
SystemC 1.3

Languages for Embedded Systems

Prof. Stephen A. Edwards

Columbia University

March 2009



Designing Big Digital Systems

Even Verilog or VHDL’s behavioral modeling is not high-level

enough

People generally use C or C++



Standard Methodology for ICs

System-level designers write a C or C++ model

Written in a stylized, hardware-like form

Sometimes refined to be more hardware-like

C/C++ model simulated to verify functionality

Model given to Verilog/VHDL coders

Verilog or VHDL specification written

Models simulated together to test equivalence

Verilog/VHDL model synthesized



Designing Big Digital Systems

Every system company was doing this differently

Every system company used its own simulation library

“Throw the model over the wall” approach makes it easy to

introduce errors

Problems:

System designers don’t know Verilog or VHDL

Verilog or VHDL coders don’t understand system design



Idea of SystemC

C and C++ are being used as ad-hoc modeling languages

Why not formalize their use?

Why not interpret them as hardware specification languages just as

Verilog and VHDL were?

SystemC developed at my former employer Synopsys to do just this



What Is SystemC?

A subset of C++ that models/specifies synchronous digital hardware

A collection of simulation libraries that can be used to run a

SystemC program

A compiler that translates the “synthesis subset” of SystemC into a

netlist



What Is SystemC?

Language definition is publicly available

Libraries are freely distributed

Compiler is an expensive commercial product

See www.systemc.org for more information



Quick Overview

A SystemC program consists of module definitions plus a top-level

function that starts the simulation

Modules contain processes (C++ methods) and instances of other

modules

Ports on modules define their interface

Rich set of port data types (hardware modeling, etc.)

Signals in modules convey information between instances

Clocks are special signals that run periodically and can trigger

clocked processes

Rich set of numeric types (fixed and arbitrary precision numbers)



Modules

Hierarchical entity

Similar to Verilog’s module

Actually a C++ class definition

Simulation involves

Ï Creating objects of this class

Ï They connect themselves together

Ï Processes in these objects (methods) are called by the

scheduler to perform the simulation



Modules

SC_MODULE(mymod) {

/* port definitions */

/* signal definitions */
/* clock definitions */

/* storage and state variables */

/* process definitions */

SC_CTOR(mymod) {

/* Instances of processes and modules */
}

};



Ports

Define the interface to each module

Channels through which data is communicated

Port consists of a direction

input sc_in

output sc_out

bidirectional sc_inout

and any C++ or SystemC type

SC_MODULE(mymod) {

sc_in<bool> load, read;

sc_inout<int> data;
sc_out<bool> full;

/* rest of the module */
};



Signals

Convey information between modules within a module

Directionless: module ports define direction of data transfer

Type may be any C++ or built-in type

SC_MODULE(mymod) {

/* ... */

/* signal definitions */
sc_signal<sc_uint<32> > s1, s2;

sc_signal<bool> reset;

/* ... */

SC_CTOR(mymod) {
/* Instances of modules that

connect to the signals */

}
};



Instances of Modules

Each instance is a pointer to an object in the module

SC_MODULE(mod1) { ... };

SC_MODULE(mod2) { ... };

SC_MODULE(foo) {

mod1* m1;
mod2* m2;

sc_signal<int> a, b, c;

SC_CTOR(foo) {

m1 = new mod1("i1"); (*m1)(a, b, c);

Connect
instance’s
ports to
signals

m2 = new mod2("i2"); (*m2)(c, b);
}

};



Processes

Only thing in SystemC that actually does anything

Procedural code with the ability to suspend and resume

Methods of each module class

Like Verilog’s initial blocks

Three types:

Ï METHOD: Models combinational logic

Ï THREAD: Models testbenches

Ï CTHREAD: Models synchronous FSMs



METHOD Processes

Triggered in response to changes on inputs

Cannot store control state between invocations

Designed to model blocks of combinational logic



METHOD Processes

SC_MODULE(onemethod) {

sc_in<bool> in;

sc_out<bool> out;

void inverter();

Process is
simply a
method of this
class

SC_CTOR(onemethod) {

SC_METHOD(inverter);
Create an
instance of this
processsensitive(in);

Trigger when
in changes}

};



METHOD Processes

Invoked once every time input “in” changes

Should not save state between invocations

Runs to completion: should not contain infinite loops

Not preempted

void onemethod::inverter() {

bool internal;
internal = in;

Read a value
from a port

out = ~internal;
Write a value
to an output

}



THREAD Processes

Triggered in response to changes on inputs

Can suspend itself and be reactivated

Method calls wait to relinquish control

Scheduler runs it again later

Designed to model just about anything



THREAD Processes

SC_MODULE(onemethod) {

sc_in<bool> in;

sc_out<bool> out;

void toggler();

Process a
method of the
class

SC_CTOR(onemethod) {

SC_THREAD(toggler);

Create an
instance of the
process

sensitive << in; Alernate
sensitivity list
notation

}

};



THREAD Processes

Reawakened whenever an input changes

State saved between invocations

Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false;

for (;;) {
last = in; out = last; wait();

Relinquish control
until the next
change of signal on
this process’s
sensitivity list

last = ~in; out = last; wait();

}
}



CTHREAD Processes

Triggered in response to a single clock edge

Can suspend itself and be reactivated

Method calls wait to relinquish control

Scheduler runs it again later

Designed to model clocked digital hardware



CTHREAD Processes

SC_MODULE(onemethod) {

sc_in_clk clock;

sc_in<bool> trigger, in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {
SC_CTHREAD(toggler, clock.pos());

Instance of this
process created and
relevant clock edge
assigned

}

};



CTHREAD Processes

Reawakened at the edge of the clock

State saved between invocations

Infinite loops should contain a wait()

void onemethod::toggler() {

bool last = false;
for (;;) {

wait_until

Relinquish control until the
next clock cycle in which the
trigger input is 1

(trigger.delayed() == true);

last = in; out = last;
wait();

last = ~in; out = last;
wait(); Relinquish control

until the next clock
cycle

}

}



A CTHREAD for Complex Multiply

struct complex_mult : sc_module {

sc_in<int> a, b, c, d;
sc_out<int> x, y;

sc_in_clk clock;

void do_mult() {

for (;;) {
x = a * c ­ b * d;

wait();

y = a * d + b * c;
wait();

}
}

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());

}

};



Watching

A CTHREAD process can be given reset-like behavior

SC_MODULE(onemethod) {

sc_in_clk clock;
sc_in<bool> reset, in;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());
watching

Process will be restarted when
reset is true

(reset.delayed() == true);

}
};



Local Watching

It’s hard, but the SystemC designers managed to put a more flexible

version of abort in the language

Ugly syntax because they had to live with C++

Only for SC_CTHREAD processes



Local Watching

void mymodule::myprocess() {

W_BEGIN

watching(reset.delayed() == true);
W_DO

/* do something */

W_ESCAPE
/* code to handle the reset */

W_END

}



SystemC Types

SystemC programs may use any C++ type along with any of the

built-in ones for modeling systems

Ï c_bit, sc_logic

Two- and four-valued single bit

Ï sc_int, sc_unint

1 to 64-bit signed and unsigned integers

Ï sc_bigint, sc_biguint

arbitrary (fixed) width signed and unsigned integers

Ï sc_bv, sc_lv

arbitrary width two- and four-valued vectors

Ï sc_fixed, sc_ufixed

signed and unsigned fixed point numbers



Numeric Types

Ï Integers

Precise

Manipulation is fast and cheap

Poor for modeling continuous real-world behavior

Ï Floating-point numbers

Less precise

Better approximation to real numbers

Good for modeling continuous behavior

Manipulation is slow and expensive

Ï Fixed-point numbers

Worst of both worlds

Used in many signal processing applications



Integers, Floating-point, Fixed-point

Integer

Fixed-point

Floating-point ×2



Using Fixed-Point Numbers

High-level models usually use floating-point for convenience

Fixed-point usually used in hardware implementation because they

are much cheaper

Problem: the behavior of the two are different

How do you make sure your algorithm still works after it has been

converted from floating-point to fixed-point?

SystemC’s fixed-point number classes facilitate simulating

algorithms with fixed-point numbers



SystemC’s Fixed-Point Types

sc_fixed<8, 1, SC_RND, SC_SAT> fpn;

8 is the total number of bits in the type

1 is the number of bits to the left of the decimal point

SC_RND defines rounding behavior

SC_SAT defines saturation behavior



Rounding

What happens when your result doesn’t land exactly on a

representable number?

Rounding mode makes the choice



SC_RND

Round up at 0.5

What you ex-

pect?



SC_RND_ZERO

Round toward zero

Less error accumula-

tion



SC_TRN

Truncate

Easiest to understand



Overflow

What happens if the result is too positive or too negative to fit in the

result?

Saturation? Wrap-around?

Different behavior appropriate for different applications



SC_SAT

Saturate

Sometimes desired



SC_SAT_ZERO

Set to zero

Odd Behavior



SC_WRAP

Wraparound

Easiest to implement



SystemC Semantics

Cycle-based simulation semantics

Resembles Verilog, but does not allow the modeling of delays

Designed to simulate quickly and resemble most synchronous

digital logic



Clocks

The only thing in SystemC that has a notion of real time

Only interesting part is relative sequencing among multiple clocks

Triggers SC_CTHREAD processes or others if they decided to

become sensitive to clocks



Clocks

sc_clock clock1("myclock", 20, 0.5, 2, false);

2 0.5 of 20

20



SystemC 1.0 Scheduler

Assign clocks new values

Repeat until stable

Ï Update the outputs of triggered SC_CTHREAD processes

Ï Run all SC_METHOD and SC_THREAD processes whose

inputs have changed

Execute all triggered SC_CTHREAD methods. Their outputs are

saved until next time



Scheduling

Clock updates outputs of SC_CTHREADs

SC_METHODs and SC_THREADs respond to this change and settle

down

Bodies of SC_CTHREADs compute the next state



Why Clock Outputs?

Why not allow Mealy-machine-like behavior in FSMs?

Difficult to build large, fast systems predictably

Easier when timing worries are per-FSM

Synthesis tool assumes all inputs arrive at the beginning of the

clock period and do not have to be ready

Alternative would require knowledge of inter-FSM timing



Implementing SystemC

Main trick is implementing SC_THREAD and SC_CTHREAD’s

ability to call wait()

Implementations use a lightweight threads package

/* ... */

wait();

Instructs thread package to save
current processor state (register,
stack, PC, etc.) so this method can
be resumed later

/* ... */



Implementing SystemC

Other trick is wait_until()

wait_until(continue.delayed() == true);

Expression builds an object that can check the condition

Instead of context switching back to the process, scheduler calls

this object and only runs the process if the condition holds



Determinism in SystemC

Easy to write deterministic programs in SystemC

Ï Don’t share variables among processes

Ï Communicate through signals

Ï Don’t try to store state in SC_METHODs

Possible to introduce nondeterminism

Ï Share variables among SC_CTHREADs: They are executed in

nondeterministic order

Ï Hide state in SC_METHODs: No control over how many times

they are invoked

Ï Use nondeterministic features of C/C++



Synthesis Subset of SystemC

At least two

“Behavioral” Subset

Ï Implicit state machines permitted

Ï Resource sharing, binding, and allocation done automatically

Ï System determines how many adders you have

Register-transfer-level Subset

Ï More like Verilog

Ï You write a “+”, you get an adder

Ï State machines must be listed explicitly



Do People Use SystemC?

Not as many as use Verilog or VHDL

Growing in popularity

People recognize advantage of being able to share models

Most companies were doing something like it already

Use someone else’s free libraries? Why not?



Conclusions

C++ dialect for modeling digital systems

Provides a simple form of concurrency:

Cooperative multitasking

Modules

Instances of other modules

Processes



Conclusions

SC_METHOD

Ï Designed for modeling purely functional behavior

Ï Sensitive to changes on inputs

Ï Does not save state between invocations

SC_THREAD

Ï Designed to model anything

Ï Sensitive to changes

Ï May save variable, control state between invocations

SC_CTHREAD

Ï Models clocked digital logic

Ï Sensitive to clock edges

Ï May save variable, control state between invocations



Conclusions

Perhaps even more flawed than Verilog

Verilog was a hardware modeling language forced into specifying

hardware

SystemC forces C++, a software specification language, into

modeling and specifying hardware

SystemC 2.0 quite a change: moved to a more flexible, event-driven

modeling style. Modeling, not synthesis the main focus.

Will it work? Time will tell.


