

8.1 Doodle Grammar:
The following is a list of Doodle grammar . The start symbol is DoodleProgram

Identifier —» Letter(Letter | Digit)*
IntegerConstant - digit +
StringlLiteral - ' "' (Letter|Digit|'")+ ' "'
Letter » ['a'='z" 'A'-'Z"]
Digit » ['0'—'9]
DoodleProgram — Declaration? WindowSpecification ObjectSection
Declaration - Declare'['DeclSpecification = ']’

DeclSpecification —» IdentifierDec
| functionDec

IdentifierDec —» Int Identifier '='IntegerConstant’;’
|String Identifier ' ='StringLiteral’;’

functionDec - Func FuncName FuncBody Endfunc
FuncName — identifier
FuncBody — statement *
WindowSpecification > Window '['WindowSize ;' ObjectColor’;'']
WindowSize » (' integer 'integer ')’
ObjectColor - Color
Color - Black | White | Blue| Red
ObjectSection » Object [Statement * ']’
Statement - ConditionalStatement
|IterationStatement

|Expression

ConditionalStatement - If ' ('EqualityTest ') statement * Else statement * Endif
[If '('EqualityTest ')' statement > Endif

18

IterationStatement —

Expression —

ArithExp —

EqualityTest —
FunctionCall —

actualArguments —

ObjectCall —

Loop '('integer ') statement x Endloop
idenfitier '='(ArithExp|StringLiteral);
|ObjectCall;
|FunctionCall;

‘('ArithExp")’

|ArithExp '+'ArithExp
|ArithExp ' —'ArithExp
|ArithExp ' ' ArithExp
|ArithExp '/' ArithExp
|Identifier
|IntegerConstant

ArithExp ' =='" ArithExp
Callf FuncName '(' actualArguments ")’

ArithExp
|actualArguments '," ArithExp

Ellipse '('ArithExp '/ ArithExp '/ ArithExp ',/ ArithExp)

| Rectangle '(' ArithExp ')/ ArithExp '/ ArithExp '/ ArithExp)
|Line /('ArithExp V' ArithExp) ArithExp ArithExp)

| Text (StringLiteral|identifier ', ArithExp ArithExp)

19

8.2 Doodle Code
8.2.1 scanner.mll

{ open Parser } (* Get the token types *)

rule token = parse

AL \r' '\n'] { token lexbuf } (* Whitespace *)
"<*" { comment lexbuf } (* Comments *)
'(* { LPAREN } (* separators*)
")' { RPAREN }

'[' { LBRACK }
""" { RBRACK }
;' { SEMI }

' { COMMA }

[
|
|
|
|
|
|
| '+' { PLUS } (* operators *)
| '-' { MINUS }

| '**' { TIMES }

| '/* { DIVIDE }

| '="{ ASSIGN }

| "=="{EQ?Z}

| "If" { IF } (* keywords *)
| "Else" { ELSE }

| "Endif" { ENDIF }
| "Loop" { LOOP }

| "Endloop" { ENDLOOP }
| "Func" { FUNC }

| "Endfunc" { ENDFUNC }
| "Callf" { CALLF }

| "Red" { RED }

| "Blue" { BLUE }

| "White" { WHITE }
| "Black" { BLACK }
| "Green" { GREEN }

| "Rectangle" {RECTANGLE }
| "Ellipse" { ELLIPSE }

| "Line" { LINE }

| "Text" { TEXT }

| "String" { STRING }

| "Int" { INT }

| "Declare" { DECLARE }

| "Window" { WINDOW 3}

| "Object" { OBJECT }

| eof { EOF } (* Endoffile*)

| ['0'-'9']+ as Ixm { LITERAL(int_of_string Ixm) } (* integers *)
| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9']* as Ixm { ID(Ixm) }(*idenfitiers*)

| ™ ['a'-'z' 'A''Z' '0'-'9" ']* ™ as Ixm { ST(Ixm) }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char))}

and comment = parse
"*>" L token lexbuf } (* End of comment*)
| _ { comment lexbuf } (* Eat everything else *)

20

8.2.2 parser.mly

%7<{ open Ast %7}

%token LPAREN RPAREN LBRACK RBRACK SEMI COMMA
%token PLUS MINUS TIMES DIVIDE ASSIGN EQ

%token IF ELSE ENDIF LOOP ENDLOOP FUNC ENDFUNC CALLF
%token RED BLUE WHITE BLACK GREEN

%token RECTANGLE ELLIPSE LINE TEXT

%token STRING INT DECLARE WINDOW OBIJECT EOF

%token <int> LITERAL
%token <string> ID
%token <string> ST

%nonassoc ELSE
%left ASSIGN
%left EQ

%left PLUS MINUS
%left TIMES DIVIDE

%start doodle_program /* entry point */
%type <Ast.doodle_program> doodle_program

%%

doodle_program: /*3 main sections of the program*/
decl_sec window_sec object_sec {(fst $1), ($3 :: snd $1) }

I

decl_sec: /*this section is optional */

/*nothing*/ {[1,[1}
|DECLARE LBRACK declist RBRACK {$3}

A

declist: /*list of declarations*/

/*nothing*/ {[1,[1}
|declist id_dec {($2::fst $1), (snd $1) } /*add integer,string variables declaration to the first list*/
|declist fun_dec { fst $1, ($2 :: snd $1) } /*add function declaration to the second list*/

A

id_dec: /*declaring an identifier*/
INT ID ASSIGN LITERAL SEMI /*integer variable*/
{{ vname= $2; vtype="int" ; ivalue=$4; svalue="none"}}

|STRING ID ASSIGN ST SEMI /*string variable*/
{{ vname= $2; vtype="string" ; ivalue=0; svalue=%$4}}

I

fun_dec:
FUNC ID stmt_list ENDFUNC
{{ fname= $2;
fbody= List.rev $3}} /*function declaration*/

21

window_sec: /*winodw section*/
WINDOW LBRACK LPAREN LITERAL COMMA LITERAL RPAREN SEMI color RBRACK
{Graphics.open_graph " string_of_int($4) ~ 'xX' ~ string_of_int($6) ";Graphics.set_color $9}

4

color:

RED {0xff0000}
|[BLUE {0x0000ff}
|WHITE {Oxffffff}
|BLACK {0x000000%}
| GREEN {0x00ff00}

A

object_sec: /*object section */
OBJECT LBRACK stmt_list RBRACK
{{ fnrame="0bject";

fbody= List.rev $3}}

4

stmt_list:

/*nothing*/ {[1}
|stmt_list stmt {$2::$1}

4

stmt:

exp SEMI {Exp($1)}

|IF LPAREN eqgtest RPAREN stmt_list ELSE stmt_list ENDIF {If($3, $5, $7)}
|IF LPAREN eqgtest RPAREN stmt_list ENDIF {If($3, $5,[1)}

|[LOOP LPAREN LITERAL RPAREN stmt_list ENDLOOP{Loop($3,$5) }

| CALLF ID SEMI {Call_f($2)}

A

eqgtest:
arith_exp EQ arith_exp {Eqtest($1, $3)}

A

exp:

ID ASSIGN arith_exp{Assign_i($1, $3)}

|ID ASSIGN ST {Assign_s($1, $3)}

|[RECTANGLE LPAREN arith_exp COMMA arith_exp COMMA arith_exp COMMA arith_exp RPAREN
{Rec($3,$5,$7,$9)}

|ELLIPSE LPAREN arith_exp COMMA arith_exp COMMA arith_exp COMMA arith_exp RPAREN
{Elp($3,$5,%$7,%$9)}

[LINE LPAREN arith_exp COMMA arith_exp COMMA arith_exp COMMA arith_exp RPAREN
{Line($3,$5,$7,$9)}

|TEXT LPAREN ST COMMA arith_exp COMMA arith_exp RPAREN {Txt_s ($3,$5,$7)}

|TEXT LPAREN ID COMMA arith_exp COMMA arith_exp RPAREN {Txt_id ($3,$5,$7)}

!

arith_exp: /*arithmatic operations, done on integers and id of integers*/
ID {Id($1)}

[LITERAL {Literal($1)}

|[LPAREN arith_exp RPAREN {$2}

|arith_exp PLUS arith_exp {Arith($1,Add, $3)}

|arith_exp MINUS arith_exp {Arith($1,Sub, $3)}

|arith_exp TIMES arith_exp {Arith($1,Mult, $3)}

|arith_exp DIVIDE arith_exp {Arith($1,Div, $3)}

22

8.2.3 ast.mli

type doodle_program= decl_sec
and decl_sec = declist
and declist=(id_dec list) * (fun_dec list)

and id_dec=

{ vname: string;
vtype: string;
ivalue: int;
svalue: string;}

and fun_dec=
{ fname: string;
fbody: stmt_list;}

and window_sec= unit
and color=int

and object_sec= fun_dec
and stmt_list= stmt list

and stmt=

Exp of exp

|If of eqtest * stmt_list * stmt_list
|[Loop of int * stmt_list

|Call_f of string

and eqtest=
Eqgtest of arith_exp * arith_exp

and exp=

Assign_i of string * arith_exp

|Assign_s of string * string

|[Rec of arith_exp * arith_exp * arith_exp * arith_exp
|Elp of arith_exp * arith_exp * arith_exp * arith_exp
[Line of arith_exp * arith_exp * arith_exp * arith_exp
| Txt_s of string * arith_exp * arith_exp

| Txt_id of string * arith_exp * arith_exp

and arith_exp=

Id of string

|Literal of int

|Arith of arith_exp * op * arith_exp

and op= Add|Sub|Mult|Div

23

8.2.4 interpret.ml

open Ast
open Graphics

module NameMap = Map.Make(struct
type t = string
let compare x y = Pervasives.compare X y end)

exception ReturnException of int * int NameMap.t

(* begin of run function *)
let run (vars, funcs)=

(* Put function declarations in a symbol table *)

let func_map = List.fold_left (fun fmap fun_declist ->NameMap.add fun_declist.fname fun_declist
fmap) NameMap.empty funcs

in

(* begin of call function *)
let rec call fun_declist globals=

(*function for evaluating arithmatic expression, returning the value and environment*)
let rec eval_arith env=function
Literal(i) -> i, env
| Id(var)-> let globals= env
in
if NameMap.mem var globals then
begin
if ((NameMap.find var globals).vtype="int") then
(NameMap.find var globals).ivalue, env
else
raise (Failure ("this identifier is not of type int"))
end
else raise (Failure ("undeclared identifier " ~ var))

| Arith(el, op, e2) -> let vl1, env = eval_arith env el
in
let v2, env = eval_arith env e2
in

(match op with
Add -> vl + v2
| Sub -> v1 - v2
| Mult-> vl * v2
| Div-> v1/v2), env

in
(* function for evaluating equality test part*)
let rec eval_equality env=function

Eqgtest(ael,ae2)->let vl, env = eval_arith env ael

in
let v2, env = eval_arith env ae2
in
let boolean i = ifi then 1 else 0

in boolean (vl = v2), env

24

in
(*function for executing expressions*)
let rec exec_exp env=function
Assign_i(var,ae)-> let v, globals = eval_arith env ae

in
let irecord ={ vhame= var; vtype="int" ; ivalue=v ; svalue="none"}
in

if N\ameMap.mem var globals then

begin
if (NameMap.find var globals).vtype="int" then
(NameMap.add var irecord globals)
else
raise(Failure("identifier is not of type int"))
end
else raise (Failure ("undeclared identifier" ~ var))

|Assign_s(var, s)->let globals =env

in
let srecord={ vhame= var; vtype="string" ; ivalue=0 ; svalue=s}
in

if NameMap.mem var globals then

begin
if (NameMap.find var globals).vtype="string"then
(NameMap.add var srecord globals)
else
raise(Failure("identifier is not of type string"))
end
else raise (Failure ("undeclared identifier" ~ var))

|Rec(ael,ae2,ae3,ae4)->let vl, env = eval_arith env ael
in
let v2, env
in
let v3, env
in
let v4, env
in
Graphics.draw_rect vl v2 v3 v4;
env

eval_arith env ae2

eval_arith env ae3

eval_arith env ae4

|Elp(ael,ae2,ae3,ae4)->let vl, env = eval_arith env ael
in
let v2, env = eval_arith env ae2
in
let v3, env
in
let v4, env
in
Graphics.draw_ellipse vl v2 v3 v4;
env

eval_arith env ae3

eval_arith env ae4

|Line(ael,ae2,ae3,ae4)->let vl, env = eval_arith env ael
in
let v2, env = eval_arith env ae2
in
25

let v3, env = eval_arith env ae3
in
let v4, env = eval_arith env ae4
in

Graphics.moveto v1 v2;
Graphics.lineto v3 v4;
env

| Txt_s(str,ael,ae2)->let vl, env = eval_arith env ael
in
let v2, env = eval_arith env ae2
in
Graphics.moveto v1 v2;
Graphics.draw_string str;
env

| Txt_id(str,ael,ae2)->let v1, env = eval_arith env ael
in
let v2, env = eval_arith env ae2
in let st=
let globals = env
in
if NameMap.mem str globals then
begin
if (NameMap.find str globals).vtype="string" then
(NameMap.find str globals).svalue
else raise (Failure ("identifier is not a string"))
end
else raise (Failure ("undeclared identifier" »~ str))
in
Graphics.moveto vl v2;
Graphics.draw_string st;
env

in
(*function for executing stmt part*)
let rec exec_stmt env = function
Exp(e)->let env=exec_exp env e
in env
|If(et, slistl, slist2)->let test, env= eval_equality env et
in List.fold_left exec_stmt env (if test !=0 then slistl else slist2)

|Loop(i, slist)-> let rec looping env i=

let j=i-1

in

if j!=0 then
begin
looping (List.fold_left exec_stmt env slist) j
end

else env

in looping env (i+1)

| Call_f(str)->if NameMap.mem str func_map
then let frecord=NameMap.find str func_map
in
List.fold_left exec_stmt env frecord.fbody
else raise (Failure ("undefine function" » str))

26

in
(* body of call *)

List.fold_left exec_stmt globals fun_declist.fbody; (*end of call function*)
in

(* body of run *)

(* Put variables declarations in a symbol table *)
let var_map = List.fold_left (fun vmap id_dec ->NameMap.add id_dec.vname id_dec vmap)

NameMap.empty vars
in

try
call(NameMap.find "Object" func_map) var_map
with Not_found ->
raise (Failure ("did not find the Object section function"))

8.2.5 doodle.ml

let =
let lexbuf = Lexing.from_channel stdin in
let program= Parser.doodle_program Scanner.token lexbuf in Interpret.run program; read_line ();

27

