Review for the Final
COMS W4115

Prof. Stephen A. Edwards
Fall 2007
Columbia University
Department of Computer Science

Topics 2

Types

Static Semantic Analysis

Code Generation

Functional Programming (ML, Lambda Calculus)

Logic Programming (Prolog)

Lexical Analysis Gives Tokens

int ged(int a, int b)
{

while (a != b) {
if (@ >b) a-=b;
else b = a;

}

return a;

-~

A stream of tokens. Whitespace, comments removed.

The Final

70 minutes

4-5 problems

Closed book

One single-sided 8.5 x 11 sheet of notes of your own
devising

Comprehensive: Anything discussed in class is fair game
Little, if any, programming.

Ability to write ANTLR/C/Java/Prolog/ML syntax not
required

Broad knowledge of languages discussed

Compiling a Simple Program

int ged(int a, int b)
{
while (a != b) {
if (@ > b) a-=b;
else b -= a;

}

return a,

Parsing Gives an AST

func

\

ged™ args seq

7\
arg arg Whlle return

in{ \a in{ \
/ L\

int ged(int a, int b)

¢ while (a != b) { a/ \b a/ \b / \

if @>b)a-=hb;
else b = a;

}

return a;

Abstract syntax tree built from parsing rules.

Topics 1

Structure of a Compiler
Scripting Languages
Scanning and Parsing
Regular Expressions
Context-Free Grammars
Top-down Parsing
Bottom-up Parsing

ASTs

Name, Scope, and Bindings

Control-flow constructs

What the Compiler Sees

int ged(int a, int b)
{

while (a != b) {
if @>b)a-=hb;
else b = a;

}

return a;

n tsp g ¢c d (i n tsp a ,sp i

}
i
n
(asp ! =sp b)sp {nlspspspsp i
f

tsp b)nl {nlspsp w h i | e sp
sp (asp >sp b)sp asp - =sp b
;nlspspspsp e | s esp bsp - =sp

a ;nlspsp }nlspsp r e t u r nsp
a ;nl }nl

Text file is a sequence of characters

Semantic Analysis Resolves

Symbols
func
//’ \
nt—gcd~ args seq
PN
arg arg while return

SN N .

int a int b I= if
Symbol =
Table: / \a

intb

Types checked; references to symbols resolved

Translation into 3-Address Code

LO: sne $1, a, b
seq $0, $1, O
btrue $0, L1 % while (a != b)
sl $3, b, a
seq $2, $3, 0

btrue $2, L4 % if (a < b)

'SUb a, a, b % a-=b int ged(int a, int b)

Jjmp LS ¢ while (a != b) {
L4: sub b, b,a % b -=a !mf;.b:);-: b;
LS: Jmp LO return a;
L1: ret a } '

Idealized assembly language w/ infinite registers

Describing Tokens

Alphabet : A finite set of symbols
Examples: { 0,1}, { A,B,C, ..., Z}, ASCII, Unicode

String : A finite sequence of symbols from an alphabet

Examples: e (the empty string), Stephen, a8~

Language : A set of strings over an alphabet

Examples: 0 (the empty language), { 1, 11, 111, 1111 },
all English words, strings that start with a letter followed by
any sequence of letters and digits

Nondeterministic Finite Automata

“All strings 1. Set of states S: { , © @}

containingan 5 set of input symbols : {0, 1}
even number of 3 ansition function o : S x S — 25

O'sand 1's” state | ¢ 0 1
start 0 A - {B} {C}
— =0 B |- {A) (D}

1{l1 1 ' 1 c |- {b} {A}

0 D |- {C¢ ({B}

e 0 @ 4. Start state sg Z
5. Set of accepting states F: {}

Generation of 80386 Assembly

gcd: pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax % Load a from stack
movl 12(%ebp),%edx % Load b from stack
.L8: cmpl %edx,%eax

% Save frame pointer

je L3 % while (a !=b)
jle .L5 % if (a < b)
subl %edx,%eax %a-=b
jmp L8
.L5: subl %eax,%edx %b-=a
jmp L8
.L3: leave % Restore SP, BP

ret

Operations on Languages

Let L ={e¢ w0}, M = {man, men }

Concatenation : Strings from one followed by the other
LM = { man, men, woman, women }

Union : All strings from each language

LU M = {e, wo, man, men }

Kleene Closure : Zero or more concatenations

M* = {e, M, MM, MMM, ...} =
{6, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ... }

The Language induced by an NFA

An NFA accepts an input string z iff there is a path from
the start state to an accepting state that “spells out” x.

S D=G)

1 1

Sh that th tri
O Jowbabesing
0 1 0 0 1 0

Scanning and Automata

Regular Expressions over an
Alphabet %

A standard way to express languages for tokens.
1. eis aregular expression that denotes {e}
2. Ifa € %, a'is an RE that denotes {a}

3. If r and s denote languages L(r) and L(s),
* (r)|(s) denotes L(r) U L(s)
* (r)(s) denotes {tu: t € L(r),u € L(s)}
* (r)* denotes U° L (L® = @ and L? = LLI~1)

Translating REs into NFAs

Start a
a
star
w
ri|re

Translating REs into NFAs Simulating NFAs
Example: translate (a|b)*abb into an NFA Problem: you must follow the “right” arcs to show that a
€ string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state

2. For each character c,
* New states: follow all transitions labeled ¢

Show that the string “aabb” is accepted. Form the e-closure of the current states

@f»@f»@i@i@—e» b 3. Accept if any final state is accepting

Simulating an NFA: -aabb, e-closure Simulating an NFA: a-abb

Simulating an NFA: aa-bb Simulating an NFA: aa-bb, e-closure

Simulating an NFA: -aabb, Start

Simulating an NFA: a-abb, e-closure

Simulating an NFA: aab-b

Simulating an NFA: aab-b, e-closure

Simulating an NFA: aabb-

Deterministic Finite Automata

Restricted form of NFAs:
¢ No state has a transition on ¢

* For each state s and symbol a, there is at most one
edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the
states that appear.

Each unique state during simulation becomes a state in
the DFA.

Deterministic Finite Automata

ELSE: "else" ;
ELSEIF: "elseif" ;

f

O

Subset construction for (a|b)*abb (1)

Simulating an NFA: aabb-, Done

€ €

€

Deterministic Finite Automata

IF: "if"
ID: "a.z’ (a.’z | '0.’9) *
NUM: (0..9)+ ;

Subset construction for (a|b)*abb (2)

Subset construction for (a|b)*abb (3)

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing
3-4+2+5
with the grammar

e—etele—elexele/e

+ - * - +
3 * */\5 342 \5 4 \+ / 2
/\ /\ /\ /\
4 2 4 2 25 3 4

Assigning Associativity

Make one side or the other the next level of precedence
expr : expr '+ term

| expr ' term

| term ;

term : term ' ' atom
| term /" atom

| atom ;

atom : NUMBER ;

Subset construction for (a|b)*abb (4)

Fixing Ambiguous Grammars

Original ANTLR grammar specification
expr
Toexpr '+ expr

| expr - expr

| expr ' *' expr
| expr 'I' expr

| NUMBER

Ambiguous: no precedence or associativity.

A Top-Down Parser

stmt : 'if' expr 'then’ expr
| 'while’ expr 'do’ expr
| expr =" expr ;

expr : NUMBER | '(" expr ') ;
AST stmt() {

switch (next-token) {

case "if" : match("if"); expr(); match("then”); expr();

case "while” : match("while”); expr(); match("do”); expr();

case NUMBER or "(" : expr(); match(":="); expr();
}

Grammars and Parsing

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr '+ expr
| expr - expr
| term ;

term : term ' x’ term
| term /" term
| atom ;

atom : NUMBER ;

Still ambiguous: associativity not defined

Writing LL(k) Grammars

Cannot have left-recursion
expr : expr '+ term | term ;
becomes

AST expr() {
switch (next-token) {
case NUMBER : expr(); /* Infinite Recursion */

Writing LL(1) Grammars

Cannot have common prefixes

expr : ID '(C expr)
| ID =" expr

becomes

AST expr() {
switch (next-token) {
case ID : match(ID); match(’(’); expr(); match(’)’);
case ID : match(ID); match('="); expr();

Bottom-up Parsing

Shift-reduce Parsing

1: e—t+e stack input action
9. et Id«1d+1d shift
Id «1d 4+ 1d shift
3iotold sty Id +1d shift
4: t—Id Id «[E] +1d reduce (4)
+1d reduce (3)
t +1d shift
t+ Id shift
t +[E reduce (4)
t+[reduce (2)
reduce (1)
e accept

Scan input left-to-right, looking for handles. }
An oracle tells what to do

Eliminating Common Prefixes

Consolidate common prefixes:
expr

1oexpr '+ term

| expr '~ term

| term

becomes

expr
:expr (+ term | -’ term)
| term

Rightmost Derivation

1: e—t+e

2: e—t

3: t—lId %t

4: t—ld

A rightmost derivation for Id * Id + Id:

B Basic idea of bottom-up parsing:
t+@ construct this rightmost derivation
t+dA backward.

A+ 1d
Id @+ Id
Id «1d + Id
LR Parsing
1: e—t+e stack input action
2: e—t Id*Id+1d$ shift, goto 1
3: t—lId xt
4: t—ld
action goto 1.'LpOk at state on top of stack
Id+ * $|e t .
0 [sl— 7 2 2.’and the next input token
1 |r4ras3 4| [3-tofind the next action
2 |r2s4r2 r2 . .
3 |s1 5 | 4. Inthis case, shift the token
4 |s1 6 2 onto the stack and go to
5 (r3r3r3 r3 state 1.
6 |rlrlrl r1
7 acc

Eliminating Left Recursion

Understand the recursion and add tail rules

expr
:expr (+ term | -’ term)
| term

becomes

expr : term exprt ;
exprt : '+’ term exprt

| =" term exprt

| / * nothing */

Handles

1: e—=t+e Id «[El+ 1d Id

2: e~ QD+ 0 ¢

3: t—ld *xt
t+

4: t—lId [E] I(|:|
t+0 t
!

t +
e \\e/
This is a reverse rightmost derivation for Id = Id + Id.

Each highlighted section is a handle.

Taken in order, the handles build the tree from the leaves
to the root.

LR Parsing

1: e—t+e stack input action

2: e—t El Id*id+1d$ shift, goto 1

3: t—ld xt El *Id+1d$ shift, goto 3

4: t—ld Id+1d$ shift, goto 1
action goto LI +1d$ reduce w/ 4

0 ;dl tx 9 ; ; Action is reduce with rule 4

1 |raras3 ra (t — 1d). The right side is

2 [r2s4r2 r2 removed from the stack to reveal

3 |sl S |state 3. The goto table in state 3

4 |st 6 2 ltellsusto go to state 5 when we

5 |r3r3r3 r3

6 Irirr reduce a t:

7 acc stack input action

El +1d $

LR Parsing

1: e—t+e stack input
2: e—t El Id*I1d +1d $
3: t—ld xt El *Id+1d $
4: t—ld | [= Id+1d $
action$ goto % +1d$
Id + = e
0 [s1 7 2 |£| +d3
1 |r4rd4s3 rd El *+ld$
2 |r2s4r2 r2 |£| Id$
3 [s1 T $
4 |s1 6 El $
5 |r3r3r3 r3 El
6 (rirlrl rl |£| $
7 acc El $

Names, Objects, and

Bindings

Activation Records

Return Address

Frame Pointer

X
A’s variables

Return Address

Frame Pointer

y
B’s variables

Return Address

Frame Pointer

z

C’s variables

int A() {
int x;

B():

int B() {
int y;
CO;

int C() {
int z;

action

shift, goto 1
shift, goto 3
shift, goto 1
reduce w/ 4
reduce w/ 3
shift, goto 4
shift, goto 1
reduce w/ 4
reduce w/ 2
reduce w/ 1
accept

Constructing the SLR Parse Table

The states are places we could be in a reverse-rightmost
derivation. Let's represent such a place with a dot.

1: e—t+e
2: e—t
3: t—ld xt
4: t—ld

Say we were at the beginning (-e). This corresponds to

e — e The first is a placeholder. The
e—-tte second are the two possibilities
e—-t when we're just before e. The last
t—-ldxt I

t — -1d two are the two possibilities when

we're just before ¢.

Names, Objects, and Bindings

binding

Object4

Nested Subroutines in Pascal

procedure A,
procedure B;

procedure C;
begin .. end A
procedure D; E
begin C end B—
begin D end
D/
procedure E; c—
begin B end
begin E end

Constructing the SLR Parsing Table

e

e — -e i

e—t+el|t

. e —1-+4e .
SO'?::ltd*t > S2:, ;. —| S4:

t— -ld 13

S1

“t— Id-

id f *

t—Id -t

lld k//////////////
t—1d - xt d

t
S3:t — -ldxt|—>| S5:t — Id * t-
t— -ld

~No O AWN PO

Activation Records

argument 2

argument 1

return address

«— frame pointer

old frame pointer

local variables

temporaries/arguments

«— stack pointer

| growth of stack

Symbol Tables in Tiger

/ parent
parent int
ia string
let /
var n := 8 parent
var x = 3 —n
function sgr(a:int) —
= ax*a —
type ia = array of int sar

in
n = sqr(x)
end

Static Semantic Analysis

Implementing multi-way branches

switch (s) {

case 1: one(); break;

case 2: two(); break;

case 3: three(); break;
case 4: four(); break;

}
Obvious way:

if (s ==1) { one(); }

else if (s == 2) { two(); }

else if (s == 3) { three(); }
else if (s == 4) { four(); }

Reasonable, but we can sometimes do better.

Applicative- and Normal-Order
Evaluation

int p(int i) { printf("%d ", i); return i; }
void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;
}
a p(1), 2, p(3))

Applicative: arguments evaluated before function is called.

Result: 1 3 2
Normal: arguments evaluated when used.
Result: 123

Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

if i 3 "This" / * valid */
#all23 [* invalid */

Syntactic analysis: Makes sure tokens appear in correct
order

for i ;== 1to 5 do 1 + break / * valid */
if i 3 | * invalid */

Semantic analysis: Makes sure program is consistent

let v:=3inv + 8 end / * valid =/
let v := "f" in v(3) + v end / * invalid */

Implementing multi-way branches

If the cases are dense, a branch table is more efficient:

switch (s) {

case 1: one(); break;

case 2: two(); break;

case 3: three(); break;
case 4: four(); break;

}

labels I[] = { L1, L2, L3, L4 }; / * Array of labels */
if (s>=1 && s<=4) goto I[s-1]; / * not legal C =/

L1: one(); goto Break;

L2: two(); goto Break;

L3: three(); goto Break;

L4: four(); goto Break;

Break:

Applicative- vs. and Normal-Order

Most languages use applicative order.
Macro-like languages often use normal order.
#define p(x) (printf("%d ",x), X)
#define q(a,b,c) total = (a), \

printf("%d ", (b)), \

total += (c)

q(p(1), 2, p3))
Prints 1 2 3.

Some functional languages also use normal order
evaluation to avoid doing work. “Lazy Evaluation”

Static Semantic Analysis

Basic paradigm: recursively check AST nodes.

1 + break 1-5
/\ /\
1 break 15
check(+) check(-)
check(1) = int check(1) = int
check(break) = void check(5) = int
FAIL: int # void Types match, return int

Ask yourself: at a particular node type, what must be true?

Applicative- and Normal-Order
Evaluation

int p(int i) { printf("%d ", i); return i; }

void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;

}
What is printed by

a(p(1), 2, p@3))

Nondeterminism

Nondeterminism is not the same as random:
Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may
affect behavior.

Bottom line: don’t know what code will do, but often know
set of possibilities.

int p(int i) { printf("%d ", i); return i; }

int q(int a, int b, int c) {}

a(p(1), p(2), p@3));

Will not print 5 6 7. It will print one of
123,132,213,231,312,321

Layout of Records and Unions

Modern processors have byte-addressable memory.

0
1
2
3
4

Many data types (integers, addresses, floating-point
numbers) are wider than a byte.

16-bit integer: 1 0
32-bitinteger: 3 2 1 0

Layout of Records and Unions

Most languages “pad” the layout of records to ensure
alignment restrictions.
struct padded {

int x; | * 4 bytes */

char z; / * 1 byte =/

short y; /| * 2 bytes =*/

char w; [/ * 1 byte =/

: Added padding

Allocating Variable-Sized Arrays

As always:
add a level of indirection return address |— FP
a
}/0Id foo(int n) b-ptr\
int a; . J)
int b[n]; (O]
int c; :
} b[n-1]

Variables remain constant offset from frame pointer.

Layout of Records and Unions

Modern memory systems read data in 32-, 64-, or 128-bit
chunks:

3 2 1 0
7 6 5 4
11 10 9 8

Reading an aligned 32-bit value is fast: a single operation.

3 2 1 O
(7 6 [s f4]
8

11 10 9

Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

return address | «— FP

void foo() a
{

int a; b[0]

int b[10];

int c;)
} b[9]

c — FP+12

Stack-Based IR: Java Bytecode

int ged(int a, int b) { # javap -c Ged
while (a != b) { M ; S
N ethod int gcd(int, int)
if (a > b) 0’goto 15
Ia =0 3 iload_1 I/ Push a
else) 4 iload_2 // Push b
= 5 if_icmple 15 //ifa<=bgoto 15
. 8 iload_1 /I Push a
return a; 9 iload 2 /I Push b
10 isub /la-b
11 istore_1 /I Store new a
12 goto 19
15 iload_2 /I Push b
16 iload_1 /l Push a
17 isub Ib-a
18 istore_2 /I Store new b
19 iload_1 /l Push a
20 iload_2 /I Push b
21 if_icmpne 3 Il'if a!=b goto 3
24 iload_1 /l Push a

25 ireturn /I Return a

Layout of Records and Unions

Slower to read an unaligned value: two reads plus shift.

2 1 0
7
11 A0N9 /8

6|54]3]

SPARC prohibits unaligned accesses.
MIPS has special unaligned load/store instructions.
x86, 68k run more slowly with unaligned accesses.

Allocating Variable-Sized Arrays

Variable-sized local arrays aren'’t as easy.

void foo(int n) return address | < FP
{ a
int a; b[O]
int b[n];
int c; :
} b[n-1]
c —FP+?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.

Register-Based IR: Mach SUIF

int ged(int a, int b) { ged:
ged._gedTmpO:

while (a != b) { sne $vrl.s32 <- gcd.a,ged.b
seq $vr0.s32 <- $vrl1.s32,0

if (@ > D) btrue $vr0.s32,gcd._gedTmpl Jlif (a 1= b) goto Tmp1
a -= b; sl $w3.s32 < gedbged.a
| seq $vr2.s32 <- $vr3.s32,0
else btrue $vr2.s32,gcd._gedTmp4 I1if!(a < b) goto Tmp4
b -= & mrk 2, 4 //Line number 4
} sub $vr4.s32 <- gcd.a,gcd.b
mov gcd._gcdTmp2 <- $vr4.s32
return a; mov geda <- ged_gedTmp2 fa=a-b

jmp ged._gedTmp5
ged._gedTmp4:

mrk 2,6

sub $vr5.s32 <- gcd.b,gcd.a

mov gcd._gecdTmp3 <- $vr5.s32

mov ged.b <- ged._gedTmp3 /b=b-a
gced._gedTmp5:

jmp ged._gedTmpO

ged._gedTmpl:
mrk 2, 8

ret gcd.a I/ Return a

Basic Blocks

A:sne t, a b
bz E, t
A:sne t, a b
int ged(int a, int b) { bz E, t Z" "Ba"h
while (a 1= b) { sitt, a b " nz B
if b) b -= a; A
if (@< b) a lower bnz B, t split sb b, b, a
else a -= b; — sub b, b, a — jmp C
} jmp C
return a; B: sub a, a, b)
) C: jmp A B: sub a, a, b
E: ret a c: jmp A
E: ret a

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is

a branch target.

Usually ends with a control-transfer statement.

Simple functional programming in
ML

A function that squares numbers:

% sml

Standard ML of New Jersey, Version 110.0.7
- fun square x = x * Xx;

val square = fn : int -> int

- square 5;

val it = 25 : int

Fun with recursion

- fun addto (l,v) =

= if null | then nil

= else hd | + v :: addto(tl I, v);

val addto = fn : int list * int -> int list

- addto([1,2,3],2);
val it = [3,4,5] : int list

Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A:snet a b

bz E, t l

sitt, a b /

bnz B, t A:sne t, a, b > sit t, a, b

bz E, t bnz B, t

sub b, b, a

jmp C / \
B:sub a a b sub b, b, a B: sub a, a, b

jmp C

C: jmp A \ /
B ret a |E:reta |C|mpA|

A more complex function

- fun max a b =

= if a > b then a else b;
val max = fn : int -> int -> int
- max 10 5;

val it = 10 : int

- max 5 10;

val it = 10 : int

Notice the odd type:
int -> int -> int

This is a function that takes an integer and returns a
function that takes a function and returns an integer.

More recursive fun

- fun map (f, I) =

= if null | then nil

= else f (hd 1) :: map(f, tl 1);

val map = fn : (a -> 'b) * 'a list -> 'b list

- fun add5 x = x + 5;
val add5 = fn : int -> int

- map(add5, [10,11,12]);
val it = [15,16,17] : int list

Separate Compilation

foo.c bar.c

C compiler cc:

foo.s bar.s printf.o fopen.o malloc.o ---

Assembler as: ‘ ‘ \\ //
Archiver ar:

foo.o baro --- libc.a

Linker Id:
foo — An Executable

Currying

Functions are first-class objects that can be manipulated
with abandon and treated just like numbers.

- fun max a b = if a > b then a else b;
val max = fn : int -> int -> int
- val max5 = max 5;

val max5 = fn : int -> int

- max5 4;
val it = 5 : int ¥ B
- max5 6;

val it = 6 : int

Reduce

Another popular functional language construct:
fun reduce (f, z, nil) = z
| reduce (f, z, h:t) = f(h, reduce(f, z, t));
Iff is “—", reduce(f,z,a::b::c) isa—(b—(c—2))
- reduce(fn (x,y) => x -y, 0, [1,5]);
val it = "4 : int
- reduce(fn (x,y) => x - vy, 2, [10,2,1]);
val it = 7 : int

Another Example

Consider

- fun find1l(a,b) =
= if b then true else (a = 1);
val findl = fn : int * bool -> bool

- reduce(findl, false, [3,3,3]);
val it = false : bool

- reduce(findl, false, [5,1,2]);
val it = true : bool

Arguments

Az Ay * (+zy) 2

is equivalent to the ML

fnx =>fy=>(x+y) * 2;

All lambda calculus functions have a single argument.

As in ML, multiple-argument functions can be built through
such “currying.”

In this context, currying has nothing to do with Indian
cooking. It is due to Haskell Brooks Curry (1900-1982),
who contributed to the theory of functional programming.
The Haskell functional language is named after him.

Evaluating Lambda Expressions

Pure lambda calculus has no built-in functions; we'll be
impure.

To evaluate (+ (x 5 6) (x 8 3)), we can't start with +
because it only operates on numbers.

There are two reducible expressions: (x 5 6) and (x 8 3).
We can reduce either one first. For example:
(+ (x56) (x83))
(+30 (x83))
(+3024)
54

Looks like deriving a
sentence from a grammar.

The Lambda Calculus

Fancy name for rules about how to represent and evaluate
expressions with unnamed functions.

Theoretical underpinning of functional languages.
Side-effect free.

Very different from the Turing model of a store with
evolving state.

ML: The Lambda Calculus:
fn x => 2 * Xx; Ax.* 2
English:

“the function of z that returns the product of two and z”

Calling Lambda Functions

To invoke a Lambda function, we place it in parentheses
before its argument.

Thus, calling A\z. * 2 z with 4 is written
(Az.* 2)4

This means 8.

Curried functions need more parentheses:
Az.(Ay.*x (+zy)2)4)5

This binds 4 to y, 5 to z, and means 18.

Evaluating Lambda Expressions

We need a reduction rule to handle As:
(Az.x 2x) 4
(x24)
8
This is called g-reduction.
The formal parameter may be used several times:
Az.+ zx)4
(+44)
8

Bound and Unbound Variables

In Az. x 2 z, z is a bound variable. Think of it as a formal
parameter to a function.

“x 2 z" is the body.

The body can be any valid lambda expression, including
another unnnamed function.

Az Ay, * (+zy) 2

“The function of x that returns the function of y that
returns the product of the sum of x and y and 2.”

Grammar of Lambda Expressions

Utterly trivial:

expr — constant
variable

|

| expr expr
| (expr)

| A variable . expr

Somebody asked whether a language needs to have a
large syntax to be powerful. Clearly, the answer is a
resounding “no.”

Beta-reduction

May have to be repeated:
(Az.(Ay. — zy)) 5) 4
(\y.— 5y)4

(=54

1

Functions may be arguments:
Aff3)(Az. + x1)
Az.+ = 1)3
(+31)
4

More Beta-reduction

Repeated names can be tricky:
Az.(Az. 4+ (—x1)z3)9
M.+ (—21))93
+(-91)3
+83
11

In the first line, the inner x belongs to the inner A, the
outer = belongs to the outer one.

Alpha Conversion

An easier way to attack the earlier example:
Az.(Az. 4+ (—x1)z3)9
Az.(Ay.+ (—y1)z3)9
Ay + (—y1)93
+(-91)3
+83
11

Reduction Order

The redex is a sub-expression that can be reduced.

The leftmost redex is the one whose A\ is to the left of all
other redexes. You can guess which is the rightmost.

The outermost redex is not contained in any other.
The innermost redex does not contain any other.
For (Az.A\y.y) ((Az.z 2) (A\z.z 2)),

(Az.z z) (Az.z 2) is the leftmost innermost and

(Az.Ay.y) ((A\z.z 2) (Az.z 2)) is the leftmost outermost.

Free and Bound Variables

In an expression, each appearance of a variable is either

“free” (unconnected to a \) or bound (an argument of a \).

B-reduction of (Az.E) y replaces every x that occurs free
in E with y.

Free or bound is a function of the position of each variable

and its context.

Free variables
v

Azzy Ay y P
L S

Bound variables

Reduction Order

The order in which you reduce things can matter.
Az Ay.y) ((Az.z 2) (Az.z 2))

We could choose to reduce one of two things, either
(Az.z 2) (A\z.z 2)

or the whole thing

Az Ay.y) ((Az.z 2) (Az.z2 2))

Applicative vs. Normal Order

Applicative order reduction: Always reduce the leftmost
innermost redex.

Normative order reduction: Always reduce the leftmost
outermost redex.

For (Az.A\y.y) ((A\z.z 2) (Az.2 2)), applicative order
reduction never terminated but normative order did.

Alpha conversion

One way to confuse yourself less is to do a-conversion.
This is renaming a A argument and its bound variables.

Formal parameters are only names: they are correct if
they are consistent.

Az.(Az.z) (+1z) <0 Ax.(Ay.y) (+ 1)

Reduction Order

Reducing (A\z.z z) (A\z.z z) effectively does nothing
because (\z.z z) is the function that calls its first
argument on its first argument. The expression reduces to
itself:

(Az.z z) (A\z.z 2)
So always reducing it does not terminate.

However, reducing the outermost function does terminate
because it ignores its (nasty) argument:

Az Ay.y) ((Az.z 2) (Az.z 2))
Ay.y

Applicative vs. Normal Order

Applicative: reduce leftmost innermost
“evaluate arguments before the function itself”

eager evaluation, call-by-value, usually more efficient

Normative: reduce leftmost outermost
“evaluate the function before its arguments”

lazy evaluation, call-by-name, more costly to implement,
accepts a larger class of programs

Normal Form Normal Form Unification

A lambda expression that cannot be reduced further is in Not everything has a normal form Part of the search procedure that matches patterns.
normal form. (Az.z z) (Az.z 2) The search attempts to match a goal with a rule in the
Thus, can only be reduced to itself, so it never produces an database by unifying them.
Ay.y non-reducible expression. Recursive rules:
is the normal form of “Infinite loop.” e A constant only unifies with itself
(AzAy.y) ((Az.z 2) (M2.2 2)) « Two structures unify if they have the same functor, the
same number of arguments, and the corresponding
arguments unify
* A variable unifies with anything but forces an
equivalence
Unification Examples The Searching Algorithm Order Affects Efficiency
The = operator checks whether two structures unify: search(goal g, variables e) edge(a, b). edge(b, c). path(a,a)
| 2- a=a.) i edge(c, d). edge(d, e). 1
yes 9% Constant unifies with itself for each clause h :- ti,...,ty inthe database edge(b, e). edge(d, . path(a,a):lpath(X,X)
| - a=h
no % Mismatched constants e = unify(g, h, €) path(X, X). X=a
| 2~ 53=a . path(X, Y) :- e!s
1'% 53 =x % Mismatched constants if successtul, edge(X, 2), path(z, V). y
X = 5.3?; % Variables unify f ht
or each term t1,...,tn, i
lﬂo?_ foo(a.xX) = foo(X.b). 1y--+sln : Consider the query
% X= ired, but i istent —
Ino?- foo(a,X) = foo(X,a). 7 reatired, beneonsiten e = search(ty, ¢) ?- path(a, a)
X = a? % X=a i istent .
no : Pomals consisien if all successful, return e
| ?- foo(X,b) = foo(a,Y).
l=za) o e _ return no) - . -,
Io_ b?; % X=a, then b=Y Good programming practice: Put the easily-satisfied
| ?- foo(X,aX) = foo(b,a,c). clauses first.
no % X=b required, but inconsistent

Order Affect Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(a,a)
1
path(a,a)=path(X,Y)
1

path(X, Y) :- X=a Y=a
dge(X, Z), path(Z, Y). |
edge(), path() edge(a2)
path(X, X).

1
edge(a,2)=edge(a,b)
Consider the query zlb

I
?- path(a, a) . path(b,a)

Will eventually produce the right answer, but will spend
much more time doing so.

