SYNAPSE LANGUAGE REFERENCE MANUAL

Jonathan Williford

jw2389 @ columbia.edu

http://synapse-lang.googlecode.com

Contents
1 Introduction
2 Document Conventions
3 Lexical Conventions
3.1 Comments e
3.2 Identifiers e
3.3 Keywords
3.4 Constants s
3.4.1 Imteger Comstants. e
3.4.2 Float Constants e
3.4.3 Built-in Constants e e e e
3.5 Program Parameters
4 Program
4.1 Module Definition L e e e
4.2 Module Declaration L e e e e e e
4.3 Function Definitions e
4.3.1 Activation Function Definitionso
4.3.2 Kernel Function Definitiono
4.4 Inter-Module Synaptic Connections L L
5 Expressions
5.1 Primary expressionso e e e e e e e e e
5.2 Convolution operator
5.2.1 expression ** kernel-callo
5.3 Unary operator e e e e e
5.3.1 = EIPTeSSION o e e e e e e e e
5.4 Exponential operator L L e e e
5.4.1 expression-1 = expresSIoN-2o e e e e e e e e e
5.5 Multiplicative operators L e e
5.5.1 expression-1 * expression-2o e e
5.5.2 expression-1 [expresSion-2 e e
5.6 Additive operators L. e
5.6.1 expression-1 4 expression-2o o e e e e e
5.6.2 expression-1 - eTPTesSion-2o o e e e e e e e e e

W W W WwwNn NN

S UL Ot Ot Ot i W

O 00 CO 00 00 00 00 0O N1~

6 Function Calls 8
6.1 Built-in functions 8
6.1.1 SIN . . . 8

6.1.2 COS . . e e e 8

6.1.3 XD e e 8

6.2 User-defined functions e 9

7 Macros 9
7.1 SIZ€ MACTO e 9
7.2 fOr Macro s 9

8 Scope 9
9 Parallelism 10
10 Future Additions 10
11 Examples 10
11.1 ITmage Sharpening e e e 10
11.2 Tmage Mirror L o e 11

1 Introduction

Before mathematical models were used in neuroscience, models have mainly been limited to imprecise word models.
Such word models that have sounded reasonable in the past have turned out to be inconsistent and unworkable
when trying to convert to a mathematical model [Abbott]. Simulation enables precise models to be tested on large
interconnected networks. The proposed language Synapse is a language specifically for modeling and simulating
neural networks.

While every neuron in the brain executes in parallel, most languages are written for architectures that execute
sequential. Even as parallel computing becomes more important, parallel support is usually added as an after-
thought. For example, CUDA relies on extending C and C++ so that it can take advantage of nVidia’s graphic
cards and OpenMP adds C preprocessor commands to enable, among other things, parallel for-loops. Synapse is
a language that being created for parallel execution from the ground up.

The source code and documentation (including the LaTeX source for PDFs) may be downloaded from:

2 Document Conventions

Literals are denoted with monospace. Syntatic categories are denoted with italics and are all lowercase. Identifiers,
integers, and floats are represented by Id, Int, and Float respectively. Optional items are indicated with “opt”
in subscripts following the item, ex. optional-item,y,; . Sometimes the syntatic categories are enumerated in the
suffix, ex. item-1, for ease of reference. Section numbers to the right of the productions indicate the location of
syntatic categories not defined in the same subsection.

3 Lexical Conventions
3.1 Comments

Comments begin with the characters /* and continue until */.

3.2 Identifiers

Identifiers consist of letters, digits, and underscores. The first character must be a letter. Identifiers are case
sensitive.

3.3 Keywords

The following identifiers are reserved keywords and may not be used for any other purpose.

module
size
for
begin
end
kernel
pi

e

sin
cos
exp
pragma
input

3.4 Constants

There are two types of constants, int constants and float constants.

3.4.1 Integer Constants

An int consists of one or more digits.

3.4.2 Float Constants

A float consists of a decimal point and at least one digit. The precision of the float is compiler dependent and may
even be implemented as an integer using scaling. An int can be implicitly casted as a float, but not vice versa.
3.4.3 Built-in Constants

e and pi are built-in constants which are approximately 2.71828 and 3.14159 respectively. The accuracy depends
on the precision of float used by the compiler.

3.5 Program Parameters

The input / output sources of the program are specified by $1, $2, etc. For command-line applications $1 corre-
sponds to the first parameter, $2 the second, etc. How they are used will determine whether they are input or
output. They may not be both. Every input must be declared with its dimension.

input-decl:
input Param dimensions ; 84.2

4 Program

A program consists of module definitions, module declarations, kernel function definitions, activation function
definitions, and synaptic connections.

program:
/* nothing */

input-decl program §3.5
module-def program 84.1
module-decl program §4.2
activation-def program 84.3.1
kernel-def program §4.3.2
synap-connection program 84.4

4.1 Module Definition

Neurons can only be defined in modules. Multiple instances of a module can be used with module declarations
(section 4.2). There are three exclusive types of neurons in a module: input neurons, output neurons, and inner
neurons. Input neurons receive external signals, output neurons send external signals, and inner neurons are en-
capsulated in the module.

module-def:
module Id neurons-1 >> neurons-2 { module-body } Id is the name of the module. neurons-1

and neurons-2 are the list of input and output neurons respectively.

neurons:

Id
Id , neurons

The inner and output neurons are defined with an activation expression inside of the module using neuron-
def. The activation expression of an input neuron is defined by synaptic connections outside of the module using
synap-connection.

All modules are globally defined, however, instances of a module can be declared inside another. Recursive
instantions are not allowed.

module-body:
/* nothing */

neuron-def module-body Within a module
synap-connection module-body Between modules, §4.4
module-decl module-body 84.2

neuron-def:
Id dimensionsy,, << expression ;
Id dimensions,,: << expression for for-list ; §7.2

The variable iterators can only be used in expression. dimensions is used to specify the size of the array of
neurons and must be equal in size of the expression that is being iterated over.
Modules may be used directly:

modulenamel.input << modulename?2.output;
or may be instantiated:

modulenamel mods[2];
mods [1] . input_neuron << mods[2].output_neuron;

4.2 Module Declaration

Once a module has been defined, multiple instances can then be declared.

module-decl:
Id-1 Id-2 dimensionsep: 3

where Id-2 is a new instance of the module Id-1.

module modulel x >> y
{

y = act(.5 * x);

}

module module2 input[100] >> output
{

modulel mod[100];

mod[i] .x << input[i] for i = 1:end;
output << act(mod[i].y, gauss);

}

dimensions:
[const-int-list]

const-int-list:
const-int-expr 85.1
const-int-expr , const-int-list

Modules may also contain instantiations of other modules.

4.3 Function Definitions

There are two types of functions allowed in Synapse: activation functions and kernel functions. Activation functions
take and returns a scalar while kernel functions generate matrices that fit the context referenced.

4.3.1 Activation Function Definitions

Activation functions take a single scalar and returns a single scalar.
activation-def:
Id-1 (Id-2 fparamsep,) = expression ;

Id-1 is the name of the function and Id-2 is the name of the local input scalar. fparams may be used to define
additional optional floats along with their default values.
frarams:
/* nothing */
5 fparam-list
fraram-list:

Id = Float
Id = Float , fparam-list

4.3.2 Kernel Function Definition

Kernel definitions may only be used directly to the right of a convolution operation (§5.2.1).
kernel-def:
kernel Id (id-list fparams,,,) = expression ; 84.3.1,5

id-list contains the names for the indices that may be referenced in expression. The first index refers to the
first dimension (the row if 2D), the second index refers to the second dimension, etc. If w is the number of cells
in a dimension, then the indices are enumerated from —“’T’l to “’T’l while incrementing by 1. Therefore, if the
dimension is even, then the index values will not be an integer.

The Gabor filter can be implemented as:

kernel gabor(x,y,lambda=0,theta=0,psi=0,sigma=1,gamma=0) =
exp(-((x*cos(theta) + y*sin(theta)) 2+gamma "~ 2 * (-x*sin(theta)
+ y * cos(theta))~2)/(2 * sigma”2))
* cos(2*xpix(x*cos(theta) + y*sin(theta))/lambda+psi);

4.4 Inter-Module Synaptic Connections

The synaptic connections are used to connect the input and output neurons between modules.
synap-connection:

neuron-scoped dimensionsop: << expression ; §4.2

neuron-scoped dimensionsy,: << expression for for-list ; §7.2

See §8 for the definition of neuron-scoped and for information on scoping.

5 Expressions

The subsections below appear from highest to lowest precedence. Operators within a subsection have equal
precedence.
exPression:
Primary-erpression
(expr)
expr —+ expr
erpr - erpr
expr * expr
expr [expr
expr ~ expr
- expr
expr * kernel-call 86.2
pi
e
exp (expr)
sin (expr)
cos (expr)

5.1 Primary expressions

Primary expressions include the below syntatic category plus kernel function calls. Kernel function calls can only
appear to the right of a convolution operator (5.2.1).

Primary-expression:
Float
Int
indezable-expression indicesypt
activation-call 86.2

indexable-expression:
Param
Id
scoped-neuron

indices:
[index-list |

index-list:
index-expression
index-expression , index-list

indez-expression:
index-num

index-num-1 : index-num-2
index-num-1 : const-int-expr : inder-num-2

One-based indexing is used. A single colon (ex. [:]) references all of the elements in the respective dimen-
sion. index-num-1 is the first number in the range when expanded and index-num-2 is the last. If specified, the
middle number, const-int-expr, specifies the increment, otherwise each consecutive number is included in the range.

index-num:
const-int-expr
Id
begin
end

Id in this case must be an index defined by a for macro.

const-int-expr:
Int
(' const-int-expr)
const-int-expr + const-int-expr
const-int-expr - const-int-expr
const-int-expr * const-int-expr
- const-int-expr
size-macro 87.1

The operator . and subscripting group left to right.

5.2 Convolution operator
5.2.1 expression ** kernel-call

The binary operator ** indicates convolution. The expression to the left must evaluate to a matrix of fixed size.
On the right, a kernel function is referenced and a matrix is generated that matches the dimension of the expression
on the left. A convolution performs a pointwise multiplication on the matrices and the last convolution of a chain
of convolutions takes the sum of the elements of the matrix.

5.3 Unary operator
5.3.1 - expression

The unary operator - negates the expression and has the same type. If the expression is a matrix, then every
element is negated.

5.4 Exponential operator
5.4.1 expression-1 ~ expression-2

The binary operator ~ indicates expression-1 being raised to the power of expression-2. expression-1 must be a
float, an int, or a matrix. If it is a matrix, then each element in expression-1 is raised to the power of expression-2.
expression-2 must be a float or an int. The result is either a float or a matrix of float.

5.5 Multiplicative operators
5.5.1 expression-1 * expression-2

The binary operator * indicates pointwise multiplication. If both operands are matrices, then the element-by-
element product is returned. In this case, both operands must have the equal dimensions. Otherwise, at least one
of the expressions is a scalar. If either of the operands is a matrix, then the result is a matrix; else if either of the
operands is a float, then the result is a float; otherwise both of the operands is an int and an int is returned.

5.5.2 expression-1 |/ expression-2

The binary operator / indicates pointwise division. The same size considerations apply as for multiplication. If
either operand is a matrix the result is a matrix; otherwise the result is a float. Integer division does not exist
in Synapse. An expression that contains division must not be used when constant integers are required, as when
defining the size of a matrix.

5.6 Additive operators
5.6.1 expression-1 + expression-2

The binary operator * indicates pointwise addition. The same size and type considerations apply as for multipli-
cation.

5.6.2 expression-1 - expression-2

The binary operator - indicates pointwise subtraction. The same size and type considerations apply as for multi-
plication.

6 Function Calls

6.1 Built-in functions
6.1.1 sin

sin (x) calculates the sine of z in radians.

6.1.2 cos

cos (x) calculates the cosine of z in radians.

6.1.3 exp

exp (x) calculates e”.

6.2 User-defined functions

Kernel functions may be referenced directly after a convolution operator.
kernel-call:

Id (fparam-list) §4.3.1

Activation functions may be called anywhere 5 can be used.
activation-call:

Id (fparam-list) §4.3.1

7 Macros

7.1 size macro

The size macro returns the size of a module or macro in the specified dimension.

size-macro:
size (indexable-expression , Int) 85.1

7.2 for macro

The for-macro makes it easier to connect a large number of modules, matrices of modules, and matrices of neurons.

for-list:
for-expression
for-expression for-list

for-expression:
Id = indez-num-1 : [index-expression | §5.1

Ranges are specified with the above colon syntax. indez-num-1 is the first number in the range when expanded
and index-num-2 is the last. If specified, the middle number, const-int-expr, specifies the increment, otherwise each
consecutive number is included in the range.

Inside a for-expression, begin and end specify the smallest and largest number that are well defined in the
expression that the for-macro is being applied respectively. Used as an index to a module or neuron, it stands the
smallest (ie. 1) and largest number that are well defined in that module or neuron respectively.

8 Scope

The scope of neurons are local to the current module. The neurons may be specified in any order. Neurons within
or between modules may have circular or recurrent connections.
When connecting input and output neurons between modules, the module for which the neuron belongs must
be specified.
neuron-scoped:
Id-1 indicesops . 1d-2 85.1

1d-1 specifies the module or matrix of modules and Id-2 specifies the neuron contained in Id-1. indices is used if
and only if Id-1 is a matrix of modules. While modules may be nested, only local neurons may be input or output
neurons. Hence, only a single module is ever needed to reference a neuron.

All functions and module definitions have global scope. A function may only use functions defined before it.
Module definitions may only contain nested instances of modules defined before it. Neither functions nor modules
may be recursive.

Synaptic connections can connect modules and neurons regardless of location.

9 Parallelism

Unlike traditional programming languages, all of the values at the synaptic connections are calculated in parallel.
Each synapse connection takes a single time step and at time ¢ only the values from time ¢ — 1 are used for the
calculations.

Since it takes a while for the values from the input to be propagated throughout the program, the initial
values are to be defined by the compiler runtime options. The compiler or interpreter must support the option
of initialization of the neurons to zero. Other options, such as initialization by use of random distributions may
also be supported. When the program starts writing output is also compiler or interpreter defined. It must at
minimum support the option to start writing output as soon as it starts running, which means the initial output
will be garbage.

While various inputs are supported, sequences of images or videos are well suited for reading and writing a large
number of values.

10 Future Additions

The following additions are planned for Synapse. Some of the features may be included if it seems essential for the
language to be useful.

At any time t+ 1, the current version of Synapse only allows values from time ¢ to be referenced. Future versions
will allow any ¢ or older neuron values to be referenced. This will be support by making ¢ a keyword that can be
used in arrays. For example, would be the same thing as writing z[t], y[t,1 : 10] would be the same thing as
y[1:10], and z[t — 1] and y[t — 2,1 : 10] would refer to previous versions.

Some form of inline switch statements will be allowed in functions.

A dimension macro will be added that could be referenced in weight definitions. A way of automatically
normalizing the dynamic kernels will be added. For example, Z may become a macro that stands for the sum of
the weights of the current kernel.

Matrix constants can be defined in the form of: [[1, 2, 3, 4; 5, 6, 7, 8]].

Support for spike trains will be added by adding support for booleans and by adding support for Poisson spike
generators.

11 Examples

11.1 Image Sharpening

The following program creates a network that models a network of on-center surround cells. It sharpens the video
that is passed.

kernel sharpen(x,y; pos_sigma=1.0, neg_sigma=2.0) =

1/ 2 % pi * pos_sigma "~ 2

* exp(-.5 * (x"2/pos_sigma”2 + y~2/pos_sigma”2 - 2*x*y / pos_sigma”2))
-1/ 2 % pi * neg_sigma "~ 2

* exp(-.5 * (x"2/neg_sigma™2 + y~2/neg_sigma”2 - 2*x*y / neg_sigma”2));

module OnCenterSurround in[7,7] >> out

{

out << in ** sharpen();

}

10

OnCenterSurround on[(size($1,1)-6)/2, (size($1,2)-6)/2 1;

on[x-3,y-3] .ker[:,:] << $1[x:x+6,y:x+6] for x=1:2:end, y=1:2:end;
$2[x,y] << on[x,y].out for x=begin:end, y=begin:end;

11.2 TImage Mirror

The following one-liner mirrors the video.

$2[y,size($2,1)-x+1] << $1[y,x] for x=begin:end, y=begin:end;

11

	Introduction
	Document Conventions
	Lexical Conventions
	Comments
	Identifiers
	Keywords
	Constants
	Integer Constants
	Float Constants
	Built-in Constants

	Program Parameters

	Program
	Module Definition
	Module Declaration
	Function Definitions
	Activation Function Definitions
	Kernel Function Definition

	Inter-Module Synaptic Connections

	Expressions
	Primary expressions
	Convolution operator
	 expression ** kernel-call

	Unary operator
	 - expression

	Exponential operator
	expression-1 ^ expression-2

	Multiplicative operators
	expression-1 * expression-2
	expression-1 / expression-2

	Additive operators
	expression-1 + expression-2
	expression-1 - expression-2

	Function Calls
	Built-in functions
	sin
	cos
	exp

	User-defined functions

	Macros
	size macro
	for macro

	Scope
	Parallelism
	Future Additions
	Examples
	Image Sharpening
	Image Mirror

