An ANTLR 2.0 Grammar for Esterel

COMS W4115

Prof. Stephen A. Edwards
Fall 2007
Columbia University
Department of Computer Science

ANTLR 2.0

A reminder:

These example are for
ANTLR 2.0

They do not work for
ANTLR 3.0

ANTLR

Esterel.g

EsterelParser.java

class EsterelParser
extends Parser:;

file . expr EOF!,

class EsterelLexer
extends Lexer:

ID : LETTER (LETTER
| DIGIT) * :

public class
EsterelParser extends
antlr.LLkParser
Implements
EsterelParserTokenTypes

U

EsterelLexer.java

public class EsterelLexer
extends antlr.CharScanner
implements
EsterelParserTokenTypes,
TokenStream {}

ANTLR Lexer Specifications

Look like
class MyLexer extends Lexer;
options {

option = val ue
}
Tokenl : 'char’ ’'char’ ;
Token2 : 'char’ ’'char’ ;
Token3 : 'char’ (’char’)?;

Tries to match all non-protected tokens at once.

ANTLR Parser Specifications

Look like
class MyParser extends Parser;
options {
option = val ue
}

rul el : Tokenl Token?

| Token3 rul e2;
rul e2 : (Tokenl Token?* ;
rule3d : rulel ;

Looks at the next k£ tokens when deciding which option to
consider next.

An ANTLR grammar for Esterel

Esterel. Language out of France. Programs look like

module ABRO:
input A, B, R;
output O;

loop
| await A || await B];
emit O

each R

end module

The Esterel LRM

Lexical aspects are classical:

* |dentifiers are sequences of letters, digits, and the
underline character , starting with a letter.

* Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and
Java, the values 12.3 , .123E2 , and 1.23E1 are
constants of type double, while 12.3f , .123E2f , and
1.23E1f are constants of type float.

e Strings are written between double quotes, e.qg.,
"a string" , with doubled double quotes as In
"a "" double guote"

The Esterel LRM

* Keywords are reserved and cannot be used as
identifiers. Many constructs are bracketed, like
“present ... end present ”. For such
constructs, repeating the initial keyword is optional;
one can also write “present ... end ”

* Simple comments start with %and end at end-of-line.
Multiple-line comments start with %{ and end with }% .

A Lexer for Esterel

Operators from the langauge reference manual:

H+ - x| <>, =5 0= ()
[] ? ?? <= >= <> =>

Main observation: none longer than two characters. Need
k = 2 to disambiguate, e.g., ? and ??.

class EsterelLexer extends Lexer;
options {

A Lexer for Esterel

Next, | wrote a rule for each punctuation character:

PERIOD Vo
POUND '
PLUS : '+
DASH : .
SLASH 'l
STAR kT

PARALLEL : "

A Lexer for Esterel

|dentifiers are standard:

ID
(a7 | A2
(a.oz | A2 |00] 0.9

A Lexer for Esterel

String constants must be contained on a single line and
may contain double quotes, e.qg.,

"This Is a constant with ""double quotes™"

ANTLR makes this easy: annotating characters with !
discards them from the token text:

StringConstant
1Il1!

("])

A Lexer for Esterel

| got in trouble with the = operator, which inverts a
character class. Invert with respect to what?

Needed to change options:

options {
k = 2;
charVocabulary = "\3'..’\377’;
exportVocab = Esterel;

A Lexer for Esterel

Another problem: ANTLR scanners check each
recognized token’s text against keywords by default.

A string such as "abort" would scan as a keyword!

options {
K = 2;
charVocabulary = \3'..\377’;
exportVocab = Esterel;
testLiterals = false;

}

ID options { testLiterals = true; }
> (a..'z’ | A2 LA

Numbers Defined

From the LRM:

Integers are as in any language, e.g., 123, and
floating-point numerical constants are as in C++ and Java;

the values 12.3 , .123E2 , and 1.23E1 are constants of
type double, while 12.3f , .123E2f , and 1.23E1f are

constants of type float.

Numbers

With k£ = 2, for each rule ANTLR generates a set of
characters that can appear first and a set that can appear
second. But it doesn’t consider the possible combinations.

| split numbers into Number and FractionalNumber to
avoid this problem: If the two rules were combined, the
lookahead set for Number would include a period (e.qg.,
from “.1") followed by end-of-token e.g., from “1” by itself).

Example numbers: First Second
1% . EOT
2 1

1% 2 1

Number Rules

Number
. (°0°..’9")+

(' (0.9 * (Exponent)?
((FfI'F) { $setType(FloatConst); }
| / = empty */ { $setType(DoubleConst);
)

| / » empty =/ { $setType(Integer); }

)

Number Rules Continued

FractionalNumber
" (0..9)+ (Exponent)?
((FfI'F) { $setType(FloatConst); }
| / = empty */ { $setType(DoubleConst);

)

protected
Exponent
: (le1|1E1) (1+1|1_1)? (101..191)+

Comments

From the LRM:

Simple comments start with %and end at end-of-line.
Multiple-line comments start with %{ and end with }%.

Comments

Comment
. 00’
(({) =>7Y
(/I Prevent . * from eating the whole file
options {greedy=false;}:
(
C\r' \n’) => \r' \n’ { newline(); }
| \r’ { newline(); }
| \n’ { newline(); }
| (. \n’" | \r")
)
)*
g
| ((C’'\n’)) * \n” { newline(); }
)

{ $setType(Token.SKIP); }

A Parser for Esterel

Esterel’'s syntax started out using ; as a separator and
later allowed it to be a terminator.

The language reference manual doesn’t agree with what
the compiler accepts.

Grammar from the LRM

NonParallel:
AtomicStatement
Sequence

Sequence:
SequenceWithoutTerminator ; o

SequenceWithoutTerminator:
AtomicStatement ; AtomicStatement
SequenceWithoutTerminator ; AtomicStatement

AtomicStatement:
nothing
pause

Grammar from the LRM

But in fact, the compiler accepts

module TestSemicolonl:
nothing;

end module

module TestSemicolon2:
nothing; nothing;

end module

module TestSemicolon3:
nothing; nothing

end module

Rule seems to be “one or more statements separated by
semicolons except for the last, which is optional.”

Grammar for Statement Sequences

Obvious solution:

sequence
. atomicStatement

(SEMICOLON atomicStatement) =
(SEMICOLON)?

warning: nondeterminism upon
k==1:SEMICOLON

between alt 1 and exit branch of block

Which option do you take when there’s a semicolon?

Nondeterminism

sequence : atomicStatement
(SEMICOLON atomicStatement) =
(SEMICOLON)? ;

Is equivalent to

sequence : atomicStatement seql seq2 ;

seql : SEMICOLON atomicStatement seql
| / * nothing ~*/ ;

seq2 : SEMICOLON
| / * nothing */ ;

Nondeterminism

sequence : atomicStatement seql seq2 ;
seql : SEMICOLON atomicStatement seql
| / * nothing */ ;
seq2 : SEMICOLON
| / * nothing ~*/ ;

How does it choose an alternative in seql ?
First choice: next token is a semicolon.
Second choice: next token is one that may follow seql.

But this may also be a semicolon!

Nondeterminsm

Solution: tell ANTLR to be greedy and prefer the iteration
solution.

seguence
. atomicStatement
(options { greedy=true; }
. SEMICOLON! atomicStatement) =
(SEMICOLONDH?

Nondeterminism

Delays can be “A” “X A” “immediate A” or “[A and B].”

delay : expr bSigExpr
| bSIgEXpr
| "Immediate" bSigExpr ;

bSigExpr : ID
| "[' signhalExpression "]|" ;

expr : ID |/ * ... *[;

Which choice when next token is an ID?

Nondeterminism

delay : expr bSigExpr
| bSIigEXpr
| "Immediate"” bSigExpr ;

What do we really want here?
If the delay is of the form “expr bSigExpr,” parse it that way.

Otherwise try the others.

Nondeterminism

delay : ((expr bSigExpr) => delayPair
| bSigEXpr
| "Immediate"” bSigExpr
)

delayPair : expr bSigExpr ;

The => operator means “try to parse this first. If it works,
choose this alternative.”

Greedy Rules

The author of ANTLR writes

| have yet to see a case when building a parser
grammar where | did not want a subrule to match
as much input as possible.

However, it is particularly useful in scanners:

COMMENT
Rt () x

This doesn’t work like you'd expect...

Turning Off Greedy Rules

The right way Is to disable greedy:

COMMENT
"o
(options {greedy=false;} :.) *
1] */ll ;

This only works if you have two characters of lookahead:

class L extends Lexer;
options {

k=2:
}

CMT : "/ =" (options {greedy=false;} :.) *

The Dangling Else Problem
class MyGram extends Parser;

stmt : "if" expr "then" stmt ("else" stmt)? ;
Gives

ANTLR Parser Generator Version 2.7.1
gram.g:3: warning: nondeterminism upon
gram.g:3: k==1:"else"

gram.g:3: between alts 1 and 2 of block

Generated Code

stmt : "if" expr "then" stmt ("else" stmt)? ;
match(LITERAL Iif);

expr();

match(LITERAL_ then);

stmt();

If ((LA(1)==LITERAL_else)) {
match(LITERAL else); /* Close binding else */
stmt();

} else iIf ((LA(1)==LITERAL else)) {
/* go on: else can follow a stmt */
} else {

throw new SyntaxError(LT(1));

}

Removing the Warning

class MyGram extends Parser,

stmt
. MiIf" expr "then" stmt
(options {greedy=true;} :"else" stmt)?

A Simpler Language

class MyGram match(LITERAL_if);
extends Parser; expr();
match(LITERAL then);
stmt();
. switch (LA(1)) {
I expr case LITERAL else:
"then" stmt match(LITERAL_else);
("else" stmt)? stmt();
ni break;
case LITERAL_fi:
break;

stmt

default:
throw new SyntaxError(LT(1));

}
match(LITERAL_fi);

