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Why HDLs?
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1970s: SPICE transistor-level netlists

An XOR built from four NAND gates

.MODEL P PMOS

.MODEL N NMOS

.SUBCKT NAND A B Y Vdd Vss
M1 Y A Vdd Vdd P
M2 Y B Vdd Vdd P
M3 Y A X Vss N
M4 X B Vss Vss N
.ENDS

X1 A B I1 Vdd 0 NAND
X2 A I1 I2 Vdd 0 NAND
X3 B I1 I3 Vdd 0 NAND
X4 I2 I3 Y Vdd 0 NAND



Why HDLs?

1980s: Graphical schematic capture programs



Why HDLs?

1990s: HDLs and Logic Synthesis

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ALU is
port( A: in unsigned(1 downto 0);

B: in unsigned(1 downto 0);
Sel: in unsigned(1 downto 0);
Res: out unsigned(1 downto 0));

end ALU;
architecture behv of ALU is begin

process (A,B,Sel) begin
case Sel is
when "00" => Res <= A + B;
when "01" => Res <= A + (not B) + 1;
when "10" => Res <= A and B;
when "11" => Res <= A or B;
when others => Res <= "XX";

end case;
end process;

end behv;



Two Separate but Equal Languages

Verilog and VHDL

Verilog: More succinct, less flexible, really messy

VHDL: Verbose, very (too?) flexible, fairly messy

Part of languages people actually use identical.

Every synthesis system supports both.



Basic Lexical Rules of VHDL

Ï Free-form: space only separates tokens.

Ï Case-insensitive: “VHDL,” “vHdL,” and “vhdl” are equivalent.

Ï Comments: from “­­” to the end of the line.

Ï Identifiers: [a­zA­Z](_?[a­zA­Z0­9])*
Examples: X X_or_Y ADDR addr

Illegal: 14M CLK__4 FOO_



Literals in VHDL

Ï Decimal integers∗: 1 42 153_1203

Ï Based integers∗: 2#1_0010# 16#F001D#

Ï Characters: ’0’ ’1’ ’X’

Ï Strings: "101011" "XXXXXX"

Ï Bit string literals∗: B"1001_0101" X"95" mean "10010101"

∗Underscores added for readability are ignored



Part I

Combinational Logic in a Dataflow Style



Bits

Logical True False

Binary 1 0

Voltage 1.65–3.3V 0–1.65V

Timing Diagram HHH LLL
VHDL ’1’ ’0’

In VHDL, zeros and ones on wires are members of an enumerated

type. They are not Boolean.



The std_logic_1164 package

package std_logic_1164 is

type std_ulogic is
( ’U’, ­­ Uninitialized
’X’, ­­ Forcing Unknown
’0’, ­­ Forcing 0
’1’, ­­ Forcing 1
’Z’, ­­ High Impedance
’W’, ­­ Weak Unknown
’L’, ­­ Weak 0
’H’, ­­ Weak 1
’­’ ­­ Don’t care

);

­­ The std_logic type allows tri­state drivers
subtype std_logic is resolved std_ulogic;

­­ Lots more...



Boolean Operators

The basic ones in VHDL:

a b a and b a or b not a

’0’ ’0’ ’0’ ’0’ ’1’

’0’ ’1’ ’0’ ’1’ ’1’

’1’ ’0’ ’0’ ’1’ ’0’

’1’ ’1’ ’1’ ’1’ ’0’

a b a nand b a nor b a xor b

’0’ ’0’ ’1’ ’1’ ’0’

’0’ ’1’ ’1’ ’0’ ’1’

’1’ ’0’ ’1’ ’0’ ’1’

’1’ ’1’ ’0’ ’0’ ’0’



Rules of Boolean Algebra (1)

­­ Precedence
not a or b and c = (not a) or (b and c)

­­ Basic relationships
not not a = a
a and ’1’ = a
a and ’0’ = ’0’
a or ’1’ = ’1’
a or ’0’ = a
a and a = a
a and not a = ’0’
a or a = a
a or not a = ’1’
a nand b = not (a and b)
a nor b = not (a or b)
a xor ’0’ = a
a xor ’1’ = not a
a xor b = (not a and b) or (a and not b)



Rules of Boolean Algebra (2)

­­ Commutativity
a and b = b and a
a or b = b or a

­­ Associativity
a and (b and c) = (a and b) and c
a or (b or c) = (a or b) or c

­­ Distributivity
a and (b or c) = a and b or a and c
a or (b and c) = (a or b) and (a or c)

­­ De Morgan’s Law
not (a and b) = not a or not b
not (a or b) = not a and not b



A Full Adder: Truth Table

a b c carry sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

carry <=
(not a and b and c) or
( a and not b and c) or
( a and b and not c) or
( a and b and c);

sum <=
(not a and not b and c) or
(not a and b and not c) or
( a and not b and not c) or
( a and b and c);

Each row represents a minterm

Sum-of-products form: sum of each minterm in which output is

true



Simplifying Using Boolean Rules

carry <= (not a and b and c) or (a and not b and c) or
(a and b and not c) or (a and b and c);

<= (a and b and not c) or (a and b and c) or
(not a and b and c) or (a and b and c) or
(a and not b and c) or (a and b and c);

<= (a and b) or (b and c) or (a and c);

sum <= (not a and not b and c) or (not a and b and not c) or
(a and not b and not c) or (a and b and c);

<= (not a) and ((not b and c) or (b and not c)) or
a and ((not b and not c) or (b and c));

<= a xor b xor c;



Structure of a VHDL Module

Ports

in

in

out

out

inout

Component

Component

X <= ’1’ when Y = ’1’ and X = "110"else ’0’

Dataflow Expression

Process

process (clk)
begin
if rising_edge(clk)
then
count <= count + 1;

end if;
end process;

Signal



A Full Adder in VHDL

a

b

c

sum

carry

library ieee; ­­ always needed
use ieee.std_logic_1164.all; ­­ std_logic, et al.

entity full_adder is ­­ the interface
port(a, b, c : in std_logic;

sum, carry : out std_logic);
end full_adder;

architecture imp of full_adder is ­­ the implementation
begin

sum <= (a xor b) xor c; ­­ combinational logic
carry <= (a and b) or (a and c) or (b and c);

end imp;



...After Logic Synthesis

sum~1

carry~0

carry~1

carry~4
a

b
c

sum

carry

carry~3



Vectors of Bits

Three standard synthesizable bit vector types:

Type Library Logic Arith. Neg.

std_logic_vector ieee_std_1164
p

unsigned numeric_std
p p

signed numeric_std
p p p

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vectors is
port(vect : in std_logic_vector(1 downto 0);

unsi : in unsigned(7 downto 0);
sign : out unsigned(15 downto 0));

end entity;



Endianness

The perpetual battle: Is “0” most or least significant?

Little Endian 3 2 1 0 unsigned(3 downto 0)

Big Endian 0 1 2 3 unsigned(0 to 3)

Arguments on both sides will continue forever.

I suggest using Little Endian for vectors.



Binary and Hexadecimal in VHDL

Decimal Binary Hex
0 "0" x"0"
1 "1" x"1"
2 "10" x"2"
3 "11" x"3"
4 "100" x"4"
5 "101" x"5"
6 "110" x"6"
7 "111" x"7"
8 "1000" x"8"
9 "1001" x"9"
10 "1010" x"A"
11 "1011" x"B"
12 "1100" x"C"
13 "1101" x"D"
14 "1110" x"E"
15 "1111" x"F"
16 "10000" x"10"
17 "10001" x"11"
18 "10010" x"12"
19 "10011" x"13"

Vector types are arrays of std_logic

Literals are therefore strings of 0’s and 1’s

­­ from std_logic_1164
type std_logic_vector is

array (natural range <>) of std_logic;

­­­ from numeric_std
type unsigned is

array (natural range <>) of std_logic;

type signed is
array (natural range <>) of std_logic;



Two’s Complement

Decimal Binary Hex
­8 "1000" x"8"
­7 "1001" x"9"
­6 "1010" x"A"
­5 "1011" x"B"
­4 "1100" x"C"
­3 "1101" x"D"
­2 "1110" x"E"
­1 "1111" x"F"
0 "0000" x"0"
1 "0001" x"1"
2 "0010" x"2"
3 "0011" x"3"
4 "0100" x"4"
5 "0101" x"5"
6 "0110" x"6"
7 "0111" x"7"

How do you represent negative numbers?

Two’s complement produces simpler logic

than sign bit alone.

Idea: Add constant 2n to negative numbers.

Simply discard overflow after addition or

subtraction.

An n-bit number represents −2n−1 to

2n−1 −1.

The signed type in numeric_std uses this



A Hex-to-seven-segment Decoder

a

b

c

d

e

f

g



VHDL: Hex-to-7-segment Decoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; ­­ Provides the unsigned type
entity hex7seg is

port ( input : in unsigned(3 downto 0); ­­ A number
output : out std_logic_vector(6 downto 0));

end hex7seg;
architecture combinational of hex7seg is
begin

with input select output <=
"0111111" when x"0", "0000110" when x"1", ­­ Bad style
"1011011" when x"2", "1001111" when x"3", ­­ one case
"1100110" when x"4", "1101101" when x"5", ­­ per line
"1111101" when x"6", "0000111" when x"7", ­­ preferred
"1111111" when x"8", "1101111" when x"9",
"1110111" when x"A", "1111100" when x"B",
"0111001" when x"C", "1011110" when x"D",
"1111001" when x"E", "1110001" when x"F",
"XXXXXXX" when others;

end combinational;



Four-to-one mux: when .. else

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multiplexer_4_1 is
port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s : in unsigned(1 downto 0);
z : out unsigned(15 downto 0));

end multiplexer_4_1;

architecture comb of multiplexer_4_1 is
begin

z <= in0 when s = "00" else
in1 when s = "01" else
in2 when s = "10" else
in3 when s = "11" else
(others => ’X’); ­­ Shorthand for "all X’s"

end comb;



Four-to-one mux: with...select

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multiplexer_4_1 is
port(in0, in1, in2, in3 : in unsigned(15 downto 0);

s0, s1 : in std_logic;
z : out unsigned(15 downto 0));

end multiplexer_4_1;

architecture comb of multiplexer_4_1 is
signal sels : unsigned(1 downto 0);
begin

sels <= s1 & s0; ­­ "&" is vector concatenation
with sels select ­­ "with s1 & s0" would not resolve type

z <= in0 when "00",
in1 when "01",
in2 when "10",
in3 when "11",
(others => ’X’) when others;

end comb;



Three-to-eight Decoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity dec1_8 is
port (

sel : in unsigned(2 downto 0);
res : out unsigned(7 downto 0));

end dec1_8;

architecture comb of dec1_8 is
begin

res <= "00000001" when sel = "000" else
"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end comb;



Priority Encoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity priority is
port (

sel : in std_logic_vector(7 downto 0);
code : out unsigned(2 downto 0));

end priority;

architecture imp of priority is
begin

code <= "000" when sel(0) = ’1’ else
"001" when sel(1) = ’1’ else
"010" when sel(2) = ’1’ else
"011" when sel(3) = ’1’ else
"100" when sel(4) = ’1’ else
"101" when sel(5) = ’1’ else
"110" when sel(6) = ’1’ else
"111";

end imp;



Integer Arithmetic

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adder is
port (

A, B : in unsigned(7 downto 0);
CI : in std_logic;
SUM : out unsigned(7 downto 0);
CO : out std_logic);

end adder;

architecture imp of adder is
signal tmp : unsigned(8 downto 0);
begin

­­ trick to promote ci to unsigned
tmp <= A + B + ("0" & ci);
SUM <= tmp(7 downto 0);
CO <= tmp(8);

end imp;



A Very Simple ALU

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity alu is
port (

A, B : in unsigned(7 downto 0);
ADD : in std_logic;
RES : out unsigned(7 downto 0));

end alu;

architecture imp of alu is
begin

RES <= A + B when ADD = ’1’ else
A ­ B;

end imp;



Arithmetic Comparison

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity comparator is
port (

A, B : in unsigned(7 downto 0);
GE : out std_logic);

end comparator;

architecture imp of comparator is
begin

GE <= ’1’ when A >= B else ’0’;
end imp;



Tri-state drivers

How to use a pin as both an input and output.

Not for internal FPGA signals.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tri_demo is
port(addr : out unsigned(15 downto 0); ­­ output only

data : inout unsigned(7 downto 0)); ­­ bidirectional
end tri_demo;

architecture rtl of tri_demo is
signal oe : std_logic; ­­ output enable: control direction
signal d_out : unsigned(7 downto 0);
begin

data <= d_out when oe = ’1’ else ­­ Drive data to chip
(others => ’Z’); ­­ Read data from external chip

end rtl;



Syntax of Expressions

Logical operators: and or xor nand nor

Relational operators: = /= < <= > >=

Additive operators: + ­ & (concatenation)

Multiplicative operators: * / mod rem

Others: abs not ** (exponentiation)

Primaries: identifier

literal

name(expr to expr)

name(expr downto expr)

( choice ( | choice )∗ => expr )



Summary of Dataflow Modeling

Ï Conditional signal assignment (when...else)

target <=

(expr when expr else)∗

expr ;

Ï Selected signal assignment (with...select)

with expr select

target <=

(expr when choice (| choice)∗,)∗

expr when choice (| choice)∗ ;

A choice is a simple expression (i.e., not logical or comparison)

or others.

Note: when does not nest (i.e., it’s not an expr).



Part II

Hierarchy: Instantiating components (entities)



Hierarchy: port map positional style

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity add2 is

port (A, B : in unsigned(1 downto 0);
C : out unsigned(2 downto 0));

end add2;

architecture imp of add2 is

component full_adder
port (a, b, c : in std_logic;

sum, carry : out std_logic);
end component;

signal carry : std_logic;
begin

bit0 : full_adder port map ( A(0), B(0), ’0’, C(0), carry );
bit1 : full_adder port map ( A(1), B(1), carry, C(1), C(2) );

end imp;

a
A(0)

b
B(0)

c
’0’

sum
C(0)

carry

a
A(1)

b
B(1)

c
sum

C(1)

carry
C(2)

carry



Hierarchy: port map by-name style

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity add2n is

port (A, B : in unsigned(1 downto 0);
C : out unsigned(2 downto 0));

end add2n;
architecture imp of add2n is

component full_adder
port (a, b, c : in std_logic;

sum, carry : out std_logic);
end component;
signal carry : std_logic;

begin
bit0 :

full_adder port map (a => A(0), b => B(0), c => ’0’,
sum => C(0), carry => carry);

bit1 :
full_adder port map (a => A(1), b => B(1), c => carry,

sum => C(1), carry => C(2));
end imp;



Direct Instantiation (no component)

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity add2 is
port (A, B : in unsigned(1 downto 0);

C : out unsigned(2 downto 0));
end add2;

architecture imp of add2 is
signal carry : std_logic;

begin
bit0 : entity work.full_adder ­­ everything in "work"

port map ( A(0), B(0), ’0’, C(0), carry );

bit1 : entity work.full_adder
port map ( A(1), B(1), carry, C(1), C(2) );

end imp;

Must be compiled after full_adder.vhd!



Generate: Ripple-carry adder

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity rippleadder is

port (a, b : in unsigned(3 downto 0);
cin : in std_logic;
sum : out unsigned(3 downto 0);
cout : out std_logic);

end rippleadder;

architecture imp of rippleadder is
signal c : unsigned(4 downto 0);

begin
c(0) <= cin;
G1: for m in 0 to 3 generate ­­ expanded at compile time

sum(m) <= a(m) xor b(m) xor c(m);
c(m+1) <= (a(m) and b(m)) or (b(m) and c(m)) or

(a(m) and c(m));
end generate G1;
cout <= c(4);

end imp;



Part III

Combinational Logic in a Procedural Style



Processes

Process: sequential code fragment invoked when signal in

sensitivity list changes.

A correct, but dumb way to model an inverter:

library ieee;
use ieee.std_logic_1164.all;

entity dumb_inv is
port( a: in std_logic; y : out std_logic );

end dumb_inv;

architecture comb of dumb_inv is
begin

process (a) ­­ invoked when signal a changes
begin

if a = ’1’ then y <= ’0’; else y <= ’1’; end if;
end process;

end comb;



A 4-to-1 mux in the procedural style

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity pmultiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);
s : in unsigned(1 downto 0);
z : out unsigned(15 downto 0));

end pmultiplexer_4_1;

architecture comb of pmultiplexer_4_1 is
begin

process (in0, in1, in2, in3, s)
begin

z <= (others => ’X’); ­­ default
if s = "00" then z <= in0; ­­ overrides default
elsif s = "01" then z <= in1;
elsif s = "10" then z <= in2;
elsif s = "11" then z <= in3;
end if;

end process;
end comb;



A 4-to-1 mux using case

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity cmultiplexer_4_1 is

port(in0, in1, in2, in3 : in unsigned(15 downto 0);
s : in unsigned(1 downto 0);
z : out unsigned(15 downto 0));

end cmultiplexer_4_1;
architecture comb of cmultiplexer_4_1 is
begin

process (in0, in1, in2, in3, s)
begin

case s is
when "00" => z <= in0;
when "01" => z <= in1;
when "10" => z <= in2;
when "11" => z <= in3;
when others => z <= (others => ’X’);

end case;
end process;

end comb;



An Address Decoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity adecoder is

port(a : in unsigned(15 downto 0);
ram, rom, video, io : out std_logic);

end adecoder;

architecture proc of adecoder is
begin

process (a)
begin

ram <= ’0’; rom <= ’0’; video <= ’0’; io <= ’0’;
if a(15) = ’0’ then ram <= ’1’; ­­ 0000­7FFF
elsif a(14 downto 13) = "00" then video <= ’1’; ­­ 8000­9FFF
elsif a(14 downto 12) = "101" then io <= ’1’; ­­ D000­DFFF
elsif a(14 downto 13) = "11" then rom <= ’1’; ­­ E000­FFFF
end if;

end process;
end proc;



Summary of Procedural Modeling

Ï null

Ï signal <= expr ;

Ï variable := expr ;

Ï if expr then stmts

(elsif expr then stmts)∗

(else stmts)?

end if;

Ï case expr is

(when choices => stmts)∗

end case;

Note: when...else and with...select not allowed



Part IV

Sequential Logic



Basic D Flip-Flop

library ieee;
use ieee.std_logic_1164.all;

entity flipflop is
port (Clk, D : in std_logic;

Q : out std_logic);
end flipflop;

architecture imp of flipflop is
begin

process (Clk) ­­ Sensitive only to Clk
begin

if rising_edge(Clk) then ­­ Only on the rising edge of Clk
Q <= D;

end if;
end process;

end imp;

D

Clk

Q



Flip-Flop with Latch Enable

library ieee;
use ieee.std_logic_1164.all;
entity flipflop_enable is

port (Clk, Reset, D, EN : in std_logic;
Q : out std_logic);

end flipflop_enable;

architecture imp of flipflop_enable is
begin

process (Clk)
begin

if rising_edge(Clk) then
if EN = ’1’ then

Q <= D;
end if;

end if;
end process;

end imp;

1

0

D

Clk

Q

EN



Flip-Flop with Synchronous Reset

library ieee;
use ieee.std_logic_1164.all;
entity flipflop_reset is

port (Clk, Reset, D : in std_logic;
Q : out std_logic);

end flipflop_reset;

architecture imp of flipflop_reset is
begin

process (Clk)
begin

if rising_edge(Clk) then
if Reset = ’1’ then

Q <= ’0’;
else

Q <= D;
end if;

end if;
end process;

end imp;



Four-bit binary counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity counter is

port(Clk, Reset : in std_logic;
Q : out unsigned(3 downto 0));

end counter;
architecture imp of counter is
signal count : unsigned(3 downto 0);
begin

process (Clk)
begin

if rising_edge(Clk) then
if Reset = ’1’ then count <= (others => ’0’);
else count <= count + 1;
end if;

end if;
end process;
Q <= count; ­­ copy count to output

end imp;



Eight-bit serial in/out shift register

library ieee;
use ieee.std_logic_1164.all;

entity shifter is
port ( Clk, SI : in std_logic;

SO : out std_logic);
end shifter;

architecture impl of shifter is
signal tmp : std_logic_vector(7 downto 0);

begin
process (Clk)
begin

if rising_edge(Clk) then
tmp <= tmp(6 downto 0) & SI; ­­ & is concatenation

end if;
end process;

SO <= tmp(7); ­­ Copy to output
end impl;



Synchronous RAM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity ram_32_4 is

port (
Clk, WE : in std_logic; ­­ Clock and write enable
addr : in unsigned(4 downto 0);
di : in unsigned(3 downto 0); ­­ Data in
do : out unsigned(3 downto 0)); ­­ Data out

end ram_32_4;
architecture imp of ram_32_4 is
type ram_type is array(0 to 31) of unsigned(3 downto 0);
signal RAM : ram_type;
begin
process (Clk) begin

if rising_edge(Clk) then
if we = ’1’ then RAM(TO_INTEGER(addr)) <= di;

do <= di; ­­ write­through
else do <= RAM(TO_INTEGER(addr));

end if; end if;
end process;
end imp;



A small ROM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity rom_32_4 is

port (Clk, en : in std_logic;
addr : in unsigned(3 downto 0);
data : out unsigned(3 downto 0));

end rom_32_4;
architecture imp of rom_32_4 is
type rom_type is array (0 to 15) of unsigned(3 downto 0);
constant ROM : rom_type :=

(X"1", X"2", X"3", X"4", X"5", X"6", X"7", X"8",
X"9", X"A", X"B", X"C", X"D", X"E", X"F", X"1");

begin
process (Clk)
begin

if rising_edge(Clk) then
if en = ’1’ then data <= ROM(TO_INTEGER(addr)); end if;

end if;
end process;
end imp;



Variables and Signals

library ieee; use ieee.std_logic_1164.all;
entity twoshiftreg is

port(clk, si1, si2 : in std_logic;
so1, so2 : out std_logic);

end twoshiftreg;
architecture imp of twoshiftreg is

signal sr1 : std_logic_vector(1 downto 0); ­­ global
begin

process (clk)
variable sr2 : std_logic_vector(1 downto 0); ­­ process­only
begin

if rising_edge(clk) then
sr1(1) <= si1; ­­ Effect seen only after next clk
sr1(0) <= sr1(1); ­­ Any order works
so1 <= sr1(0);

so2 <= sr2(0);
sr2(0) := sr2(1); ­­ Effect seen immediately
sr2(1) := si2; ­­ Must be in this order

end if;
end process;

end imp;



Variables vs. Signals

Property Variables Signals

Scope Local to process Visible throughout

architecture

Assignment Felt immediately

(e.g., in next

statement)

Only visible after

clock rises (i.e., process

terminates)

Lesson: use variables to hold temporary results and state to be

hidden within a process. Otherwise, use signals.



Constants: A VGA sync generator
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;
entity sync_gen is

port (clk : in std_logic; hs, vs : out std_logic);
end sync_gen;

architecture rtl of sync_gen is
constant HTOTAL : integer := 800; constant HSYNC : integer := 96;
constant VTOTAL : integer := 525; constant VSYNC : integer := 2;
signal hcount, vcount : unsigned(9 downto 0);

begin
process (clk)
begin
if rising_edge(clk) then

if hcount = HTOTAL ­ 1 then
hcount <= (others => ’0’); hs <= ’1’;
if vcount = VTOTAL ­ 1 then
vcount <= (others => ’0’); vs <= ’1’;

else
if vcount = VSYNC then vs <= ’0’; end if;
vcount <= vcount + 1;

end if;
else
if hcount = HSYNC then hs <= ’0’; end if;
hcount <= hcount + 1;

end if;
end if;

end process;
end rtl;



Rocket Science: FSMs

State

Combinational

Logic

Clock

Next StatePresent State

Inputs Outputs

This is a Mealy FSM: outputs may depend directly on inputs.



Moore FSMs

State

Combinational

Logic

Clock

Next StatePresent State

Inputs

Outputs

This is a Moore FSM: outputs come from state bits.



Coding Moore State Machines

library ieee; use ieee.std_logic_1164.all;
entity threecount is

port(clk, reset, count : in std_logic; at0 : out std_logic);
end threecount;
architecture moore of threecount is
type states is (ZERO, ONE, TWO); ­­ Compiler encodes states
begin

process (clk)
variable state : states;
begin

if rising_edge(clk) then
if reset = ’1’ then state := ZERO;
else case state is

when ZERO => if count = ’1’ then state := ONE; end if;
when ONE => if count = ’1’ then state := TWO; end if;
when TWO => if count = ’1’ then state := ZERO; end if;
end case;

end if;
if state = ZERO then at0 <= ’1’; else at0 <= ’0’; end if;

end if;
end process; end moore;



Coding Mealy State Machines

architecture mealy of ... is
type states is (IDLE, STATE1, ...);
signal state, next_state : states;
begin
process (clk) ­­ Sequential process
begin

if rising_edge(clk) then state <= next_state; end if;
end process;

process (reset, state, i1, i2, ... ) ­­ Combinational process
begin

next_state <= state; ­­ Default: hold
if reset = ’1’ then

next_state <= IDLE;
else

case state is
when IDLE =>
if i1 = ’1’ then

next_state <= STATE1;
end if;

when STATE1 =>



The Traffic Light Controller

c
a

rs

c
a

rs This controls a traffic light at the intersection
of a busy highway and a farm road. Normally, the
highway light is green but if a sensor detects a car
on the farm road, the highway light turns yellow
then red. The farm road light then turns green
until there are no cars or after a long timeout.
Then, the farm road light turns yellow then red,

and the highway light returns to green. The inputs to the machine are the
car sensor, a short timeout signal, and a long timeout signal. The outputs
are a timer start signal and the colors of the highway and farm road lights.

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.



FSM for the Traffic Light Controller
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Traffic Light Controller in VHDL

library ieee;
use ieee.std_logic_1164.all;
entity tlc is

port (clk, reset : in std_logic;
cars, short, long : in std_logic;
highway_yellow, highway_red : out std_logic;
farm_yellow, farm_red : out std_logic;
start_timer : out std_logic);

end tlc;

architecture imp of tlc is
type states is (HG, HY, FY, FG);
signal state, next_state : states;
begin

process (clk) ­­ Sequential process
begin

if rising_edge(clk) then
state <= next_state;

end if;
end process;



TLC in VHDL, continued

process (state, reset, cars, short, long)
begin

if reset = ’1’ then
start_timer <= ’1’; next_state <= HG;

else
case state is
when HG =>

highway_yellow <= ’0’; highway_red <= ’0’;
farm_yellow <= ’0’; farm_red <= ’1’;
if cars = ’1’ and long = ’1’ then

start_timer <= ’1’; next_state <= HY;
else start_timer <= ’0’; next_state <= HG;
end if;

when HY =>
highway_yellow <= ’1’; highway_red <= ’0’;
farm_yellow <= ’0’; farm_red <= ’1’;
if short = ’1’ then

start_timer <= ’1’; next_state <= FG;
else start_timer <= ’0’; next_state <= HY;
end if;



TLC in VHDL, concluded

when FG =>
highway_yellow <= ’0’; highway_red <= ’1’;
farm_yellow <= ’0’; farm_red <= ’0’;
if cars = ’0’ or long = ’1’ then

start_timer <= ’1’; next_state <= FY;
else start_timer <= ’0’; next_state <= FG;
end if;

when FY =>
highway_yellow <= ’0’; highway_red <= ’1’;
farm_yellow <= ’1’; farm_red <= ’0’;
if short = ’1’ then

start_timer <= ’1’; next_state <= HG;
else start_timer <= ’0’; next_state <= FY;
end if;

end case;
end if;

end process;

end imp;



Part V

Summary of the Three Modeling Styles



Three Modeling Styles: Dataflow (1)

Combinational logic described by expressions

­­ Simple case
a <= x and y;

­­ When...else selector
b <= ’1’ when x = y else

’0’;

­­­ With..select selector
with x select
c <=

’1’ when ’0’,
’0’ when ’1’,
’X’ when others;



Procedural Combinational (2)

Combinational logic described by statements and expressions

process (x, y) ­­ Should be sensitive to every signal it reads
begin

a <= x and y;
if x = y then

b <= ’1’;
else

b <= ’0’;
end if;
case x of

’0’ => c <= ’1’;
’1’ => c <= ’0’;
others => c <= ’X’;

end case;
end process;



Three Styles: Procedural Sequential (3)

Combinational logic driving flip-flops described by statements and

expressions.

process (clk) ­­ Sensitive only to the clock
begin

if rising_edge(clk) then ­­ Always check for rising edge
a <= x and y;
if x = y then

b <= ’1’;
else

b <= ’0’;
end if;
case x of
’0’ => c <= ’1’;
’1’ => c <= ’0’;
others => c <= ’X’;

end case;
end if;

end process;



Ten Commandments of VHDL



I: Thou Shalt Design Before Coding

Ï Know the structure of what you are designing first.

Ï Draw a block diagram of the datapath

Ï Understand the timing (draw diagrams)

Ï Draw bubble-and-arc diagrams for FSMs

Ï Only once you have a design should you start coding in VHDL

Ï VHDL is only a way to ask for component



Block Diagram of a Character Gen.
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Pixel-Level Timing

Clk ��������������������������
CharAddr VVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVi−1 i i+1
LoadChar LLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLLLLLL
CharData VVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVi−1 i i+1
FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLL
PixelData VVVVVVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVi−1 i i+1
Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LL
Bit �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV3 2 1 0 7 6 5 4 3 2 1 0 7



Start-of-line Detail140 141 142 143 144 145 146 147 148 149 150 151 152Clk ��������������������������
Hcount �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV
Column UUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVV0 1
LoadChar LLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLLLLLL
CharData UUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVV0 1
FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLLLLL
PixelData UUUUUUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVV0 1
Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLHBLANK LLLLLLLLLLLLLLLL�HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Pixel UUUUUUUUUUUUUUUU�VV�VV�VV�VV�VV�VV�VV�VV�VV0 1 2 3 4 5 6 7 8



End-of-line detail772 773 774 775 776 777 778 779 780 781 782 783 784Clk ��������������������������
Hcount �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV
Column VVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�UUUUUUUUUUUUUU78 79
LoadChar LLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
CharData VVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV78 79
FontLoad LLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
PixelData VVVVVVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV78 79
Load/Shift LLLLLLLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLHBLANK HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH�LL
Pixel �VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�VV�UU628 629 630 631 632 633 634 635 636 637 638 639



II: Thou Shalt be Synchronous

Ï One global clock

Ï Flip-flops generate inputs to combinational logic, which

computes inputs to flip-flops

Ï Exactly one value per signal per clock cycle

Ï Do not generate asynchronous reset signals; only use them if

they are external

Ï Edge-triggered flip-flops only. Do not use level-sensitive logic.

Ï Do not generate clock signals. Use multiplexers to create “load

enable” signals on flip-flops.



III: Thou Shalt Be Sensitive

Combinational processes: list all process inputs

process (state, long)
begin

if reset = ’1’ then
next_state <= HG;
start_timer <= ’1’;

else
case state is
when HG =>

farm_yellow <= ’0’;
if cars = ’1’ and long = ’1’ then

next_state <= HY;
else

next_state <= HG;
end if;

when HY =>
farm_yellow <= ’0’;
if short = ’1’ then

next_state <= FG;
else

next_state <= HY;
end if;

process (state, reset, cars, short
begin

if reset = ’1’ then
next_state <= HG;
start_timer <= ’1’;

else
case state is

when HG =>
farm_yellow <= ’0’;
if cars = ’1’ and long = ’1’
next_state <= HY;

else
next_state <= HG;

end if;
when HY =>

farm_yellow <= ’0’;
if short = ’1’ then
next_state <= FG;

else
next_state <= HY;

end if;



III: Thou Shalt Be Sensitive

Sequential processes: always include the clock. Include reset if

asynchronous, and nothing else.

process (Clk, D)
begin

if rising_edge(Clk) then
Q <= D;

end if;
end process;

process (Clk, D)
begin

if reset = ’1’ then
Q <= ’0’;

else
if rising_edge(Clk) then
Q <= D;

end if;
end if;

end process;

process (Clk)
begin

if rising_edge(Clk) then
Q <= D;

end if;
end process;

process (Clk, reset)
begin

if reset = ’1’ then
Q <= ’0’;

else
if rising_edge(Clk) then

Q <= D;
end if;

end if;
end process;



IV: Thou Shalt Assign All Outputs

Synthesis infers level-sensitive latches if sometimes you do not

assign an output.

process (state, input)
begin

case state is
when S1 =>

if input = ’1’ then
output <= ’0’;

end if;
when S2 =>
output <= ’1’;

end case;
end process;

process (state, input)
begin

case state is
when S1 =>

if input = ’1’ then
output <= ’0’;

else
output <= ’1’;

end if;
when S2 =>

output <= ’1’;
end case;

end process;



“Default” values are convenient

­­ OK

process (state, input)
begin

case state is
when S1 =>

if input = ’1’ then
output <= ’0’;

else
output <= ’1’;

end if;
when S2 =>
output <= ’1’;

end case;
end process;

­­ Better

process (state, input)
begin

output <= ’1’;
case state is
when S1 =>

if input = ’1’ then
output <= ’0’;

end if;
end case;

end process;



V: Thou Shalt Enumerate States

Better to use an enumeration to encode states:

type states is (START, RUN, IDLE, ZAPHOD);
signal current, next : states;

process (current)
begin

case current is
when START => ...
when RUN => ...
when IDLE => ...

end case;
end process;

Running this produces a helpful error:

Compiling vhdl file "/home/cristi/cs4840/lab4/main.vhd" in

Entity <system> compiled.

ERROR:HDLParsers:813 ­ "/home/cristi/cs4840/lab4/main.vhd"

Enumerated value zaphod is missing in case.

­­>



VI:

(There is no rule six)



VII: Thou Shalt Avoid Async

Only use asynchronous reset when there is one global signal from

outside.

­­ OK for external Reset
process (Clk, Reset)
begin

if Reset = ’1’ then
Q <= ’0’;

else
if rising_edge(Clk) then
Q <= D;

end if;
end if;

end process;

­­ Better
process (Clk)
begin

if rising_edge(Clk) then
if Reset = ’1’ then

Q <= ’0’;
else

Q <= D;
end if;

end if;
end process;

Never generate your own asynchronous reset. Generating a

synchronous reset is fine



VIII: Thou Shalt Have One Version

Ï Never assume signals from the test bench that are not there on

the board

Ï It is hard enough to make simulation match the design; do not

make it any harder

Ï If you must slow down hardware, carefully generate a slower

clock and only use that clock globally.



IX: Thou Shalt Not Test For X Or Z

architecture behv of ALU is begin
process (A,B,Sel) begin

case Sel is
when "00" => Res <= A + B;
when "01" => Res <= A + (not B) + 1;
when "1X" => Res <= A and B;
when "1Z" => Res <= A or B;
when others => Res <= "XX";

end case;
end process;

end behv;

architecture behv of ALU is begin
process(A,B,Sel) begin
case Sel is

when "00" => Res <= A + B;
when "01" => Res <= A + (not
when "10" => Res <= A and B;
when "11" => Res <= A or B;
when others => Res <= "XX";

end case;
end process;

end behv;

This is legal VHDL, but the synthesized circuit won’t behave like you

expect.



X: Thou Shalt Not Specify Delays

Ï The wait statement can delay for a certain amount of time,

e.g., “wait 10ns;”

Ï Only use it in test benches that are not meant to become

hardware

Ï Do not use them in the design of your hardware



Pitfalls: Boolean vs. Std_logic

Don’t assign Boolean to std_logic.

signal a : std_logic;
signal b : unsigned(7 downto 0);

a <= b = x"7E"; ­­ BAD: result is Boolean, not std_logic

a <= ’1’ when b = x"7E" else ’0’; ­­ OK

Don’t test std_logic in a Boolean context.

signal a, b, foo : std_logic;

if a then ­­ BAD: A is not Boolean
foo <= ’1’;

end if;
b <= ’0’ when a else ’1’; ­­ BAD: a is not Boolean

if a = ’1’ then ­­ OK
foo <= ’1’;

end if;
b <= ’0’ when a = ’1’ else ’0’; ­­ OK



Pitfalls: Inferring a Latch

In a combinational process, make sure all output signals are always

assigned.

process (x, y)
begin

if x = ’1’ then
y <= ’0’;

end if;
­­ BAD: y not assigned when x = ’0’, synthesis infers latch

end process;

process (x, y)
begin

y <= ’1’; ­­ OK: y is always assigned
if x = ’1’ then

y <= ’0’;
end if;

end process



Pitfalls: Reading Output Port

library ieee;
use ieee.std_logic_1164.all;
entity dont_read_output is

port ( a : in std_logic;
x, y : out std_logic );

end dont_read_output;

architecture BAD of dont_read_output is
begin

x <= not a;
y <= not x; ­­ Error: can’t read an output port

end BAD;

architecture OK of dont_read_output is
signal x_sig : std_logic;
begin

x_sig <= not a;
x <= x_sig; ­­ x_sig just another name for x
y <= not x_sig; ­­ OK

end OK;



Pitfalls: Complex Port Map Args

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity bad_port_map is end bad_port_map;

architecture BAD of bad_port_map is
component bar port (x : in unsigned(5 downto 0) );
end component;
signal a : unsigned(3 downto 0);
begin

mybar : bar port map ( x => "000" & a); ­­ BAD
end BAD;

architecture OK of bad_port_map is
component bar port (x : in unsigned(5 downto 0) );
end component;
signal a : unsigned(3 downto 0);
signal aa : unsigned(5 downto 0);
begin

aa <= "000" & a;
mybar : bar port map ( x => aa ); ­­ OK

end OK;



Pitfalls: Combinational Loops

You never really need them.

Drive every signal from exactly one process or concurrent

assignment.

Don’t build SR latches. Use D flip-flops instead.



Pitfalls: Clock Gating

Dangerous, difficult to get right.

Use a single, global clock and latch enables to perform the same

function.



Pitfalls: Multiple Clock Domains

If you must, vary the phase and drive clocks directly from flip-flops.



Part VI

Writing Testbenches



Testbenches

One of VHDL’s key points: can describe hardware and environment

together.

­­ Explicit delays are allowed
clk <= not clk after 50 ns;

process
begin

reset <= ’0’;
wait for 10 ns; ­­ Explicit delay
reset <= ’1’;
wait for a = ’1’; ­­ Delay for an event
assert b = ’1’ report "b did not rise" severity failure;
assert c = ’1’ report "c=0" severity warning; ­­ error/note
wait for 50 ns; ­­ Delay for some time
wait; ­­ Halt this process

end process;



Testbench Methodology

Ï Always put testbench in a separate .vhd file since it cannot be

synthesized.

Ï Instantiate block under test and apply desired inputs (clocks,

other stimulus)

Ï Use assert to check conditions

Ï Try to emulate hardware environment as closely as possible

(no special inputs, etc.)



A Testbench

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tlc_tb is ­­ A testbench usually has no ports
end tlc_tb;

architecture tb of tlc_tb is
signal clk : std_logic := ’0’; ­­ Must initialize!

­­ One signal per port is typical
signal reset, cars, short, long : std_logic;
signal farm_red, start_timer : std_logic;

begin

clk <= not clk after 34.92 ns; ­­ 14 MHz



A testbench continued

­­ Apply stimulus and check the results
process
begin

cars <= ’0’; short <= ’0’; long <= ’0’; reset <= ’1’;
wait for 100 ns;
assert start_timer = ’1’ report "No timer" severity error;
reset <= ’0’;
wait for 100 ns;
assert farm_red = ’1’ report "Farm not red" severity error;
wait;

end process;

­­ Instantiate the Unit Under Test
uut : entity work.tlc
port map ( clk => clk, reset => reset,

cars => cars, short => short,
long => long, farm_red => farm_red,
start_timer => start_timer);

end tb;
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