Homosapien Modeling Language (HML)

Language Reference Manual

COMS W4115: Programming Languages and Translators
Professor Stephen A. Edwards
Computer Science Department
Summer 2008 Columbia University
Dated: 2008-06-19

Derek Ng
dn2150@columbia.edu
Columbia Video Network




Introduction

The Homosapien Modeling Language (HML) is a language meant to allow programmers the ability to
model the nature of human beings. With HML, a programmer could model the effects of external forces
on the human body. Some of HML’s syntax are similar to the C programming language syntax. The basis
for the language involves a Human data type which can be manipulated by a Force data type. In real life,
there are numerous external forces in the world and this language hopefully will help us to model how
Humans will react.

Lexical conventions

Like the C programming language, HML will have the following tokens: identifiers, keywords, operators,
and separators. In this initial version of HML, there will be a limited set of supported tokens as there is a
limited of resources available (just me!).

Separators

Tokens are separated by blanks, tabs, and newlines.

Comments

Comments are preceded and followed by a control sequence. Comments are started with a forward,
double slash and are ended with a backward double slash. An example comment would be as follows:
// THIS IS A COMMENT \\

Identifiers

A HML identifier is a string that begins with a letter and is then followed by any pattern of letters or
numbers. Example identifiers would be: a, a00, a00a00, and so forth. Identifiers cannot be *a (starting
with an asterisk) or 00a (starting with a number).

Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:
if

else

while

do

Human

Force

Display

TRUE

FALSE

Constants



Current HML only has integer and Boolean constants. An integer constant is any sequence of digits from
0to 9, but if the sequence begins with 0, it may only be of length 1. A Boolean constant may only be
True or False.

Built in Operators

HML has a set of built in operators to manipulate variables.

e Assignment (=) is used to define a variable to take on a given value denoted by variable = value.

e Addition (+) is used to apply a Force to a Human. If Ais a Force and B is a Human, than B + A would
apply the Force to the Human. This operation returns a Human variable.

e IsEqual To (==) is used to compare the equality of two variables. It returns a Boolean value.

e Is Greater Than (>), Is Less Than (<), and Is Greater Than or Equal To (>=) are similar to the Is Equal
To function but compare two variables in accordance with the operation’s name. They too return
Boolean values.

Assignment has the lowest priority of any of the built in operators. All other operators are of equal
priority and are evaluated from left to right.

Control Statements

Most statements are expression statements:
expression

Expressions can be used for HML’s has two forms of control statements. The first control statement is
the if-else statement which takes the form:

if (expression) {statement} else {statement}
Like in the C programming language, if the first statement is valid, then the second statement executes.
If the first statement is false, then the statement after the else executes.

The second control statement is a while-do loop which allows for repetitive operations while a given
control statement holds.
while (<expression>) do { <statement> }

Scope
At this time, the role of scope in HML is TBD.

Token replacement

HML does not support token replacement.

File inclusion
HML does not support file inclusion and is limited to the syntax defined in this document.

Sample Code

foo.hml



Human Derek
{

Height 400

Age 10

Weight 410

Happiness
}
Force Burger.Weight 10
Derek += Burger
Display Derek



