BOGUS - BOard Game Specification Language

Cary Maister
COMS 4115 - Spring 2009

1 Introduction

Purpose

Bogus is intended as a relatively easy way to specify a board game, to be played interactively by a user
at a computer terminal. Bogus will provide a framework for the programmer to specify a few elements
that are common to many board games along with the rules that define how the gameplay proceeds.

Anatomy of a Bogus program
Any Bogus game will include the following elements:
a board - consisting of a sequence of spaces
a set of players
a deck of cards from which plays draw to move around the board

Each space on the board and card in the deck will be associated with a rule. A rule is a procedure that

has access to the current state of the game and can apply arbitrary logic to manipulate that state. When
a card is drawn, that card's rule is invoked, which may move one or more players around the board, or
modify players' attributes. When a player is moved to a space on the board, the space's rule is invoked.

A Bogus program is a single text file that initializes the board, the players and the deck, possibly using
inputs from the players, then invokes a game engine which sequentially gives each player a turn
drawing from the deck and using the rules to move the players around the board until the game
terminates.

Flexibility

The primary goal of Bogus is to provide a simple language that can be used to specify a wide variety of
games with different board layouts and different principles of how players move through the game and
how the game ends. A basic example is a game where players draw cards from a deck, and each card
tells the player to advance a certain number of spaces, and the first player to reach the final space wins.
More complicated rules could be introduced to provide a game like snakes and ladders where players
may jump around the board in a non-linear fashion, or a game like Sorry where players can land on
each other's piece to force them back to the beginning of the game.

With some creative interpretation of the "board" metaphor, one could create a Bogus choose your own
adventure story, where each space on the board represents a place in the story, and the player inputs
their choices and move to different events and there may be more than one winning outcome. For truly
enterprising, stay-in-your parents' basement eating cheetos types, there is the possibility of a Bogus text
based role playing game, where players move around the game board collecting objects, battling
dragons, trying to build experience and so forth.

The primary goal of Bogus is a to allow a straightforward translation from an actual board game to a
Bogus program. Just like a real board game, a Bogus program defines the group of players, the game
board , the dice, and an optional deck of cards. Then each game play rule is translated into a bogus rule
and each space on the board has an associated rule to specify what happens when a player lands on that
space.

2 Bogus Tutorial
A Bogus program consists of three sections:
1. Define structure of your Players, Spaces and Cards
2. Global declarations
3. Game rules
Some language basics are:
* Comments begin with a semi colon and extend to the end of the line
* expression syntax is very similar to C or Java

* Variables aren't explicitly defined - a variable is automatically declared the first time it is
assigned to. The variable's type is determined at that first assignment and cannot be changed.

* There are two special rules: start_game, which is called one before the game begins, and
start_turn, which is called once at the beginning of every turn

2.1 Defining Types

Player has current(string), colour(string);
Space has next(string);
Card has vall(int);

Once these types have been specified, the rules can acccess value of these types using statements such
as:

Players.("Trillian"); # creates a new player named Trillian
Players.("Trillian").current = "start"; # Sets value of current for player Trillian

Space("start")._rule = "start_rule";

2.2 Defining globals
my_globl ="2"; # creates a new global variable with an int value

my_globstr = "Krikkit" # new global variable with a string value

2.3 Defining rules

rule start_game

{
print "Enter number of players: ";
n = to_int(read); # reads a number from stdin, converts to an interactions
i=0;

while(i <n)

{
print "Input name for player + to_string(i) + ": ";
name = read;
Players.(name);
i=i+1;
}
}
rule start_turn
{

i =roll(6) + roll(6); # Roll two dice to determine how many spaces to move
cur = _player.current;
while(i > 0)
{
cur = Spaces.(cur).next

}

_player.current = cur;

3 Bogus Language Reference Manual

3.1 Introduction

Bogus (BOard Game Specification) is a specialized language for defining "board games" that can be
played by one or more users at a terminal. The language includes constructs that are particularly suited
to the implementation of a board game, as well as control flow, input/output, comparison and other
operations common to most high-level languages. The overall goal of Bogus is to create a language that
makes it straightforward to implement the basic components of many type of board games, while also
allowing the programmer to include more complex game rules and interactions between players.

3.2 Lexical Conventions

A Bogus program consists of a single text file containing characters in the ASCII character set. This
file is compiled into an intermediate format which is then excuted by the Bogus interpreter to actually
play the game. This section describes the various token types that make up a bogus program.

3.2.1 Conventions

All ASCII values in this manual are given in decimal.

The terms "letter" and "digit" in this manual follow the common meaning of the terms in most common
programming languages that use ASCII:

A letter is an uppercase or lower case character between A and Z (ASCII values 65 - 122)

A digit is a character between '0' and '9' (ASCII values 48 - 57)
All keywords in this manual are printed in £ixed-width type.

Bogus is case-sensitive, so for example:
if is a keyword, but If is an identifier (though one that should probably be avoided).
thing1, Thingl and THING]1 are three separate identifiers.

3.2.2 Whitespace

The following ASCII characters are all considered whitespace. Since Bogus is a freeform language,
whitespace (outside of string literals) is generally ignored. The exception is identifier separation: a
sequence of one or more whitespace characters serve to separate adjacent tokens.

Whitespace characters:

Character ASCII Value (decimal)

Horizontal tab 9
Newline/line feed 10

Carriage return 13

Space 32

3.2.3 Comments

A comment begins with a hash - '#' - character, and extends until a newline (ASCII 10) character. All
contents of a comment are ignored by the compiler, and the comment is semantically equivalent to a
whitespace.

3.2.4 Identifiers

An identifier is a sequence of one or more letters and digits and underscores (ASCII 95), where the first
character is a letter. There is no predefined limit on identifier length, though the programmer is
reminded that he is the one who has to decipher short, cryptic identifiers and retype long, verbose ones.

3.2.5 Keywords
All words listed below are reserved and may not be used as identifiers:
bool

draw

else

end

exit

false

float

has

if

int

local

print

read

roll

string

true

while

Card
Cards
NoCard
NoPlayer
NoRule
Player
Players
rule
Space

Spaces

3.2.6 Constants

There are four types of constants in Bogus: integer, floating point and string.

3.2.6.1 Integer Constant

An integer constant is a sequence of 1 or more digits, which is taken to be a decimal value. The
sequence may be preceded by a minus sign ('-', ASCII 45) to indicate that the integer is negative.

3.2.6.2 Floating Point Constant

A floating point constant consists of a sequence of 1 or more digits, followed by a decimal point ("',
ASCII 46) follow by a sequence of 1 or more digits. The decimal point is required, and one may omit
the sequence of digits before or after the point, but not both. The floating point may be preceded by a
minus sign ('-') to indicate that the value is negative

Some examples of valid floating point constants are:
1.0, .1, -2.99999, -.4

3.2.6.3 Boolean Constant

As you might expect, there are two boolean constants - true and false - which correspond to the
boolean values you would expect.

3.2.6.4 String constant

A string constant is enclosed by double quotes (", ASCII 34) and consists of characters and valid
escape sequences. Valid characters are ASCII 32 through 254, excluding the double-quote character
(ASCII 34), the backslash (ASCII 92) and the DEL character (ASCII 127).

Escape sequences are two character combinations that can be used to represent some special characters,
as defined below:

Escape sequence Represents

\\ \ (backslash)

\" " (double quote)
\n (line feed)

\r (carriage return)
\t (horizontal tab)

Any two character sequence begining with backslash and not listed in the table above is invalid in a
string constant.

3.3 Types

3.3.1 Primitives

Bogus contains four primitive types: integers, floating point numbers (precision TBD), booleans and
character strings.

Variables containing primitive types are not explicitly declared. Instead, the variable springs into
existance when it is first assigned to, and its type is inferred from the assignment value. As long as a
variable is in scope, it will always have the same type as when it was first created (see the scoping rules
for more detail).

3.3.1.1 Integers
Integers are integral values in the range -TBD to TBD

3.3.1.2 Floating point values

Floating point values can be positive or negative and have precision TBD.

3.3.2 Booleans

Booleans can store only the Boolean values true or false.

3.3.3 Character strings

Character strings have a size limited only by memory constraints on the system where the compiler and
interpreter are running. They may contain all ASCII characters from 32 through 254 (excluding ASCII
127, the DEL character) as well as the following white space characters:

Character ASCII Value
Horizontal tab 9

Newline/line feed 10

Carriage return 13

3.3.4 Composite Types

3.3.4.1 Defining

Three elements of a board game are represented as composite types:

1. Player
2. Space
3. Card

The structure of each type is declared at the beginning of the program (see "Program Structure" section
below). Each composite type can contain any number of variables, each of which must be of a
primitive type. The names and types of the member variables are declared at the beginning of the
program.

A composite type declaration takes the form:
<composite-decl> -> <type> has <member-list> ; | <type> has nothing;
<member-list> -> <member> | <member> , <member-list>
<member> -> <member-id> (<member-type>)
<member-type> -> int | float | bool | string | Player | Space | Card

<member-id> -> any valid identifier

Each composite type also has a special member value, as described below:

Composite type |Member |Type Description

Player _name string | Player's name.

Player _space Space |Player's current space.

Space _rule Rule Rule that is invoked when player lands on the space
Space _name string | Space's name.

Card _rule Rule Rule that is invoked when player draws the card
Card _name string Card's name.

Note the that _rule members are an exception (to the rule): their type is Rule which is not a primitive
data type. Conceptually, they store a reference to a Rule that will be invoked by the game interpreter at
the appropriate time in game play.

Note also that unlike user-defined members, the _rule and _name members are set once when each
Player, Space or Card is created, and can never be changed.

Each composite object has a _name, which must be unique among all objects of that type; that is, no
two Player objects can have the same _name, but there can be a Player and a Card that each have the
same _name.

3.3.4.2 Accessing Members Directly
Elements

All user-defined members can be read and written just like regular variables. Members can be accessed
using the dot (".") operator.

Example (the syntax used to retrieve a player from the list of players is discussed in the next section).

Player has colour(string);

rule some_rule
{
Players("Cary").colour = "red";

print Players("Cary").colour;

This code snippet will set the colour member to "red" for the Player named Cary, then print Red

Note that the _name special variables are set once for each Player or Space added to the game and then
remain read-only.

3.3.5 Magic Globals

There are certain magic globals that are available in any Rule within the program. They are initialized
right before the start_game Rule is executed (see "Structure Of A Bogus Program" below).

3.3.5.1 _player

As mentioned above, the Players array contains all Players in the game, in the order in which there
were added. The _player global is initialized to be NoPlayer, and can be manually changed by any Rule
at any time. Any Player (except the NoPlayer) can be assigned to the _player global.

Changing the current player triggers the end of a turn -- see "Gameplay" section for more details on
how the game progresses.

3.3.5.2 _next
The _next variable always contains the value of the Player in the Players array.

In other words, if num_players is the number of players in the array, and i is the index of the current
player, the following is always true:

_next == Players.((i+1) % num_players)

3.3.5.3 _space

The _space variable always contains the Space occupied by _player. Any rule can assign any Space
(except the NoSpace) to _space.

Changing the current space for _player triggers the execution of that space's Rule -- see "Gameplay"
section for more details on how the game progresses.

3.3.5.4 "Null" Values

Each composite type has a corresponding "null" value, which has the same type as the composite, but
which is not equal to any object other than itself. The name of the special null value is the type name
preceded by "No": NoCard, NoSpace, or NoPlayer. It is equivalent to an object whose _name value is
guaranteed to be different from any other object.

For example, this statement will always be false:
Player.("Slarti") == NoPlayer;

Another example:
pl = NoPlayer;
pl == NoPlayer; # evalutes to true
pl == Player.("Zaphod")
pl == NoPlayer # evaluates to false

3.3.6 Arrays

Arrays are only available the three special composite types. For each of these types, there is a
corresponding global array, identified by the type name followed by the letter s.

The arrays can be accessed in two ways:

* indexed - array elements are numbered starting at 0. Array elements are numbered in the
order in which they were added to the array

* associative array - elements are accessed by the _name string specified when the element
was first added to the array.

Array elements can be accessed using a subscript enclosed in parentheses. The subscript can be one of
two types:

¢ int - the index of the desired element

* string - the _name of the desired element

Note that the order of the array elements cannot change once the game has been initialized. Similarly,
_name values cannot be changed after the Player or Space is added to the array.

3.3.7 Dice

The Die type represents a fair die with an arbitrary number of sides n, numbered 1 through n. A Die is
rolled simply by writing:

roll(expr)

Where expr is any expression with an integer value.
print to_string(die(10)); # Will print an integer between 1 and 10
print to_string(die(6) + 2); # Will print an integer between 3 and 8

3.4 Expressions

All Bogus expressions are terminated with a semicolon, and each expression has a value in one of the
primitive types. Expressions can serve as a operands for one of the operators listed below, and an
operator may return a value different from the types of its operands.

Note that all expressions have a type, and no coersion or automatic type conversions are performed.
Types can be explicitly converted using the conversion operators listed later in this section.

3.4.1 Assignment Operator
Assignments are performed using equals sign.
An assignment takes the form:
<assignment> -> <lvalue> = <expr>
Where <lvalue> is either:
a. the name of an existing variable
b. the name of the member of a composite type

c. the name of a new variable

If the lvalue is a. or b., then its type must match the type of the expression value on the right of the
equals sign.

If the lvalue is c., then the assignment also serves as the declaration of the variable within the current
scope (see scoping rules for more details). The type of the new variable is determined by the type of the
expression on the left side.

3.4.2 Concatenation Operator
The concatenation operator is a binary operator taking two string expressions as operands.
<strl> + <str2>

The value of a concatenation expression is a string containing all of <str1> followed immediately by
all of <str2>.

Since the concatentation operator takes only string as arguments, to concatenate any other types
together (e.g. string and int), you must convert the non-string operand expression to a string using the
appropriate conversion operator.

3.4.3 Arithmetic Operators
The binary arithmetic operators +, -, *, and / are used in their standard arithmetic sense.

The first four operators may be applied either to two integers or two floats. To operate on two operands
of different types, one will have to be explictly converted to match the other.

3.4.4 Comparison Operators
<’ >’ <:’ :>, ==, =
== and != can also do string comparison (are strings' contents identical).

The comparison operators test some relation between the two operands and their value is a bool
reflecting the outcome of the test.

All the comparison operators can be used on two numbers of the same type: either two integers or two
floating point values.

The == and != operators can also be used to compare two bool values or two string values.

For two bools, == is true if and only if both operands have the same truth value. != is true if and only if
both operands have different truth values.

For two strings, == is true if and only if the operands are identical; specifically, if both operands have
the same length and the same character at very position. != is true if and only if the operands are not
identical.

3.4.5 Logical Operators
&&, ||, unary !

Logical operators can take only bool values as arguments. The && operator has a true value if and only
if both operands are true. The || operator has a true value if and only if at least one operand is true.

Both binary logical operators use lazy evaluation:
» if the expression on the left of && is false, the expression on the right will not be evaluated

» if the expression on the left of || is true, the expression on the right will not be evaluated

3.4.6 1/0 operators

The read keyword takes no operands and reads input from standard input, up to the first newline
character. Its expression value is the string that was read, except for the terminating newline.

The print operator prints its operand to standard output and returns the operand. The operand must be a
string, any other types must be converted. Note that the print operator has lower precedence than most
other operators, so an expression such as

print "You have $" + float_to_string _player.money + " remaining"

will print exactly what you would expect.

3.4.7 Member Access Operator
The dot (".") operator is a special operator, in that it doesn't take two operands of matching types.

Generally, the dot is used to access a specific member of a larger object. It is used in two different
ways:

To access the member of an array:

Players.(1), accesses the player at element

3.4.8 Type Conversions

The following operators return the value of their operand, but with a different type.
to_string - converts integer or float to a string

to_int - converts string or float to a string. The float has its decimal component truncated.

to_float - converts an int or string to a float
3.5 Statements

3.5.1 Conditional Statements
The if/else statement is used to conditionally execute a block of code.
The structure of an if/else statement is:
<if-stmt> -> if (<conditional>) { <stmt-list> } <else-stmt>
<else-stmt> -> <nothing> | else { <stmt-list> } | else <if-stmt>
<conditional> -> <boolean-expr>
So the following are valid if statements or if/else compound statements:
if (happy)
{
print "not happy";

if(poet == "Vogon")
{

print "plug your ears"

}
else if (poet == "Grunthos The Flatulent™)

{

print "head for a different planet”

}
else
{
print "Poem is safe"
}
3.5.1.1 Loops

The only loop in Bogus is the while loop.
The structure of a while loop is:
<while-loop> -> while (<conditional>) { <stmt-list> }

When the while loop is reached, the conditional is evaluated. If the value is true, the statements in
<stmt-list> are evaluated. After the last statement, the conditional is evaluated again, and so on.

Example:
while(val <6 *9)
{
print "not there yet"
val =val + 1;
}

3.5.2 draw keyword
The draw keyword draws the next card from the deck, and executes the Rule associated with that card.

Conceptually, the deck is an array of Cards, and the game engine remembers the index of the last card
"drawn". Each time draw is called, the following occurs:

If index is equal to last element in array
Shuffle deck
set index equal to -1

Increment index

Execute rule at the card pointed to by index.

A draw statement can occur inside any rule. When it occurs, the next card is drawn, its rule is executed,
and then execution resumes with the statement following the draw.

3.5.3 exit keyword

The exit keyword immediately terminates the program and causes the interpreter to exit.

3.6 Scoping rules

All variables in Bogus are lexically scoped. Each variables is visible from the point when then they are
first declared. Variables remain visible until the end of the block in which they were declared. The
outermost scope, which is outside of any braces, is referred to here as "global scope".

The body of a Rule is also treated as a regular block. Any variables that have been declared in global
scope prior to the Rule definition are visible within that rule.

3.6.1 Masking prior declarations

An inner scope may declare a variable with the same name as as variable that already exists in an
enclosing scope. When this occurs, the variable in the inner scope masks the variable in the outer scope
until the end of the innermost enclosing block.

Note that the inner variable declaration must be preceded by the "local" keyword; otherwise, the parser
has no way to know that you're attempting to declare a local variable, not just assign a new value to the
variable in the outer scope.

This is best clarified by an example:

my_var =6
if(true)
{
print my_var; # prints 6
my_var = my_var * 9; # change value of outer my_var to 54
print my_var; # prints 54
local my_var = 32; # masks outer my_var, sets local copy of my_var to 32
print my_var; # prints 32
}
print my_var; # prints 54

Notes on usage of the "local" keyword:

1. Placing the local keyword before a variable declaration in global scope is valid syntax, but the
local keyword is ignored.

2. Placing the local keyword before an assignment statement that is not a variable declaration --
that is, when assigning to a variable that has already been declared in the innermost enclosing
scope -- is a syntax error.

3.7 Rules

A Rule is a procedure that can be associated with a Space or a Card. Each rule is assigned to one or
more spaces or cards. Rules are automatically invoked by the game engine as described in the
"Gameplayer" section below.

The structure of a Rule is:
<rule-def> -> Rule <rule-name> { <stmt-list> }

The statements in the Rule's body are evaluated in order until the last statement is complete ("falling off
the end") or until the "end" statement is encountered.

Valid <rule-name>s are any valid identifier. Note that there are two special Rule names:
* start_game - which is executed once at the beinning of the game before any other rules

* start_turn - which is evaluated at the beginning of each turn (see "Gameplay" section)

3.8 Structure Of A Bogus Program
A Bogus program contains the following elements in order:

1. Definitions of composite types:

1. Player
2. Space
3. Card

Global variable declarations
Definition of start_game rule

Definition of start_turn rule

ok N

Definitions of all other rules

3.8.1 Composite Type Definitions

All composite types must be defined, in order, at the beginning of the program. If desired, a composite
type maybe defined to have no members (other than the built-in members). The types must be defined
in this order:

Player has colour(string), money (float);
Space has price(float), rent(float);
Card has nothing; # Empty definition

3.8.2 Global variables

All global variables must be declared and initialized by an assignment expression.

3.8.3 Rules

Rules may be declared in any order, except for start_game and start_turn must be the first two, and
must appear in that order.

3.9 Gameplay

When the program executes, the following algorithm will be executed by the interpreter:

3.9.1 Initialization
All arrays will be initialized as empty.
All global variables will be created and initialized.
Magic variables will be initialized as follows:
_player = NoPlayer
_next = NoPlayer
_space = NoSpace

The start_game Rule will be executed. When the start_game rule is complete, _player must not be
equal to NoPlayer, or the game will exit with an error.

3.9.2 Taking turns
The following loop will repeat until an error occurs or until an exit statement is executed:
1. Execute start_turn rule

2. If _space has been assigned to since start_turn was called, execute Rule _space._rule

Note that the game engine never automatically changes _player (current player); this must be done
explicitly by a Rule.

4 Project Plan

The project started with the initial idea, and was moved forward by sketching out implementations of
the board games Candyland and Trivial Pursuit. Completing those sketches led to all the details of the
language as listed in the reference manual. The next step was to write a scanner that could handle the
basic skeleton of a program -- the composite type declartions, global declarations and rules. Next came
implementing the call to the start_name rule, which meant that basic Bogus program could now run.

Once basic Bogus programs could run, I wrote the very simple test suite and some tests of basic
expressions and control flow statements. The test suite was particularly helpful when writing the code
to handle the local and global symbol tables -- first I wrote the tests, then continued to tweak the code
until all variables were resolved as expected, resulting in the expect output.

The remaining step would have been to implement the actual game play engine the moves the game
along and invokes rules as needed, as well as the code to provide the values of the "magic" globals as
game play advances.

5 Architecture
The entire program is just a few components:
1. scanner.mll - scans and tokenizes the input programmer
2. parser.mly - reads tokens from scanner and builds abstract syntax tree

3. interpret.ml - traverses syntax tree, does all type checking, and builds symbol tables of variables
and rules. Then it begins the game engine, which successively invokes the rules as necessary
until the game ends.

6 Testing
The testing suite was very simple:

The script run-tests.sh reads all .bog files in the test/ subdirectory, runs them using the Bogus
interpreter, and compares the output to a manually-verified output file. Each output file has the same
name as the test program it is for, but with the ,out extension.

Here's the output of a run of run-tests.sh:

[cary@epistrophy bogus]$./run-tests.sh

bin-and PASSED
bin-not PASSED
bin-or PASSED
compare PASSED
convert PASSED

dup-rules PASSED

empty PASSED
end PASSED
ifl PASSED

nested-if PASSED
start PASSED
unary-neg PASSED

All tests SUCCEED

Here are some example tests:

bin-not.bog:
Player has none;
Space has none;

Card has none;

rule start game

{
a=1;
Tests ! operator, should print FALSE
print "Testing not test: ";

if(!true)

{

print "TRUE\n";
}
else
{

print "FALSE\n";
}

Tests ! operator, and order of operations. should print TRUE
Expression is equivalent to (! (3 == 2))
print "Testing not test: ";

if(! 3 == 2)

{

print "TRUE\n";
}
else
{

print "FALSE\n";
}

Tests ! operator, and order of operations. should print TRUE
Expression is equivalent to ((! (3 == 2)) || true)

print "Testing not test: ";

w
Il
Il

2 || true)

print "TRUE\n";

print "FALSE\n";

convert.bog :
Player has none;
Space has none;

Card has none;

rule start game

{

String conversions
intl = 42;

floatl = 6.9;

booll = false;

strl = "Don't Panic";

Test int
print to_string(intl) + "\n";

print to string(42) + "\n";

Test float
print to string(floatl) + "\n";
print to string(6.9) + "\n";

Test bool
print to string(booll) + "\n";
print to_string(false) + "\n";

print to_string(true) + "\n";

Int conversions
string -> int
if(intl == to_int("42")) # Should be equal
{
print "intl == to _int(\"42\")\n";

else

{

print "intl != to _int(\"42\")\n";
}
if(intl == to_int("43")) # Shouldn't be
{

print "intl == to_int(\"42\")\n";
}
else
{

print "intl != to _int(\"42\")\n";
}

float -> int

equal

if(intl == to_int(42.9)) # Should be equal

{

print "intl == to_int(42.9)\n";
}
else
{

print "intl != to int(42.9)\n";
}

if(-17 == to_int(-17.1)) # Shouldn't be equal

{

print "-17 == to_int(-17.1)\n";
}
else
{

print "-17 == to_int(-17.1)\n";
}

This should fail with exception

print to_int("7a");

7 Lessons Learned

Despite my best efforts to keep the language small, it seemed to keep growing as I tried to give it
enough features to actually make it work. By the time it was done, I didn't have enough time to
complete the implementation. In retrospect, especially given the limited time I had available, I would
have chosen a simpler idea for the language. Even a simple board game language needed a lot of
features to make it practical to write an actually interesting game.

8 Appendix - Code Listing

ast.mli:

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |
Greater | Geq

type lazyop = And | Or

type expr =
IntLit of int
BoolLit of bool
StringLit of string
FloatLit of float
Id of string
Binop of expr * op * expr
LazyBinop of expr * lazyop * expr
Assign of string * expr * bool

Call of string * expr list

Read

Noexpr

Negate of expr
ToString of expr
ToInt of expr
ToFloat of expr

|
|
|
|
|
|
|
|
| Draw
|
|
|
|
|
|
|

Not of expr

type stmt =
Block of stmt list
Expr of expr

If of expr * stmt * stmt

Print of expr

|
|
| While of expr * stmt
|
| End

| Exit

type t =
Bool
| Int
| Float
| String

type rule _decl = {
rname : string;
(* locals : string list; ¥*)

body : stmt list

type comp decl member = {
mname : string ;

mtype : t

type comp decl = {
cname : string ;

cmembers : comp decl member list

type program = comp decl list * stmt list

* rule decl list

scanner.mll:

{ open Parser }

rule token = parse
[" " "\t' '\n'] { token lexbuf }
"4 { comment lexbuf }

LPAREN }

RPAREN }

LBRACE }

RBRACE }

SEMI }

COMMA }

PLUS }

MINUS }

TIMES }

'/ DIVIDE }

string lit "" lexbuf }

{

{

{

{

{

{

{

{

{

{

{

{ ASSIGN }

{ EQ }

{ NEQ }
<! { LT }

{

{

{

{

{

{

{

{

{

{

{

{

{

"<=II LEQ }

n > n GT }

n >= n GEQ }

" & AND }

OR }
NOT }
"bool" BOOL }
"draw" DRAW }
"else" ELSE }
"end" END }
"exit" EXIT }
FALSE }

FLOAT }

"false"

"float"

"has" { HAS }

nifn { IF }

"int" { INT }

"local" { LOCAL }

"none" { NONE }

"print" { PRINT }

"read" { READ }

"rule" { RULE }
"string" { STRING }
"true" { TRUE }

"while" { WHILE }

"to string" { TO_STRING }
"to_int" { TO_INT }
"to_float" { TO FLOAT }

['0'-'9']+ as value { INTLIT(int of string(value)) }

FLOATLIT(float of string(value)) }

['0'='9" 1*'.'['0'='9"']+ as value
FLOATLIT(float of string(value)) }

[lal_lzl IAI_IZI][lal_lzl |A|_|Z| 1 ' IOI_'9|]* as Value

ID(value) }
eof { EOF }

A

__as char { raise (Failure("illegal character "
har)) }

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ['0'='9" J+'.'['0'="'9"']* as value
{
|
{
|
{
|
| Char.escaped
c

and string lit str = parse

AN\ { escaped char str lexbuf }
AN { STRINGLIT(str) }
| "\n" {raise (Failure("multi-line string

literals not

A

allowed, input character #"
lexbuf)))) }

(string of int (Lexing.lexeme start

| [~ '\\'" '\n' '"']+ as part { string lit (str " part) lexbuf }

and escaped char str = parse

L' { string_lit (str * "\"") lexbuf }

eof

|
|
|
|
| as char
Cc

] { string 1lit (str "~ "\n") lexbuf }
1 { string 1lit (str "~ "\r") lexbuf }
1 { string 1lit (str "~ "\t") lexbuf }

har.escaped char)) }

and comment = parse

l\nl

{ token lexbuf }

{ comment lexbuf }

{ raise (Failure("Invalid escape character \"\\"

{ raise (Failure("Unterminated string literal")) }

A

parser

%{ ope

%token
%token
%token
%token
%token
%token

$token
NONE

$token
%token
%token
%token
%token

$token

gnonas

gnonas

gleft
gleft
gleft
gleft
gleft
gleft
sleft
3left

$start

3type

oo
oo

.mly:

n Ast %}

SEMI LPAREN RPAREN LBRACE RBRACE COMMA
PLUS MINUS TIMES DIVIDE ASSIGN

AND OR NOT

EQ NEQ LT LEQ GT GEQ

PRINT READ

TO_STRING TO_INT TO_FLOAT

IF ELSE FOR WHILE INT DRAW END EXIT FALSE HAS LOCAL TRUE RULE

BOOL INT FLOAT STRING
<int> INTLIT

<string> STRINGLIT
<float> FLOATLIT
<string> ID

EOF

soc NOELSE
soc ELSE

ASSIGN

AND OR

NOT

EQ NEQ

LT GT LEQ GEQ
PLUS MINUS
TIMES DIVIDE
NEG

program

<Ast.program> program

program:
all comp decls global decls rule decls { $1, $2, $3 }

all comp decls:

comp decll comp decll comp decll { [$1 ; $2 ; $3] }

comp decll:
ID HAS comp member list opt SEMI
{ { cname = $1;

cmembers = $3 } }

comp member list opt:
NONE { [] }

| comp member list { List.rev $1 }

comp member list:
comp member { [$1] }

| comp member list COMMA comp member { $3 :: $1 }

comp_member:

ID LPAREN prim type RPAREN { { mname = $1; mtype = $3 } }

prim type:
BOOL { Bool }
| INT { Int }
| FLOAT { Float }
| STRING { String }
global decls:
{101}
| assign list { List.rev $1 }

assign list:

assignment { [$1] }

| assign list assignment { $2 :: $1 }

assignment:

ID ASSIGN expr SEMI { Expr(Assign ($1, $3, false)) }

rule_decls:

{[]}
| rule decls rule decl { $2 :: $1 }

rule decl:
RULE ID LBRACE stmt_list RBRACE
{ { rname = $2;

body = List.rev $4 }}

stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: $1 }
stmt:

expr SEMI { Expr(s$l) }

LBRACE stmt list RBRACE { Block(List.rev $2) }

IF LPAREN expr RPAREN stmt %$prec NOELSE { If($3, $5, Block([])) }
IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

PRINT expr SEMI { Print($2) }

|
|
|
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
|
| END SEMI { End }

|

EXIT SEMI { Exit }

expr:
INTLIT { IntLit($1) }

| TRUE { BoolLit(true) }

| FALSE { BoolLit(false) }

| STRINGLIT { StringLit($1) }

FLOATLIT
ID
READ

TO_STRING LPAREN

TO_INT LPAREN

TO_FLOAT LPAREN

expr PLUS
expr MINUS
expr TIMES
expr DIVIDE
expr EOQ
expr NEOQ
expr LT
expr LEQ
expr GT
expr GEQ
expr AND
expr OR
NOT expr

expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr

expr

MINUS expr S3prec

ID ASSIGN expr

{ FloatLit ($1) }

{ Id(S1) }
{ Read }
expr RPAREN
expr RPAREN
expr RPAREN

{ ToString($3)

{ ToInt($3) }

{ ToFloat($3) }

{ Binop($1l, Add, $3) 1}

{ Binop($1l, Sub, $3)

{ Binop($1l, Mult, $3) }

{ Binop($1l, Div, $3) }

{ Binop($1l, Equal, $3) }

{ Binop($1l, Neq, $3) 1}

{ Binop($1l, Less, $3) }

{ Binop($1l, Leq, $3) }

{ Binop($1l, Greater, $3) }
{ Binop($1l, Geq, $3) 1}

{ LazyBinop($1l, And, $3) 1}
{ LazyBinop($1l, Or, $3) }
{ Not ($2) }

NEG { Negate ($2) }

{ Assign($1l, $3, false) }

LOCAL ID ASSIGN expr { Assign($2,

LPAREN expr RPAREN { $2 }

$4, true) }

}

interpret.ml:

open Ast
type exvals = (* expression value *)
VInt of int

VFloat of float

|
| VString of string
| VBool of bool

|

VNothing
let exval to string ex = match (ex) with
VInt ex -> string of int ex

VFloat ex -> string of float ex

| VString ex -> ex
| VBool ex -> if ex = true then "true" else "false"

VNothing -> "nothing";;
module NameMap = Map.Make(struct
type t = string

let compare x y = Pervasives.compare X y

end)

type exval = { v: exvals ; t : t }

(* exception ReturnException of int * int NameMap.t *)
exception ReturnException of exvals * exvals NameMap.t
(* Main entry point: run a program *)

let run (program) =

let (comps,globals,rules) = program

in

(* Put rule declarations in a symbol table *)
let rule decls = List.fold left
(fun rules rdecl ->
if NameMap.mem rdecl.rname rules then

raise(Failure("Error: multiple declarations for rule "

rdecl.rname))
else
NameMap.add rdecl.rname rdecl rules

) NameMap.empty rules
in

(* Invoke a function and return an updated global symbol table *)

let rec call rdecl globals =

(* Evaluate an expression and return (value, updated environment)
*)
let rec eval env = function
IntLit(l) -> VInt 1 , env
| BoolLit(l) -> VBool 1, env
| StringLit(l) -> VString 1, env
| FloatLit(l) -> VFloat 1, env

| Noexpr -> VNothing, env (* must be non-zero for the for loop
predicate *)

| Id(var) ->

let locals, globals = env in

if NameMap.mem var locals then
(NameMap.find var locals), env

else if NameMap.mem var globals then
(NameMap.find var globals), env

A

else raise (Failure ("undeclared identifier " var))

| LazyBinop(el, op, e2) ->

let vl, env = eval env el in
(match op with
And -> (match vl with
VBool(true) ->

let v2, env = eval env e2 in

(match v2 with
VBool(true) -> VBool(true), env
| VBool(false) -> VBool(false), env

| _ —> raise (Failure("Only bool expressions
can be used with &&

operator")))
| VBool(false) -> VBool(false), env

| _ => raise (Failure("Only bool expressions can be
used with &&

operator")))

| Or -> (match vl with
VBool (false) ->
let v2, env = eval env e2 in
(match v2 with
VBool(true) -> VBool(true), env
| VBool(false) -> VBool(false), env

| _ =-> raise (Failure("Only bool expressions can
be used with &&

operator")))
| VBool(true) -> VBool(true), env

| _ => raise (Failure("Only bool expressions can be
used with &&

operator")))
)
| Binop(el, op, e2) ->
let vl, env = eval env el in
let v2, env = eval env e2 in
(match op with
Add -> (match (v1,v2) with

(VInt v1, VInt v2) -> VInt (vl + v2)
| (VFloat v1, VFloat v2) -> VFloat (vl +. v2)
| (VString v1, VString v2) -> VString (vl "~ v2)

| (VBool _,) -> raise (Failure ("Invalid argument to
+ operator"))

| (_,_) —-> raise (Failure("Operands to + operator don't
have matching

types")))

| Sub -> (match (vl1,v2) with
(VInt v1, VInt v2) -> VInt (vl - v2)

| (VFloat v1, VFloat v2) -> VFloat (vl -. v2)
| ((VInt _ | VFloat),) -> raise (Failure("Operands
to - operator don't have matching
types"))
| (_,) —-> raise (Failure ("Invalid argument to -
operator")))

| Mult -> (match (v1,v2) with
(VInt v1, VInt v2) -> VInt (vl * v2)
| (VFloat vl1, VFloat v2) -> VFloat (vl *. v2)

| ((VInt _ | VFloat),) -> raise (Failure("Operands
to * operator don't have matching
types"))
| (_,) -> raise (Failure ("Invalid argument to *
operator")))

| Div -> (match (vl1l,v2) with
(VInt v1, VInt v2) -> VInt (vl / v2)
| (VFloat v1, VFloat v2) -> VFloat (vl /. v2)

| ((vInt _ | VFloat),) -> raise (Failure("Operands
to * operator don't have matching

types"))

| (_,) -> raise (Failure ("Invalid argument to *

operator")))

| Equal -> (match(vl,v2) with
(VInt v1, VInt v2) -> VBool (vl = v2)
(VFloat vl1, VFloat v2) -> VBool (vl = v2)

|
| (VBool v1, VBool v2) -> VBool (vl = v2)
| (VString v1, VString v2) -> VBool (vl = v2)

(_,_) —-> raise (Failure ("Trying to compare values of
different

| Neq -> (match (vl1,v2) with

(VInt v1, VInt v2) -> VBool (vl <> v2)
(VFloat vl1, VFloat v2) -> VBool (vl <> v2)
(VBool v1, VBool v2) -> VBool (vl <> v2)
(VString v1, VString v2) -> VBool (vl <> v2)

(,) -> raise (Failure ("Trying to compare values of

different
types")))

Less -> (match (vl,v2) with
(VInt v1, VInt v2) -> VBool (vl < v2)
| (VFloat vl1, VFloat v2) -> VBool (vl < v2)

| ((VString _ | VBool),) -> raise
(Failure("Invalid type for

comparison"))

| (_,_) -> raise (Failure ("Trying to compare values of
different

types")))

| Leq -> (match (v1,v2) with
(VInt v1, VInt v2) -> VBool (vl <= v2)
| (VFloat vl1, VFloat v2) -> VBool (vl <= v2)

| ((vString _ | VBool),) -> raise
(Failure("Invalid type for

comparison"))

| (,_) —-> raise (Failure ("Trying to compare values of

different

types")))

| Greater -> (match (v1,v2) with
(VInt v1, VInt v2) -> VBool (vl > v2)
| (VFloat vl1, VFloat v2) -> VBool (vl > v2)

| ((vString _ | VBool),) -> raise
(Failure("Invalid type for

comparison"))

| (_,) -> raise (Failure ("Trying to compare values of

different

types")))

| Geq -> (match (vl1,v2) with
(VInt v1, VInt v2) -> VBool (vl >= v2)
| (VFloat vl1, VFloat v2) -> VBool (vl >= v2)

| ((vString _ | VBool),) -> raise
(Failure("Invalid type for
comparison"))
| (_s_) —> raise (Failure ("Trying to compare values of
different
types")))
), env

| Negate(e) ->
let v, (locals, globals) = eval env e in
(match v with
(VInt v1) => VInt(- vl)
| (VFloat vl1) -> VFloat(-. vl)

| -> raise(Failure("Attempting to negate non-
numeric

value"))
), env
| Not(e) ->
let v, (locals, globals) = eval env e in
(match v with

(VBool v1) -> VBool(not v1l)

| -> raise(Failure("Trying to apply boolean !
to

non-boolean value"))
), env
| Assign(var, e, local) ->
let do_assign (vname, exp, map) = (

if (not (NameMap.mem vname map)) then (* New
declaration *)

NameMap.add var exp map
else

(match (NameMap.find vname map, exp) with

(VInt v1, VInt v2) -> NameMap.add var exp map
| (VFloat vl1, VFloat v2) -> NameMap.add var exp map
| (VString v1, VString v2) -> NameMap.add var exp map
| (VBool v1, VBool v2) -> NameMap.add var exp map
| (vNothing,) -> NameMap.add var exp map
| (_,_) -> raise (Failure ("Type error: attempting to

assign

incompatible types"))) (* end match *)

) (* end do_assign ¥*)
in
let v, (locals, globals) = eval env e in
if local then
if NameMap.mem var locals then
raise (Failure ("Tried to redeclare local
variable"))

else (* need to check type before assigning *)
(* v, (NameMap.add var v locals, globals) *)
v, (do_assign (var, v, locals), globals)
else if NameMap.mem var locals then (* Assign to local *)
v, (do_assign (var, v, locals), globals)
else if NameMap.mem var globals then (* Assign to global
*)

v, (locals, do _assign(var, v, globals))

else (* Declare new local *)
v, (do_assign (var, v, locals), globals)
| ToString(e) ->
let v, env = eval env e in
(match v with
(VInt e) -> VString(string of int e), env
| (VFloat e) -> VString(string of float e), env

| (VBool e) -> VString(if e = true then "true" else
"false"), env

| (Vstring e) -> VString(e), env

| _ -> raise (Failure("Type error: invalid type passed to
to_string"))

)
| ToInt(e) ->
let v, env = eval env e in
(match v with
(VInt e) -> VInt(e), env
| (VFloat e) -> VInt(truncate e), env
| (VString e) -> VInt(int of string e), env

| _ —> raise (Failure("Type error: invalid type passed to
to_int"))

)
| ToFloat(e) ->
let v, env = eval env e in
(match v with
(VInt e) -> VFloat(float e), env
(VFloat e) -> VFloat(e), env
(VString e) -> VFloat(float of string e), env

|
| -> raise (Failure("Type error: invalid type passed to
to _float"))

)
| Read -> VString(input line stdin), env
| Call(_,_) —-> raise(Failure("Call() not implemented"))

| Draw -> raise(Failure("Draw not implemented"))

in

(* Execute a statement and return an updated environment *)
let rec exec env = function
Block(stmts) -> List.fold left exec env stmts
| Expr(e) -> let , env = eval env e in env
| 1f(e, s1, s2) ->
let v, env = eval env e in
(match v with
VBool b -> exec env (if b then sl else s2)

| -> raise(Failure("Invalid condition: all
conditionals must

have boolean values")))

| while(e, s) ->
let rec loop env =
let v, env = eval env e in
(match v with
VBool b -> if b then loop (exec env s) else env

| _ -> raise(Failure("Invalid condition: all
conditionals must

have boolean values")))
in loop env
| Print(e) ->
let str,env = eval env e
in
(match (str) with
(VString str) -> print string str ; flush stdout; env

| _ -> print string "Not Printing String" ; raise
(Failure("Trying to a print a value that isn't a

string")))
| End ->

let v, (locals, globals) = eval env Noexpr in (* Do
nothing, but get globals *)

raise(ReturnException(v,globals))

| Exit ->

print string "Exit called\n" ; exit 0; NameMap.empty,
NameMap.empty

in

(* Enter the function: bind actual values to formal arguments *)

(* Execute each statement in sequence, return updated global
symbol table *)

snd (List.fold left exec (NameMap.empty, globals) rdecl.body)

(* Run a program: initialize global variables to VNothing, find and
run "main" ¥*)

in let globs =
List.fold left (fun gmap x ->
(match x with
Expr(Assign(var, ,)) -> NameMap.add var VNothing gmap

| -> raise(Failure("Fatal error: global
declarations

contain a statement that isn't an assignment")))

) NameMap.empty globals

in let globs =

call {rname = ""; body = globals} globs
(* in
let @ = NameMap.iter (fun k v -> print endline k) globs *)

in

if NameMap.mem "start game" rule decls then
try

call (NameMap.find "start game" rule decls) globs
with

ReturnException(v,globals) -> (globals)

else

raise(Failure("start game rule not defined"))

(*

in try

call (NameMap.find "main" func decls) [] globals

with Not found -> raise (Failure ("did not find the main()
function"))

*)

bogus.ml:

let print = false

let =
if Array.length Sys.argv != 2 then
(print_endline ("usage: " " Sys.argv.(0) " " source-file") ;
exit 0)
let =

let sourcefile = Sys.argv.(l) in

let infile = open in sourcefile in

(*let lexbuf = Lexing.from channel stdin in *)
let lexbuf = Lexing.from channel infile in

let program = Parser.program Scanner.token lexbuf in

ignore (Interpret.run program)

	1 Introduction
	2 Bogus Tutorial
	2.1 Defining Types
	2.2 Defining globals
	2.3 Defining rules

	3 Bogus Language Reference Manual
	3.1 Introduction
	3.2 Lexical Conventions
	3.2.1 Conventions
	3.2.2 Whitespace
	3.2.3 Comments
	3.2.4 Identifiers
	3.2.5 Keywords
	3.2.6 Constants
	3.2.6.1 Integer Constant
	3.2.6.2 Floating Point Constant
	3.2.6.3 Boolean Constant
	3.2.6.4 String constant

	3.3 Types
	3.3.1 Primitives
	3.3.1.1 Integers
	3.3.1.2 Floating point values

	3.3.2 Booleans
	3.3.3 Character strings
	3.3.4 Composite Types
	3.3.4.1 Defining
	3.3.4.2 Accessing Members Directly

	3.3.5 Magic Globals
	3.3.5.1 _player
	3.3.5.2 _next
	3.3.5.3 _space
	3.3.5.4 "Null" Values

	3.3.6 Arrays
	3.3.7 Dice

	3.4 Expressions
	3.4.1 Assignment Operator
	3.4.2 Concatenation Operator
	3.4.3 Arithmetic Operators
	3.4.4 Comparison Operators
	3.4.5 Logical Operators
	3.4.6 I/O operators
	3.4.7 Member Access Operator
	3.4.8 Type Conversions

	3.5 Statements
	3.5.1 Conditional Statements
	3.5.1.1 Loops

	3.5.2 draw keyword
	3.5.3 exit keyword

	3.6 Scoping rules
	3.6.1 Masking prior declarations

	3.7 Rules
	3.8 Structure Of A Bogus Program
	3.8.1 Composite Type Definitions
	3.8.2 Global variables
	3.8.3 Rules

	3.9 Gameplay
	3.9.1 Initialization
	3.9.2 Taking turns

	4 Project Plan
	5 Architecture
	6 Testing
	7 Lessons Learned
	8 Appendix - Code Listing

