
Language Design
COMS W4115

Katsushika Hokusai, In the Hollow of a Wave off the Coast at Kanagawa, 1827

Prof. Stephen A. Edwards
Fall 2007

Columbia University
Department of Computer Science

Language Design Issues

Syntax: how programs look

• Names and reserved words

• Instruction formats

• Grouping

Semantics: what programs mean

• Model of computation: sequential, concurrent

• Control and data flow

• Types and data representation

C History

Developed between 1969 and 1973 along
with Unix

Due mostly to Dennis Ritchie

Designed for systems programming

• Operating systems

• Utility programs

• Compilers

• Filters

Evolved from B, which evolved from BCPL

BCPL

Martin Richards, Cambridge, 1967

Typeless

• Everything a machine word (n-bit integer)

• Pointers (addresses) and integers identical

Memory: undifferentiated array of words

Natural model for word-addressed machines

Local variables depend on frame-pointer-relative
addressing: no dynamically-sized automatic objects

Strings awkward: Routines expand and pack bytes to/from
word arrays

C History

Original machine (DEC
PDP-11) was very small:

24K bytes of memory, 12K
used for operating system

Written when computers
were big, capital equipment

Group would get one,
develop new language, OS

C History

Many language features designed to reduce memory

• Forward declarations required for everything

• Designed to work in one pass: must know everything

• No function nesting

PDP-11 was byte-addressed

• Now standard

• Meant BCPL’s word-based model was insufficient

Euclid’s Algorithm in C

int gcd(int m, int n)

{

int r;

while ((r = m % n) != 0) {

m = n;

n = r;

}

return n;

}

“New syle” function
declaration lists
number and type of
arguments.
Originally only
listed return type.
Generated code did
not care how many
arguments were
actually passed,
and everything was
a word.
Arguments are
call-by-value

Euclid’s Algorithm in C

int gcd(int m, int n)

{

int r;

while ((r = m % n) != 0) {

m = n;

n = r;

}

return n;

}

Automatic variable

Allocated on stack
when function
entered, released
on return

Parameters &
automatic variables
accessed via frame
pointer

Other temporaries
also stacked

← Ignored
n
m

FP→ PC
r → SP

Euclid on the PDP-11
.globl _gcd GPRs: r0–r7
.text r7=PC, r6=SP, r5=FP

_gcd:
jsr r5, rsave Save SP in FP

L2: mov 4(r5), r1 r1 = n
sxt r0 sign extend
div 6(r5), r0 r0, r1 = m ÷ n
mov r1, -10(r5) r = r1 (m % n)
jeq L3 if r == 0 goto L3
mov 6(r5), 4(r5) m = n
mov -10(r5), 6(r5) n = r
jbr L2

L3: mov 6(r5), r0 r0 = n
jbr L1 non-optimizing compiler

L1: jmp rretrn return r0 (n)

Euclid on the PDP-11

.globl _gcd

.text
_gcd:

jsr r5, rsave
L2: mov 4(r5), r1

sxt r0
div 6(r5), r0
mov r1, -10(r5)
jeq L3
mov 6(r5), 4(r5)
mov -10(r5), 6(r5)
jbr L2

L3: mov 6(r5), r0
jbr L1

L1: jmp rretrn

Very natural
mapping from
C into PDP-11
instructions.

Complex addressing modes
make frame-pointer-relative
accesses easy.

Another idiosyncrasy:
registers were
memory-mapped, so taking
address of a variable in a
register is straightforward.

The Design of C
Taken from Dennis Ritchie’s C Reference Manual

(Appendix A of Kernighan & Ritchie)

Lexical Conventions

Identifiers (words, e.g., foo , printf)

Sequence of letters, digits, and underscores, starting with
a letter or underscore

Keywords (special words, e.g., if , return)

C has fairly few: only 23 keywords. Deliberate: leaves
more room for users’ names

Comments (between / * and * /)

Most fall into two basic styles: start/end sequences as in
C, or until end-of-line as in Java’s //

Lexical Conventions

C is a free-form language where whitespace mostly
serves to separate tokens. Which of these are the same?

1+2

1 + 2

foo bar

foobar

return this

returnthis

Space is significant in some language. Python uses
indentation for grouping, thus these are different:

if x < 3:

y = 2

z = 3

if x < 3:

y = 2

z = 3

Constants/Literals

Integers (e.g., 10)

Should a leading - be part of an integer or not?

Characters (e.g., ’a’)

How do you represent non-printable or ’ characters?

Floating-point numbers (e.g., 3.5e-10)

Usually fairly complex syntax, easy to get wrong.

Strings (e.g., "Hello")

How do you include a " in a string?

What’s in a Name?

In C, each name has a storage class (where it is) and a
type (what it is).

Storage classes:

1. automatic

2. static

3. external

4. register

Fundamental types:

1. char

2. int

3. float

4. double

Derived types:

1. arrays

2. functions

3. pointers

4. structures

Objects and lvalues

Object: area of memory

lvalue: refers to an object

An lvalue may appear on the left side of an assignment

a = 3; / * OK: a is an lvalue * /

3 = a; / * 3 is not an lvalue * /

Conversions

C defines certain automatic conversions:

• A char can be used as an int

• int and char may be converted to float or double

and back. Result is undefined if it could overflow.

• Adding an integer to a pointer gives a pointer

• Subtracting two pointers to objects of the same type
produces an integer

Expressions

Expressions are built from identifiers (foo), constants (3),
parenthesis, and unary and binary operators.

Each operator has a precedence and an associativity

Precedence tells us
1 * 2 + 3 * 4 means

(1 * 2) + (3 * 4)

Associativity tells us
1 + 2 + 3 + 4 means

((1 + 2) + 3) + 4

C’s Operators in Precedence Order
f(r,r, ...) a[i] p->m s.m
!b ˜i -i
++l --l l++ l--
* p &l (type) r sizeof(t)
n * o n / o i % j
n + o n - o
i << j i >> j
n < o n > o n <= o n >= o
r == r r != r
i & j
i ˆ j
i | j
b && c
b || c
b ? r : r
l = r l += n l -= n l * = n
l /= n l %= i l &= i l ˆ= i
l |= i l <<= i l >>= i
r1 , r2

Declarators

Declaration: string of specifiers followed by a declarator

static unsigned

basic type
︷︸︸︷

int
︸ ︷︷ ︸

specifiers

(* f[10])(int, char *);
︸ ︷︷ ︸

declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Storage-Class Specifiers

auto Automatic (stacked), default

static Statically allocated

extern Look for a declaration elsewhere

register Kept in a register, not memory

C trivia: Originally, a function could only have at most
three register variables, may only be int or char ,
can’t use address-of operator &.

Today, register simply ignored. Compilers try to put
most automatic variables in registers.

Type Specifiers

int

char

float

double

struct { declarations }

struct identifier { declarations }

struct identifier

Declarators

identifier

(declarator) Grouping

declarator () Function

declarator [optional-constant] Array

* declarator Pointer

C trivia: Originally, number and type of arguments to a
function wasn’t part of its type, thus declarator just
contained () .

Today, ANSI C allows function and argument types,
making an even bigger mess of declarators.

Declarator syntax

Is int * f() a pointer to a function returning an int , or a
function that returns a pointer to an int ?

Hint: precedence rules for declarators match those for
expressions.

Parentheses resolve such ambiguities:

int * (f()) Function returning pointer to int

int (* f)() Pointer to function returning int

Statements
expression ;
{ statement-list }
if (expression) statement else statement
while (expression) statement
do statement while (expression);
for (expression ; expression ; expression) statement
switch (expression) statement
case constant-expression :
default:
break;
continue;
return expression ;
goto label ;
label :

External Definitions

“A C program consists of a sequence of external
definitions”

Functions, simple variables, and arrays may be defined.

“An external definition declares an identifier to have
storage class extern and a specified type”

Function definitions
type-specifier declarator (parameter-list)

type-decl-list
{

declaration-list
statement-list

}

Example:
int max(a, b, c)
int a, b, c;
{

int m;
m = (a > b) ? a : b ;
return m > c ? m : c ;

}

More C trivia

The first C compilers did not check the number and type
of function arguments.

The biggest change made when C was standardized was
to require the type of function arguments to be defined:

Old-style

int f();

int f(a, b, c)

int a, b;

double c;

{

}

New-style

int f(int, int, double);

int f(int a, int b, double c)

{

}

Data Definitions

type-specifier init-declarator-list ;

declarator optional-initializer

Initializers may be constants or brace-enclosed,
comma-separated constant expressions. Examples:

int a;

struct { int x; int y; } b = { 1, 2 };

float a, * b, c;

Scope Rules

Two types of scope in C:

1. Lexical scope

Essentially, place where you
don’t get “undeclared identifier” errors

2. Scope of external identifiers

When two identifiers in different files refer to the same
object. E.g., a function defined in one file called from
another.

Lexical Scope

Extends from declaration to terminating } or end-of-file.
int a;

int foo()
{

int b;
if (a == 0) {

printf("A was 0");
a = 1;

}
b = a; / * OK * /

}

int bar()
{

a = 3; / * OK * /
b = 2; / * Error: b out of scope * /

}

External Scope

file1.c:
int foo()
{

return 0;
}

int bar()
{

foo(); /* OK */
}

file2.c:
int baz()
{

foo(); /* Error */
}

extern int foo();

int baff()
{

foo(); /* OK */
}

The Preprocessor

Violates the free-form nature of C: preprocessor lines
must begin with #.

Program text is passed through the preprocessor before
entering the compiler proper.

Define replacement text:

define identifier token-string

Replace a line with the contents of a file:

include " filename "

C’s Standard Libraries

<assert.h> Generate runtime errors assert(a > 0)
<ctype.h> Character classes isalpha(c)
<errno.h> System error numbers errno
<float.h> Floating-point constants FLT MAX
<limits.h> Integer constants INT MAX
<locale.h> Internationalization setlocale(...)
<math.h> Math functions sin(x)
<setjmp.h> Non-local goto setjmp(jb)
<signal.h> Signal handling signal(SIGINT,&f)
<stdarg.h> Variable-length arguments va start(ap, st)
<stddef.h> Some standard types size t
<stdio.h> File I/O, printing. printf("%d", i)
<stdlib.h> Miscellaneous functions malloc(1024)
<string.h> String manipulation strcmp(s1, s2)
<time.h> Time, date calculations localtime(tm)

Language design

Language design is library design.
— Bjarne Stroustroup

Programs consist of pieces connected together.

Big challenge in language design: making it easy to put
pieces together correctly. C examples:

• The function abstraction (local variables, etc.)

• Type checking of function arguments

• The #include directive

