Final Report: SHIL

Simulated Human Input Language

COMS W4115 Programming Languages and Translators
Fall 2008

Moses Vaughan (mjv2123@columbia.edu)

Binh Vo (bdv2112@columbia.edu)

lan Vo (idv2101@columbia.edu)

Chun Yai Wang (cw2244@columbia.edu)

mailto:mjv2123@columbia.edu
mailto:bdv2112@columbia.edu
mailto:idv2101@columbia.edu
mailto:cw2244@columbia.edu

Contents

R [1 Yo [{1 o PRSPPI 3
2. LaNQUAGE TULOMIAL.eeiiiiiiiiiiieieee b 5
I =30 = = Lo R 5
3. Language Reference Manual.............. ... 11
A, ProJECE PLAN ... 21
4.1. Planning, Specification, Development and Testing proCessescccccvveveeeeenn. 21
4.2. Programming SEYI........uuuiiii it 23
G TR o o T=Tod i T8 0= 11 T PR 24
4.4. Team Member Roles and ResponsibIlities ... 25
4.5. Software Development Environment USedcccoooeiiiiiiiiiiiiiiiie e 25
The group used a variety of developing environments including:...........cccccccceeeeeeen.. 25
5. ArChiteCtUral DESIQNcc et e e e e e e e e e e e e e 28
5.1. Major Components TranSIator.............uuuiiiiii e 28
5.2. Interfaces between COMPONENLSuuuiiiiiieeiiiiiiie e e e e 29
5.3. Who Implemented Each COmMPONEeNtcooovviiiiiiiiiiie e 29
The Final Project Report was written primarily by Moses and lan and Chun-Yai. 29
G =T = T o 30
A TS0 g TSR I T T o 46
7.1. MOSt IMportant LEAINEdcoiiiie i e e e 46
7.2. AOVICE FOIr FULUIE TRAIMSuuuiiiiiiiiiiiiiiiiiiitiiiitiiisaasiaeaseasasasasssssssassnsssssnnsnnnnnnnnnnnes 47
B APIPIEINTIX e 48

8.1. Complete CoOUE LISTINGccoei oo 48

1. Introduction

1.1 Overview

SHIL is a language used primarily for developing HTML based
automated bots. It provides the developer with an abstraction for
automating interaction with web sites and users. From the server's
perspective SHIL can be used to simulate user interactions, which is useful
for many applications ranging from creating spiders to website test scripts.
From the user's perspective SHIL can be used to implement custom user
interfaces. In conjunction with automated server interaction this potentially
can be used to alter existing interfaces for websites or provide interfaces to
additional functionality built on top of existing website functionality.

The implementation language was Objective Caml (OCaml). Ocaml is
a reliable language from the standpoint that many of the bugs that are
difficult to catch with many other programming languages, even during run-
time, are in fact caught during compile time. This quality is mainly due to its
superior typing system which makes polymorphic and type checking
abilities the forefront of its implementation. Ocaml has been wonderful for
writing this SHIL in general because of its concise nature, which makes the
source readable, as well as its strong sense of pattern matching that we
could exploit for data types all over our interpreter’s structure. Looking at
comparable interpreter’'s source written in other languages we now truly
begin to appreciate the value that OCaml’s various strengths bring.

1.2 Motivations

One of the main motivations for the production of our language is that
many automated browsing tasks are written now in various languages,
primarily PERL and Python. For example many services such as web
search engines need to crawl across existing pages on the internet, or
independent users often wish to automate data collection over various
sites. SHIL intends to provide a language designed specifically for this task
which will reduce the complexity of writing applications of this nature.

2. Lanquage Tutorial

The Basics
Comments: The usual /* and */ are used for all comments.

Assignment: The arrow points the way. ‘<~

One important fact to note is that SHIL is a dynamically typed
language because of the fact that the environment is passed from the
calling scope.

e 5 <- 4;

Comparison: Single Equals ‘=’

® “asdf” = “asdf”
Functions: Use the “function” keyword using the template.
¢ function functName(<type> <var>, <type> <var>) ->
<return type> {<body>}
e Ex/

function add(integer a, integer b) -> integer{
return a + b;}

Function Call: Note that the evaluation order of all functions in SHIL is
that of applicative evaluation. A given call’'s arguments are evaluated
before passing control to the function for its evaluation.

® result <- func name (argl, arg2);

The data types for SHIL include those in the chart below:

integer real boolean
function map array

If while foreach
break end fun

use return TRUE
FALSE string

Special Symbols also play a key role in the use of SHIL as they are used
within the formation of expressions and various statements which exploit
the power in SHIL.

For a conclusive listing of the symbols and their respective meanings in
SHIL see the chart below:

Lexeme Usage

<- assignment

+-/* math

! string**

: statement termination
struct reference

[] array reference

() Logical grouping

&|1=<>>= Boolean Operators

Data Types are used to hold specific forms of data. SHIL is of course no
different from other typed languages since it is in fact strongly typed.

SHIL uses the usual suspects.

Integer
Boolean
Map
Array
String

Real — Acts as a floating point number

No introduction to a language would be complete without the infamous

“‘Hello World!” example. It displays the control flow of SHIL is similar to that

of a scripting language, and not of one like C++,Java as there is no

necessary main method. The statements will get executed in the order of
which they are received.

“Hello World!” in SHIL
Control Flow resembles that of a scripting language.
e No main().

e Hello World needs only one line of actual code!

./.' CA\Users\Moses\Notebook\Courses\Programming Languages\Homework\SHILDev\SHILTests\test-hello.s] - Motepa... IEIEI&J

File Edit Search View Format Language Settings Macro Run TextFX Plugins Window 7 X
o = = WE olgll D| |ﬂbﬁ'|‘% ?lh'l.C_l.|_=_~' ‘-J|°] |@»
B Amaylib ml] & stringLib.m] = interpret ml l B makeall] = StringLib ml l = Amaylibml l B parsermly l B question2.ml l (=] questic * | +

f*Teating: Hello World */
print ("Hello World!™):

[T LR Y R

Mormal text fili nb char: 51 Ln:4 Col:1 Sel:0 UMK AMSI INS

Like many programming languages SHIL provides a way similar to that of
C++, Java of choosing between two of more execution paths within a
program.

Selection in SHIL is accomplished by the use of:
e |f statements || If then else
¢ |f <conditional> then<expression>
¢ |f <conditional> then<expression>else <expression>

e /[*Testing: If-Else Statement and execution
afterwards*/

Example:
function main () -> integer {
if (FALSE) then
print ("True");
else print ("False");

print ("After"™); /* Outside of if scope */

main () ;

Data Structures: The data structures that are supported by the SHIL
language are the Array and the Map. One great thing to note about arrays
is that they are dynamically sized initially to whatever you evaluate their
contents to be, but once they are sized they will keep this static size for

their lifetime.

Arrays
e Declaration: <type>[] <varName>;

integer[] arr; /* No need for numerical sizing */

e Assignment: <varName><- array{element 1,...., elementN};
arr <- array{5,10,15};

arr[l] <- 5;

e Maps

e Declaration: <type>[[<type>]] <varName>;

integer[[string]] mymap;

e Assignment: <varName><- map{keyl -> val1 ,...., keyN ->
valN};

mymap <- map {"a" -> 11, "b" -> 26, "c" -> 52};

3. Language Reference Manual

Lexical Conventions

e Overview

This section covers the lexical conventions within the SHIL language
that constitute various tokens including elements such as data types, data
structures, reserved words and symbols. A token is a series of contiguous
characters that the compiler will treat as one individual element. The
scanner will parse tokens to be the longest string of characters that can
create a token type.

¢ White Space

White space is classified only by blank spaces, newlines, tabs, and
within the scanner comments are considered whitespace. The only purpose
of whitespace is to separate tokens, and can essentially be rendered
useless except for human readability issues.

e Comments

[* is the opening of a comment and */ is the closing the respective
block. There are no single line only comment lexemes. Once a comment
opening is seen, everything up until the end of the */ lexeme is considered
invisible to the compiler.

e |dentifier

An identifier is a sequence of alphanumeric and non-alphanumeric
characters. Note that the first character can be anything other than a digit.
Casing is distinctive in all positions of an identifier string, meaning that one
identifier is not equivalent to another unless they both follow identical
character order and their characters must have identical casing in their
respective positions.

e Keywords

The following list is the keywords within the SHIL language. They
cannot be used for any programmatic purpose other than their distinct
function.

integer real boolean
function map Array

If while foreach
break end fun

use return true
false maybe string

e Operators

An operator is used to specify an operation to be performed. The chart
below gives operators as well as their necessary functions.

Operator Functions

<- assignment

+ -/ % math

" string**

; statement
termination

[] array reference

() Logical
grouping

& | ! = Boolean

< > 2= Operators

Note: ** signifies that this operator must occur in a pairing

Data Types and Structures

e Data Types

String - string is any finite sequence of characters which include letters,
numerals, symbols and punctuation marks. A “ is used to signify the
beginning of a string and an additional one used to signify the end of the
string.

Integer - An integer is a whole number that can be positive, negative, or
zero.

Real - Real numbers include rational and irrational numbers, but must be
signified in decimal format within SHIL. So therefore pi is not an acceptable
value.

Boolean - Boolean represents logical variables and can be of the values
true or false.

e Data Structures

Map — An associated array which holds key value pairings. The operation
of finding a value with a given key is called a lookup.

Array - A linear data structure where each element holds the same data
type. The structure itself occupies a contiguous block of storage.

Functions

SHIL functions can take multiple arguments, return either a single basic
data type value or nothing, and modify multiple existing values

function (type1 arg1, type2 arg2 ...) -> <return_type> {

[* arbitrary code */

3
Functions can use the keyword ‘function’ or just ‘fun’ as shorthand.

Args are passed by value (with the exception of data structures). The
return value is specified with the ‘return' operator.

For example, the following function can return a sum:

sum <- function (integer x, integer y) —> integer {
return x +y;

2

User-defined libraries of functions can be stored in a separate file and
included

with the 'use' directive:
use “filename”;

Expressions

Expressions are token groups which result in a value, they fall into several
categories.

Constants: result <- “string”; result <- 1, result <- 1.0; result = true;

String constants are always surrounded by double quotes. Digits
containing a '." are real valued, otherwise integer-valued, and booleans are
one of either 'true’ or 'false’.

Function Calls: result <- func_name(argl, arg2);
Function calls return at most one value.

Math/boolean operators: result <- vall <operator> val2;

Boolean operators (‘'&', '|', '!I') always return a boolean value.
Mathematical operators ('+', '-', ™', '/, '%") return a real value if either of the
input values is real, and an integer value otherwise.

Comparison operators: result <- “asdf’ = “asdf”;

Comparison operators ('=', ''=', '<', '>', '<=', '>=') return a boolean
value from two values of same type.

Assignment: result <- foo <- bar;
Assignment operators also return the value assigned.

Statements

Statements are complete SHIL instructions, are terminated by the ;'
character, and fall into four categories:

Expression
<expression>;
A lone expression may be evaluated as a statement.
Block
{<statement>; <statement>; <statement>;};
Curly braces can be used to group several statements into one statement.
Conditional
If <expression> then <statement>; else <statement>;

Iif' can be used with a boolean-valued expression to execute one of two
statements.

Iteration
while <expression> <statement>;

'‘while' can be used with a boolean-valued expression to repeatedly execute
a statement.

foreach <key _name> <value_name> in <array_or_map_name>
statement;

‘foreach’ can be used to execute a statement once for each element in a

map or array. key name and value _name will become variables within the
context of this statement. For an array, key _name is an integer index from
0 to the length of the array, and for a map, key _name is the key of the map.

Return
return <expression>;

Within a function body, this can be used to terminate execution of the
function and return a value.

Namespace

Variable names and function names will occupy the same case sensitive
namespace, and can be assigned with the <- operator. Function bodies
will use a private namespace, and statement blocks will inherit the parent
namespace, however any variables declared within the block will expire
with the termination of the block.

SHIL specific functions

The SHIL language has a number of built-in functions that are always
available. They are categorized here according to purpose:

Internet Interaction

string <- sendRequest(map)

Returns the HTML result as a string, given an HTTP request of
type map.

map <- parseHTML(string)

Returns a nested map representation of an HTML page in string
format.

string <- generateHTML(map)

Returns a string representation of an HTML page in map
format.

map <- showHTML(string)

Displays a given HTML code of string in the user’s default web
browser and returns the next HTTP request as a map.

String Manipulation

string <- substring(string, int, int)

substring(inputString startind endind)
Returns a string that is the substring of the given input string,
bounded by the starting and ending integer indexes.

int <- stringLength(string)

stringLength(inputString)
Returns the length of the given input string.

int <- stringFind(string, string)

stringFind(inputString searchString)
Returns the index within the given input string of the first
occurrence of the specified search string.

Int[] <- stringFindAll(string, string)

stringFindAll(inputString searchString)
Returns an array of indexes within the given input string of all
occurrences of the specified search string.

String[] <- splitString(string, string)

splitString(delimString inputString)

Returns an array of strings resulting from splitting the given
delimiter string according to a regular expression provided in
string format upon the input string provided. For instance,
(splitstring "[\t]+" s) splits s into blank-separated words.

string <- stringReplace(string, string, string)

stringReplace(searchString replaceString inputString)
Replaces all instances of the search string with the replacement
string in the given input string.

string <- stringToUpper(string)

stringToUpper(inputString)
Returns the given input string with all its characters converted
to upper case using the rules of the default locale.

string <- stringToLower(string)

stringToUpper(inputString)
Returns the given input string with all its characters converted to
lower case using the rules of the default locale.

Data Manipulation

array <- sort(array, boolean)

sort(inputArr ascending)

Returns a sorted version of the provided array in ascending
order if ascending boolean is true and returns a sorted version
of the provided array in descending order if false.

array <- randomize(array)

randomize(inputArr)
Returns a randomized permutation of the provided input array.

array <- getKeys(map)

getKeys(inputMap)
Returns an array of the keys for the provided input map.

array <- getValues(map)

getKeys(inputMap)
Returns an array of the values for the provided input map.

int <-length(array)

length(inputArr)
Returns the number of elements for the provided input array.

4. Project Plan

4.1. Planning, Specification, Development and Testing processes
Planning

e Multiple meetings were initially created to discuss planning topics such as:
1.) Language’s purpose
2.) What type of functionality would be necessary
3.) How best to represent this functionality
4.) Syntax details that would simplify semantic goals
5.) Developing a specification to follow through on our initial plans

6.) Develop specific hard and soft deadlines for the work to be
completed in a timely manner.

7.) How to divide implementation specifics amongst team
As a direct result of the planning phase the specification was produced.
Specification
Create target objectives for the following:

Lexical Conventions - Syntactic nature of the language

Overview
White Space
Comments
Identifier
Keywords
Operators

Data Types and Structures - Representation of available user data

e Data Types
e Data Structures

Functions — Executable blocks of instructions.

Expressions - Single or Nested evaluated instruction

Constants

Function Calls
Math/boolean operators
Comparison operators

Statements

Assignment
Block
Conditional
Iteration
Return

Namespace — Module Scoping

SHIL specific functions

¢ Internet Interaction
e String Manipulation
¢ Data Manipulation

Adhering to this spec a systematic and uniform development process would
occur.

Development- Once the requirements and the spec were created design which
the project would follow emulated that which would closely follow a typical interpreter’s
design. The implementation thus produced the following products in their respective
orders listed.

e Scanner/Lexer
e Parser

e AST

e Interpreter

The process was not that of a clear cut waterfall approach but instead it had
more of a cyclic nature. As we developed the interpreter we saw design flaws in our
language and would thus have to back up and correct those misguided errors in both
the scanner and parser. This became a very iterative process as it happened quite
frequently.

Testing- The process of testing we chose was that of an iterative one that
followed closely to the development process in a whitebox as well as blackbox fashion.

As we developed any new key addition to the system we would rerun our regression
test suite to ensure that the project base was as stable as before we made those
changes. For a complete testing plan that was followed in the creation of the SHIL
language see Test Plan.

4.2. Programming Style

We followed a strict style guideline between the members of our team to ensure
a readable yet productive product which could be handed off to each of the members if
need be. See below:

Commenting

e All modules submitted to repository must begin a brief summary comment
on what its use.

Give descriptions of complicated code segments explaining its purpose
Avoid unobvious abbreviations.

Each Routine must provide a description prior to implementation.

Avoid adding extraneous commentary.

Avoid commenting obvious functionality.

Statements

e Avoid exceeding 80 characters for any LOC (line of code).
¢ Indent based on the enclosing block’s indentation.
e Ensure at most one data declaration per LOC.

Functions & Modules

e Functions must adhere to Camel Casing convention
e Modules names should reflect their real world counterparts in regards the
interpreter.

Variables

e Variable should be between 5- 12 characters long

e Provide descriptive names describing what is being stored, unlike that of
simply V" or .

e Literals should be coded of the form Literal _<data type>

e Arguments to modules should follow Camel Case conventions.

General

e All code submitted to repository must compile and pass all tests which it
passed before the revision.

e All submissions to the repository must have time stamped comments
within the repository log reflecting what was changed.

4.3. Project Timeline

The table below displays the dates of key deadlines towards the development of

the SHIL language.

Date (DD-MM-YYYY)

Accomplishment

09-10-2008
09-22-2008
09-25-2008
10-03-2008
10-13-2008
10-20-2008
10-27-2008
11-03-2008
11-15-2008
11-28-2008
12-3-2008

12-15-2008

Group Formation Complete

Language Proposal Defined

Lexical Conventions/ Data Types and Structures Defined
Functional/Expressional syntax Defined
SHIL library content Defined

Language Reference Manual Complete
Scanner Complete

Parser Complete

Testing Suite Complete

Code Generation Complete

SHIL Libraries Defined and Tested

Project Features Complete

4.4. Team Member Roles and Responsibilities

The team member distribution of work regarding this project is displayed in the table
below.

Member Name SHIL Contributions

Moses Vaughan SHIL Libraries, Testing Modules, Interpreter
Chun Yai Wang Scanner, Parser, Interpreter

Binh Vo Interpreter , AST Design, Testing Modules
lan Vo SHIL Libraries, Testing Module, Interpreter

Listed below are the team tasks that we accomplished together in order to get a general
consensus of the direction of the SHIL language.

e Language Proposal

Language Reference Manual

Final Report

Grammar/ Expression/Statement Design

Library Functionality Design

4.5. Software Development Environment Used

The group used a variety of developing environments including:

e Cygwin 1.5, a linux emulator for Vista.

e Ubuntu84
The version control system utilized was that of Google Code. In addition to this we
utilized the interaction system that Ocaml comes with quite a lot for building units of the
code and ensuring their compatibility with existing counterparts.

4.6. Project Log

The project log regarding the implementation of SHIL is listed below:

Date (DD-MM-YYYY)

Accomplishment

09-14-2008
09-18-2008
09-20-2008
09-21-2008
09-23-2008
09-25-2008
10-01-2008
10-03-2008
10-10-2008
10-13-2008
10-17-2008
10-20-2008
10-25-2008
10-27-2008
10-29-2008
10-31-2008
11-03-2008
11-05-2008
11-09-2008

11-15-2008

Project Initialed

Project Concept Complete

Code Design First Draft

Code Design Complete/ Language Ref. Manual Complete
Development Environment/ Code Repository Configured
Lexical Conventions/ Data Types and Structures Defined
Functional/Expressional syntax Drafted
Functional/Expressional syntax Defined

SHIL library concept initiated

SHIL library content Defined

Language Reference Manual First Draft

Language Reference Manual Complete

Scanner Initiated

Scanner Complete

Parser Initiated

Parser Bugs Detected

Rework Design /Parser Bugs Resolved/ Parser Complete
Testing Phase Begins

Initial Tests Implemented

Tests Reworked/ Testing Suite Complete

11-20-2008
11-28-2008
11-29-2008
11-30-2008
12-01-2008
12-02-2008
12-3-2008

12-5-2008

12-8-2008

12-15-2008
12-16-2008

12-18-2008

Interpreter Initially Developed

Basic Code Generation Complete
String/Networking Libraries Implemented

Data Structure Manipulation Libraries Implemented
String/Networking Lib’s Tested/Reworked

Data Structure Lib’s Tested/Reworked

SHIL Libraries Defined and Tested

Code Generation incorporates Maps and Arrays
Code Generation incorporated variable sized Arrays
Project Features Complete

Final Report Documentation Initiated

Final Report Documentation Complete

5. Architectural Design

5.1. Major Components Translator

The major components of the translator are seen below:

Scanner.mll

JL

Ocamllex

JL

Parser.mly

JL

Ocamlyacc

<L

Token

. Scanner *
File_name.sl (scanner.ml)

Parser
(parser.ml)

Query

AST

Interpreter
(interpret.ml)

Execution
Results

a

String Library

Array Library

Networking Library

Note the modules for SHIL specific ocaml files (.ml) are shown within each
component to display their representation within our implementation.

5.2. Interfaces between Components
Scanner.mll: This is the scanner representation that will be taken by ocamllex to create
the finite state automaton model that is the scanner represented in scanner.ml.

Parser.mly: This is the parser representation that will be taken as input by ocamlyacc
and thus will result in the parser component of our system as in parser.ml.

The scanner and parser will interact together by the process of the scanner breaking the
source file up by lexemes, then the parser needing the next token thus querying the
scanner for it will get the token returned. Once the tokens are fully returned then an AST
will become the result of this process. The AST will then be fed as input to the
Interpreter and will thus become the execution results.

5.3. Who Implemented Each Component
The implementation of the scanner and parser was worked on by Chun-Yai with some
edits being made by Binh.

Every group member had a hand in the implementation of the Interpreter since it is the
largest piece of functionality in our system. Binh built a stable skeleton that was
functional and tested where the other members could make necessary additions to it.
Moses added functionality to incorporate each of the library functions within the String
and Array Libraries. lan added functionality to incorporate all the library functions within
the Networking Library. Chun-Yai and Binh modified the infrastructure, including the
parser and interpreter, to incorporate many aspects of the system that were initially
looked over in the design and thus needed to be added to adhere to the spec of our
language.

The String and Array Libraries were implemented by Moses, while the Networking
Library was implemented by lan.

All group members had a hand in developing the various tests to ensure all the
functionality acted as intended.

The Final Project Report was written primarily by Moses and lan and Chun-Yai.

6. Test Plan

6.1 Representative Source Language Programs
Author: lan Vo

GetGoogleLinks.sl
HtmlDoc[] x;

x <- url ("http://www.google.com/search?g=" + getarg(l));

string[[string]][] tags <- getArrayByTag("a", x);

tags <- filterArrayByAttribute("class", "1", tags);

integer index;

string[[string]] value;

print ("Here are the search links:");
foreach (index wvalue in tags) {

print (value[["href"]1]);

output:

moses@digital:~/plt-final/plt-final$./shil "plt" <
SHILTests/getGoogleLinks.sl

Here are the search links:
http://www.plt.org/

http://www.plt-scheme.org/

http://filext.com/file-extension/PLT

http://www.plt.com/

http://en.wikipedia.org/wiki/PLT
http://www.cs.brown.edu/research/plt/
http://www.freedownloadscenter.com/Best/plt-viewer-free.html
http://www.chem.wisc.edu/areas/reich/plt/winplt.htm
http://www.cs.rice.edu/CS/PLT/

http://www.wipo.int/treaties/en/ip/plt/

getFlickrimages.sl

HtmlDoc[] x;

x <- url("http://flickr.com/search/?g=" + getarg(l)):;

string[[string]][] tags <- getArrayByTag("img", x);

tags <- filterArrayByAttribute("class", "pc img", tags);

integer index;

string[[string]] value;

print ("Here are the image:");
foreach (index value in tags) {

print (value[["alt"]] + ": " + valuel[["src"]]);

output:

moses@digital:~/plt-final/plt-final$./shil "car" <
SHILTests/getFlickrImages.sl

Here are the images:

London Car in Black & White B/W Dream Car by davidgutierrez2007:
http://farméd.static.flickr.com/3016/2317733535 7eab%6bc76 m.Jjpg

Police Staff Car - Ottawa 05 07 by Mikey G Ottawa:
http://farml.static.flickr.com/224/494531076_a9f6164a24 m.jpg

A Gaudi Car. by Osvaldo:
http://farml.static.flickr.com/11/16717432 a0ec8852bf m.Jjpg

Baby you can drive my car by in touch:
http://farm3.static.flickr.com/2130/2405330222 a9142ef874 m.Jjpg

Miranda Car Park HDR 2 by alexkess:
http://farml.static.flickr.com/84/419953013 3e3d649cb0 m.Jjpg

My Car is Looking Hot! by blueoneiam:
http://farml.static.flickr.com/60/229227200 b6899ed500 m.Jjpg

my new car... by caucasiandora:
http://farm2.static.flickr.com/1059/1050720611 7fcd0002cd m.Jjpg

6.2 Test Suites & Who Did What
Functionality Tests

Tests were designed to rigorously ensure that all of our underlying types, expressions
and statements were functioning properly.

Test File
test-arithl.sl

test-arith2.sl

test-arith3.sl

test-arrayl.sl

test-array2.sl

test-
arraylib.sl

Author
Moses Vaughan

lan Vo

Moses Vaughan

Moses Vaughan

lan Vo

Moses Vaughan

Code

/*Testing: Basic arithmetic within a
function arg */
print (39 + 3);
/* Testing: Arithmetic & order of
operations */
function main () -> integer {
print(l1 + 2 * 3 + 4); /*Should be
11 */
}
main () ;
/*Testing: Basic arithmetic within a
function arg */
integer a;
integer b;
a <- 39;
b <- 3;
print(a + b);
/* Testing: ForEach loop with and without
index, defined as declared*/
integer[] arr <- array{5,10,15};
arr[l] <- 100;
print(arr([1l]);
print(arr(2]);
/* Testing: ForEach loop with and without
index defined after declaration*/
integer([] arr;
arr <- array{5,10,15};

function main () -> integer {
arr[1] <- 100;
print(arr([1l]);
print (arr[2]);

}

main () ;

integer([] arr <- array {5,2,7,1,2};
integer[[string]] mapIntStr <- map {5-
>"five", 1->"one", 3->"three"};

integer index;
integer value;

inprint ("Array has: ");

index <- 0;

value <- 0;

foreach (index value in arr) {
inprint(value); inprint(",");

}

print("");

inprint ("Length is: ");

print (length (arr));

print ("Sorting array in ascending

order...");

arr <- sort(arr, TRUE);

ascending order */

inprint ("**Sorted array is now: ");

index <- 0;

value <- 0;

foreach (index value in arr) {
inprint (value); inprint(",");

/* Sort

}
print("");

/* We know this function works
print ("Randomizing Array");
arr <- randomize (arr);

index <- 0;

value <- 0;

foreach (index value in arr) {

Output

42

11

42

100
15

100
15

Array has: 5,2,7,1,2,
Length is: 5

Sorting array in
ascending order...
**Sorted array is now:
1,2,2,5,7,

Displaying keys in map:
5,1,3,

Displaying values in
map:

five,one, three,

test-fib.sl

test-forl.sl

test-mapl.sl

test-funcl.sl

test-

lan Vo

lan Vo

Moses Vaughan

lan Vo

Moses Vaughan

inprint (value); inprint(",");
}
print("");
*/

/**** MAPS ****/

integer([] keys <- getKeys (mapIntStr);

string[] values <- getValues (mapIntStr);

print ("Displaying keys in map:");

index <- 0;

value <- 0;

foreach (index value in keys) {
inprint (value); inprint(",");

}

print("");

print ("Displaying values in map:");

index <- 0;

value <- 0;

foreach (index value in values) {
inprint (value); inprint(",");

/*Testing: Recursive Function Calls */
function fib (integer x) -> integer {
if (x < 2) then return 1;
else return fib(x-1) + fib(x-2);
}

print (£ib(0));
print (fib (1)) ;
print (fib(2));
print (£ib(3));
print (fib(4));
print (£ib(5));
/* Testing: ForEach loop with and without
index defined on array*/
integer([] arr <- array{10,20,30};
integer index <- 0;
integer value <- 0;
foreach (index value in arr) {
print (index) ;
print (value) ;
if (index = 1) then break;
}
print (index) ;
/* Testing: ForEach loop with and without
index defined on map*/
integer[[string]] mymap;
mymap <- map {"a" -> 11, "b" -> 26,
52};
print (mymap[["b"]1]1);
string index <- "";
integer value <- 0;
foreach (index value in mymap) {
print (index) ;
print (value) ;
if (value = 26) then break;

c" ->

}
print (index) ;
/* Testing: Function call and return value
*/
function add (integer a, integer b) ->
integer {

return a + b;

}

integer a;

a <- add(39,3);

print(a);

/* Testing: Global Variable Assignment */

0 U W N

26

11

26

42

42

globall.sl

test-hello.sl

test-ifl.sl

test-if2.sl

test-if3.sl

test-if4.sl

test-
stringlib.sl

lan Vo

lan Vo

Moses Vaughan

Moses Vaughan

lan Vo

Moses Vaughan

integer a;
integer b;

function printA () -> integer {
print(a);

}

function printB () -> integer {
print (b);
}

function incAB () -> integer {
a<-a+ 1;
b <-Db + 1;
return 0;

}

function main () -> integer {
a <- 42;
b <- 21;
printA();
printB() ;
incAB() ;
printA();
printB() ;
}
main () ;

/*Testing: Hello World */
print ("Hello World!");
/* Testing: If-Else statement (no
afterwards) */
if (TRUE) then print(42);
else print(17);
if (FALSE) then print("foo");
else print("bar");
/* Testing: If-Else Statement and
execution after */
function main () -> integer {
if (TRUE) then print("Yes"); else
print ("No") ;
print ("After");
}

main () ;
/* Testing: If Statement (No else) and
execution after */
function main () -> integer ({
if (FALSE) then print ("True");
print ("After");
}

main () ;
/* Testing: If-Else Statement and
execution afterwards */
function main () -> integer {

if (FALSE) then print("True"); else
print ("False");

print ("After");
}
main () ;
/* String Library Functions available:
* substring, stringLength, stringFind,
stringReplace,
* stringToUpper, stringToLower,
stringFindAll, splitString
*/

string a <- "String LibRaRy";
print ("**String is:");

21
43
22

Hello World!

42
bar

Yes
After

After

False
After

**String is:

String LibRaRy
**Length:

14

**Substring from 0 to 5
is:

Strin

**Capitalizing...
STRING LIBRARY

test-varl.sl

test-var2.sl

test-whilel.sl

test-while2.sl

lan Vo

lan Vo

Moses Vaughan

Moses Vaughan

print(a);
print ("**Length:");
print (stringLength(a));
print ("**Substring from 0 to 5 is:");
print (substring(a,0,5));
print ("**Capitalizing...");
print (stringToUpper (a)) ;
print ("**Lower Casing...");
print (stringToLower (a));
print ("**Restoring string and finding
string \"RaR\"");
print (stringFind(a, "RaR"));
print ("**Replacing string \"RaR\" with
\"rar\"") ;
a <- stringReplace("RaR","rar",a);
print(a);
print ("**Searching for lower case r\'s");
integer|[] arr <- stringFindAll(a,"r");
integer index <- 0;
integer value <- 0;
foreach (index value in arr) {
print (value) ;
}
print ("**Splitting string by space");
string[] arrl <- splitString(" ",a);
index <- 0;
value <- 0;
foreach (index value in arrl) {
print (value);
}
/* Testing: Variable Assignment */
function main () -> integer ({

integer a;
a <- 4;
print(a);

}

main () ;
/* Testing: Variable Assignment */
function main () -> integer ({

integer a <- 4;
print(a);

}

main () ;
/* Testing: While loop */
function main () -> integer ({
integer i;
i <= 5;

while (1 > 0) {
print(i);
i<-1i-1;
}
}
main () ;
/* Testing: While loop */
function main () -> integer {
integer 1i;
i <= 5;
while (1 > 0) {
print(i);
if (i = 3) then break;
i <-1i-1;
}
print (i+10);
}

main () ;

**Lower Casing...
string library
**Restoring string and
finding string "RaR"
10

**Replacing string
"RaR" with "rar"
String Library
**Searching for lower
case r's

2

10

12

**Splitting string by
space

String

Library

N w0

= w .S o

Component Tests

Scanner:

#load "scanner.cmo";;

#use "testlib.ml";;

addtest "SingleValueTokenization"
(function () -> Scanner.token

(Parser.INT);;

addtest "DifferentValueTokenization"
(function () -> Scanner.token

(Parser.REAL) ; ;

addtest "HeadTokenization"
(function () -> Scanner.token

(Parser.INT) ;;

(Lexing.

(Lexing.

(Lexing.

addtest "TokenizationHandlesWhitespace"

(function () -> Scanner.token

(Parser.INT) ; ;

(Lexing.

addtest "TokenizationRequiresWhitespace"

(function () -> Scanner.token

(Parser.ID "integerinteger");;

addtest "TokenizationIgnoresComments"

(function () -> Scanner.token
/*bar*/"))

(Parser.INT);;
addtest "TokenizationRecognizesInt"
(function () -> Scanner.token

(Parser .LITERAL INT (12));;

addtest "TokenizationRecognizesReal"

(Lexing.

(Lexing.

(Lexing.

from string

from string

from string

from string

from string

from string

from string

"integer"))

"real"))

"integer integer"))

" integer "))

"integerinteger"))

"/*foo*/ integer

"12"))

(function () —-> Scanner.token (Lexing.from string "12.0"))

(Parser .LITERAL REAL(12.0));;

addtest "TokenizationRecognizesBool"

(function () —-> Scanner.token (Lexing.from string "FALSE"))

(Parser.LITERAL BOOL (false));;

addtest "TokenizationRecognizesString"

(function () -> Scanner.token (Lexing.from string "\"Hello\""))

(Parser .LITERAL STR("Hello"));;

addtest "TokenizationRecognizesStringWithSpace"

(function () -> Scanner.token (Lexing.from string "\"Hello World\""))

(Parser.LITERAL STR("Hello World"));;

runtests () ;;

Parser:

#load "parser.cmo";;
#load "scanner.cmo";;
#use "ast.mli";;

#use "testlib.ml";;

addtest "DeclarationParsing"
(function () -> Parser.program Scanner.token
(Lexing.from string "integer a;"))

([Ast.Declare (Ast.Type int,"a")]);;

addtest "AssignmentParsing"
(function () —-> Parser.program Scanner.token
(Lexing.from string "a <- 5;"))

([Ast.Expr (Ast.Assign ((Ast.IdVar "a"), (Ast.Literal

(Ast.Literal int

addtest "ArithmeticParsing"
(function () —-> Parser.program Scanner.token
(Lexing.from string "1 + 5;"))
([Ast.Expr (Ast.Binop ((Ast.Literal (Ast.Literal int 1)),
Ast.Add,

(Ast.Literal (Ast.Literal int 5))))]);;

addtest "NestedExpressionParsing"
(function () —-> Parser.program Scanner.token
(Lexing.from string "a <- 1 + 5;"))
([Ast.Expr (Ast.Assign ((Ast.Idvar "a"),
(Ast.Binop ((Ast.Literal (Ast.Literal int 1)),
Ast.Add,
(Ast.Literal (Ast.Literal int 5))))))]);;

addtest "SequentialExpressionParsing"
(function () -> Parser.program Scanner.token
(Lexing.from string "integer a; a <- 1;"))
([Ast.Declare (Ast.Type int,"a");

Ast.Expr (Ast.Assign ((Ast.Idvar "a"), (Ast.Literal (Ast.Literal int
)17

addtest "FunctionDeclarationParsing"
(function () -> Parser.program Scanner.token

(Lexing.from string "function foo () -> integer
{return 5;}1"))

([Ast.FuncDecl ("foo",[],Ast.Type int,Ast.Block [(Ast.Return
(Ast.Literal (Ast.Literal int 5)))])]);;

addtest "FunctionDeclarationParsingWithArgs"
(function () -> Parser.program Scanner.token

(Lexing.from string "function foo (integer x, integer
y) -> integer {return 5;}"))

([Ast.FuncDecl ("foo", [(Ast.Type int, "x"); (Ast.Type int,
Ast.Type int,Ast.Block [(Ast.Return (Ast.Literal (Ast.Literal int

"y")],
INRRIRRIRIN A

addtest "FunctionCallParsing"

(function () -> Parser.program Scanner.token

(Lexing.from string "print(5);"))

([Ast.Expr (Ast.Call ("print", [(Ast.Literal (Ast.Literal int
5)) 1)) 1)

(*
addtest "StructDeclareParsing"
(function () —-> Parser.program Scanner.token
(Lexing.from string "struct foo {};"))

([Ast.DeclareStruct ("foo",Ast.Block([])) 1);;

addtest "StructDeclareParsingWithInt"
(function () -> Parser.program Scanner.token
(Lexing.from string "struct foo {integer a;};"))

([Ast.DeclareStruct ("foo",Ast.Block([Ast.Expr (Ast.Declare
("integer","a"))1)) 1);;

addtest "StructDeclareVariable"
(function () -> Parser.program Scanner.token
(Lexing.from string "struct foo myvar;"))

([Ast.Expr(Ast.Struct("foo","myvar")) 1);;

*)

addtest "ArrayDeclareParsing"
(function () -> Parser.program Scanner.token
(Lexing.from string "integer[5] intArr;"))

([Ast.Declare(Ast.Type Array (Ast.Type int, 5), "intArr")]);;

addtest "MapDeclareParsing"
(function () -> Parser.program Scanner.token
(Lexing.from string "integer[[string]] strMap;"))

([Ast.Declare(Ast.Type Map (Ast.Type int, Ast.Type str),
"strMap") 1)

addtest "TestArrayLiteral"
(function () —-> Parser.program Scanner.token
(Lexing.from string "a <- array {5,2};"))

([
Ast.Expr (Ast.Assign (Ast.IdVar ("a"),Ast.Literal (Ast.Literal array([Ast.Literal

int 5; Ast.Literal int 2]1)))) 1);;

addtest "TestArrayLiteralEmpty"
(function () —-> Parser.program Scanner.token
(Lexing.from string "a <- array {};"))

([
Ast.Expr (Ast.Assign (Ast.IdVar ("a"),Ast.Literal (Ast.Literal array([]))))]):;

addtest "TestMapLiterallInt"
(function () —-> Parser.program Scanner.token
(Lexing.from string "a <- map { 5->1, 2->0};"))
([Ast.Expr (Ast.Assign (Ast.IdvVar("a"),
Ast.Literal (Ast.Literal map ([(Ast.Literal int 5,
Ast.Literal int 1);
(Ast.Literal int 2,
Ast.Literal int 0)
D)) 1) 5z

addtest "TestMapLiteralEmpty"
(function () -> Parser.program Scanner.token
(Lexing.from string "a <- map {};"))
([Ast.Expr (Ast.Assign (Ast.Idvar ("a"),

Ast.Literal (Ast.Literal map([]))))]1);;

(*
addtest "StructAssignReference"
(function () -> Parser.program Scanner.token
(Lexing.from string "a.b <- c.d;"))

([Ast.Expr(Ast.Assign(Ast.Structref ("a","b"),
Ast.Var (Ast.Structref ("c","d")))) 1);:;

*)

addtest "ArrayAssignReference"
(function () -> Parser.program Scanner.token
(Lexing.from string "a[0] <- a[l];"))
([Ast.Expr (Ast.Arrayassign (Ast.IdVar("a"),
Ast.Literal (Ast.Literal int (0)),

Ast.Arrayref (Ast.IdVar ("a"),Ast.Literal (Ast.Literal int(1)))))1)::

runtests () ;;

Reasons Behind the Tests - Why and How these test cases were chosen

Test Name Reason Needed
test-arith1.sl Testing: Basic arithmetic within a function arg.
test-arith2.sl Testing: Arithmetic & order of operations

test-arith3.sl

Basic arithmetic within a function arg

test-arrayl.sl Testing: ForEach loop with and without index
defined

test-array2.sl Testing: ForEach loop with and without index
defined after declaration

test-arraylib.sl Testing: Ensure functionality of array Lib’s work

as intended

test-fib.sl Testing: Recursive Function Calls

test-forl.sl ForEach loop with and without index defined on
array

test-mapl.sl ForEach loop with and without index defined on map

test-funcl.sl Testing: Function call and return value

test-globall.sl

Testing:

Global Variable Assignment

test-hello.sl Testing: Hello World

test-ifl.sl Testing: If-Else statement (followed by other if
statements afterwards)

test-if2.sl Testing: If-Else Statement and execution followed
by regular statement

test-if3.sl Testing: If-Else Statement and execution followed
by return statement

test-if4.sl Testing: If-Else Statement look for dangling else.

test-stringLib.sl Testing: String Library Functions.

test-varl.sl Testing: Variable Assignment

test-var2.sl Testing: Variable Assignment and Declaration
together

test-whilel.sl Testing: While loop

test-while2.s| Testing: While loop with sequential statement
following

Automation used in testing

A bash script (runtests) was written to automatically run each unit test, and to notify the
user if any disparities with what was expected arose. For the code listing of the this
script see below:

Main File:

#!/bin/bash
for 1 in $(1ls *.out | awk '{print substr($1,0, (length($1)-3))}"'); do
echo "Running" $i
SCRIPTFILE=S$i".s1"
OUTFILE=$i".out"
RESULTFILE=S$i".result"

../shil < $SCRIPTFILE > SRESULTFILE

if ! (diff SRESULTFILE SOUTFILE >/dev/null);
echo "...failed"
echo "RESULT:"
echo "-—-——-- "
cat SRESULTFILE
echo "---——- "
echo

echo "EXPECTED:"

then

Helper File:

c_#load "extLib.cma";;
let tests = ref [];;
let addtest desc test expected =
tests := (desc, test, expected) :: !tests;;
let cleartests() =
tests := [];;

let rec runtestshelper = function
(1 -> 1l
| (desc, test, expected)::rest ->
let = print endline ("Running " * desc) in

let result = test() in let =

if result = expected
then []
else let =
print endline (desc ©~ " failed.") in let =
print string "\tExpected: " in let =

Std.print expected in let =
print string "\tActual: " in let =
Std.print result in []

in

runtestshelper rest;;

let runtests() =
let = runtestshelper (List.rev !tests) in

print endline "Done.";;

7.Lessons Learned

7.1. Most Important Learned
-Moses

Compiler creation to me initially seemed like a mystical and magical process that was
not for the faint of heart but thanks to Dr. Edwards’ breakdown the main thing that |
learned was that the process seemed almost obvious. It was obvious in the way how
one component simply passes a representation to the next, ultimately providing the
desired target program.

Another lesson learned was that the communication of your team is essential in your
success. If a member is having trouble completing a task they should speak up as soon
as possible so that other can begin to reorganize the work. If this is done in a timely
manner then the efficiency of your team will lead to a great experience.

-Binh

The most important lessons | learned were regarding group coordination and
management. Establishing a code repository with version control, and especially
establishing a unit testing architecture was a key benefit to us, as from that point on we
avoided miscommunications between the ways we expected our coded pieces to
interact. If | were to go back and do this again, | would furthermore require that
members make changes to the repository in separate branches and submit to code
review from at least one other member before committing changes to the main code
tree. This would not only avoid some bugs early on, but would also increase general
understanding of the entire code.

-ChunYai

| learned that communication is key in large-scaled team projects such as our SHIL
programming language project. Especially when the structure of the language and the
syntax is so variable to change at the very start of the project, people need to know
these changes as soon as possible so they can make changes to their parts. For
example, if one person was working on the parser and decided to change the syntax of
a data structure declaration, he needs to let the person who is writing test code know
about this as well.

Another lesson | learned is that never underestimate your work. We were lucky in that

we realized a couple weeks before the deadline that we may have underestimated the
work we needed to do and therefore accelerated our progress. Overall, this project has
bettered my technical skills and team-working skills. It has been a great experience.

-lan

| learned the importance of doing extensive research on what you're trying to
accomplish. | originally had only a vague idea of my end goal, and so my approach was
equally vague. | spent a lot of time working with libraries, only to find that these were not
the libraries | needed to be using. Often | was reinventing the wheel, or inventing wheels
that were entirely unnecessary. However, on the bright side of all of this, jumping into
the project somewhat blind like this aided me in familiarizing myself with what | could
and could not achieve within our timeframe.

| also learned the importance of communicating with the group. They were an
invaluable resource for helping me debug and learn how to approach a project such as
this one. A project on this scale would be very difficult without constant feedback, and
cooperation between a group.

7.2. Advice For Future Teams

The best advice that team SHIL could provide is to meet early and often, and also the
earlier you learn to embrace OCaml instead of resisting it the better off you will be in
regards to creating the language. The language may seem initially touch. Especially if
you are unaware of the nuisances of the functional programming, but once you get the
hang of it you will be hooked and the flow of the coding will go much smother.

Be sure to document every step of the way, especially in regards to using a versioning
control system, because if changes ever have to be rolled back then it will be clear as
what must be done in order to achieve this.

-Team SHIL

8. Appendix

8.1. Complete Code Listing
Ast.mli

type binop = Add | Sub | Mult | Div | Equal | Neq | Less | Greater | Geq |
Leq | And | Or

type uniop = Not

type variable =

Idvar of string

type lit =
Literal int of int
| Literal bool of bool
| Literal float of float
| Literal str of string
| Literal array of 1lit list
| Literal map of (lit*lit) list

| Literal html of (Nethtml.document)

type datatype =
Type int
| Type bool
| Type float
| Type str

| Type Array of datatype

| Type Map of datatype*datatype

| Type html

type expr =
Literal of 1lit
| Arrayref of variable * expr
| Mapref of variable * expr
| Arrayassign of variable * expr * expr
| Mapassign of variable * expr * expr
| Var of variable
| Binop of expr * binop * expr
| Uniop of uniop * expr
| Assign of variable * expr
| Call of string * expr list

| Noexpr

type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| Use of string
| Break
| If of expr * stmt * stmt
| Foreach of string * string * expr * stmt
| While of expr * stmt
| Declare of datatype * string
| DeclareAssign of datatype * string * expr

| FuncDecl of string* ((datatype*string) list) *datatype*stmt

type program = stmt list

interpret.ml
open Ast
open Http client.Convenience

module StringMap = Map.Make (String);;

type symbol table = {
parent : symbol table option;

vars : lit StringMap.t;

funcs : (((datatype*string) list)*stmt) StringMap.t;
}
type translation environment = {
return type : datatype; (* Function's return value ¥*)
in loop : bool; (* whether break and continue are valid *)
scope : symbol table; (* symbol table for vars *)

exception TypeError
exception ReturnCall of lit*symbol table
exception BreakStatement of symbol table

exception Fatal of string

(* Main entry point: run a program *)

let run (stmts) =

(* initial symbol table *)
let empty symbol = {
parent = None;
vars = StringMap.empty;
funcs = StringMap.empty; }

in

(* Perform variable lookup *)
let rec findvar env = function
IdVar (name) ->
try (StringMap.find name env.vars)
with Not found -> match env.parent with
None -> raise Not found
| Some p -> findvar p (IdVar name)

in

(* Perform a function lookup *)
let rec findfunc env = function
name ->
try (StringMap.find name env.funcs)
with Not found -> match env.parent with
None -> raise Not found
| Some p -> findfunc p name

in

(* find the scope of a var and set it *)
let rec setvar env = function

Idvar (name), v ->

try (let = StringMap.find name env.vars in

v, {parent = env.parent;
vars = StringMap.add name v env.vars;
funcs = env.funcs;})

with Not found -> match env.parent with
None -> raise Not found

| Some p ->

let v, p = setvar p ((IdVar name),
v, {parent = Some p;

vars = env.vars;

funcs = env.funcs;}

in

(* find the scope of an array and set an element ¥*)
let rec sete i v 1 = (i, v) :: (List.remove assoc i 1) in
let rec setmap env = function
Idvar (name), i, v ->
(try (match StringMap.find name env.vars with
Literal map(old) ->
v, {parent = env.parent;

vars = StringMap.add name

(Literal map (sete i v old)) env.vars;

funcs = env.funcs;}
| —-> raise TypeError)
with Not found -> match env.parent with
None -> raise Not found

| Some p ->

let v, p = setmap p

v)

in

((Idvar name), i, v) in

v, {parent = Some p;
vars = env.vars;
funcs = env.funcs;})

in

(* find the scope of a map and set an element *)
let rec setn i v = function
hd :: rest ->
if (1 < 0) then (hd :: rest) else
if (1 = 0) then (v :: rest) else

(hd :: (setn (i - 1) v rest))

in
let rec setarr env = function
Idvar (name), Literal int (i), v ->
(try (match StringMap.find name env.vars with

Literal array(old) ->

v, {parent = env.parent;
vars = StringMap.add name
(Literal array (setn i v old)) env.vars;
funcs = env.funcs;}

| -> raise TypeError)
with Not found -> match env.parent with
None -> raise Not found
| Some p ->

let v, p = setarr p

((IdvVvar name),

(Literal int i),

v) in

v, {parent = Some p;

vars = env.vars;
funcs = env.funcs;})

| _ -> raise TypeError

in

(* Check if a type and literal match *)
let rec check type dtype lit =
(match dtype,lit with
Type int,Literal int(a) -> true
| Type bool,Literal bool(a) -> true
| Type float,Literal float(a) -> true
| Type str,Literal str(a) -> true
| Type Array (dtype),
Literal array(hd::rest) -> check type dtype hd
| Type Array(dtype), Literal array([]) -> true
| Type Map (ktype, vtype),
Literal map((klit, wvlit)::rest) ->
((check type ktype klit) && (check type vtype vlit))
| Type html,Literal html() -> true
| -> false)

in

(* Evaluate an expression and return (value, updated environment)
let rec eval env = function

Literal (i) -> 1, env

| Arrayref (name, e) ->
let v, env = eval env e in
let arr = findvar env name in
(match v, arr with
Literal int (i), Literal array(l) -> List.nth 1 i
| _ -> raise TypeError), env
| Mapref (name, e) ->
let v, env = eval env e in
let map = findvar env name in
(match map with
Literal map (mapcontent) ->
(List.assoc v mapcontent)

| _ -> raise TypeError), env

| Arrayassign (name, el, e2) ->
let vl, env = eval env el in
let v2, env = eval env e2 in

setarr env (name, vl, v2)

| Mapassign(name, el, e2) ->
let vl, env = eval env el in
let v2, env = eval env e2 in

setmap env (name, vl1, v2)
| Var(var) -> (findvar env var), env
| Binop(el, op, e2) ->
let 11, env = eval env el in
let 12, env = eval env e2 in
(match (11, 12) with
(Literal int(vl), Literal int(v2)) ->

(match op with

Add -> Literal int(vl + v2)
| Sub -> Literal int(vl - v2)
| Mult -> Literal int(vl * v2)
| Div -> Literal int (vl / v2)
| Equal -> Literal bool (vl = v2)
| Neq -> Literal bool (vl != v2)
| Less -> Literal bool(vl < v2)
| Leq -> Literal bool (vl <= v2)
| Greater -> Literal bool (vl > v2)
| Geq -> Literal bool (vl >= v2)
| -> raise TypeError)
| (Literal str(vl), Literal str(v2)) ->
(match op with
Add -> Literal str(vl ~ v2)
| Equal -> Literal bool (vl = v2)
| Neg -> Literal bool (vl != v2)
| -> raise TypeError)
| _ -> raise TypeError), env
| Uniop(op, e) —->
let 1, env = eval env e in
(match 1 with
Literal bool(v) —->
(match op with
Not -> Literal bool (not v))
| _ -> raise TypeError), env
| Assign (IdVar (varname), e) ->
let v, env = eval env e in

setvar env ((IdVar varname), V)

(* Start of Libraries *)
(* String Library *)
| Call ("substring", [el; e2; e3]) ->

eval env el in

let v1, env

let v2, env = eval env e2 in

let v3, env eval env e3 in

(match [vl;v2;v3] with [Literal str(vl); Literal int(v2);
Literal int (v3)] ->

try
Literal str(String.sub vl v2 ((v3 - v2)))
with (Invalid argument(z)) -> raise (Invalid argument (z)))

_ -> raise TypeError), env

| Call("stringLength", [el]) ->

let vl, env = eval env el in
(match vl with Literal str(vl) ->
Literal int(String.length vl);

| _ -> raise TypeError), env

| Call("stringFind", [el;e2]) ->
let vl, env = eval env el in
let v2, env = eval env e2 in
(match [vl;v2] with [Literal str(vl); Literal str(v2)] ->

Literal int(try Str.search forward (Str.regexp v2) vl 0 with
Not found->0);

| _ -> raise TypeError), env

| Call("stringReplace", [el;e2;e3]) ->

let vl, env = eval env el in

let v2, env

let v3, env

eval env e2 in

eval env e3 in

(match [vl;v2;v3] with [Literal str(vl);
Literal str(v2);Literal str(v3)] ->

Literal str(Str.global replace (Str.regexp vl) v2 v3);

_ —-> raise TypeError), env

| Call("stringToUpper", [el]) ->
let vl, env = eval env el in
(match vl with Literal str(vl) ->

Literal str(String.uppercase vl);

_ -> raise TypeError), env

| Call("stringToLower", [el]) ->
let vl, env = eval env el in
(match vl with Literal str(vl) ->

Literal str(String.lowercase vl);

_ —-> raise TypeError), env

| Call("stringFindAll", [el; e2]) ->
let vl, env = eval env el in
let v2, env = eval env e2 in

(match [v1;v2] with

indexList

[Literal str(vl); Literal str(v2)] ->

let rec stringFindAllHelper inputString searchString index

try

let currIndex Str.search forward (Str.regexp

searchString) inputString index in

let nextIndex (currIndex + (String.length

searchString)) in
let currIndex2 = Literal int(currIndex) in

(stringFindAllHelper inputString searchString nextIndex
(currIndex2::indexList))

with Not found -> indexList;
in
Literal array (List.rev(stringFindAllHelper vl v2 0 []));

_ -> raise TypeError), env

| Call("splitString", [el;e2]) ->
let vl, env = eval env el in
let v2, env = eval env e2 in
(match [vl;v2] with [Literal str(vl); Literal str(v2)] ->

Literal array(List.map (fun f-> Literal str f) (Str.split
(Str.regexp vl) v2));

| _ -> raise TypeError), env

(* Array Library *)
(* Works for array and maps *)
| Call("length", [el]) ->
let vl, env = eval env el in
(match vl with
Literal array(vl) -> Literal int(List.length vl)
| Literal map(vl) -> Literal int(List.length vl)

| —-> raise TypeError), env

(* Maps are represented as (lit*1lit) lists ¥*)

Call ("getKeys", [el]) ->

let vl, env = eval env el in

(match vl with Literal map(vl) ->

Literal array(List.rev(List.fold left (fun 1 (a,b)->a::1) [] v1)
) i - -
_ —-> raise TypeError), env
Call ("getvalues", [el]) ->
let vl, env = eval env el in
(match vl with Literal map(vl) ->
(fun 1 (a,b)->b::1) [] v1)

Literal array(List.rev(List.fold left

_ —-> raise TypeError), env

(* Works for array and maps according to key,

Call ("sort", [el;e2]) ->

\
let vl, env = eval env el in
let v2, env = eval env e2 in
(match [v1;v2] with

[Literal array(vl); Literal bool(v2)]

(List.sort compare vl)

List.rev (List.sort compare vl))

[Literal map(vl);
(c,d) -> if a<c then -1 else

List.sort (fun (a,b)

(1f a=c then 0 else 1)) vl

else List.rev x)

_ —> raise TypeError), env

e2 true for ascending ¥*)

-> Literal array(if v2 then

else

Literal bool(v2)] -> Literal map (let x =

in

if v2 then x

| Call("randomize", [el]) ->
let vl, env = eval env el in
(match vl with

Literal array(vl) -> let = Random.self init() in (* DO NOT
REMOVE, REQUIRED FOR RANDOM #s *)

Literal array((List.sort (fun x y ->
Random.int 2) vl1));

| _ -> raise TypeError), env

| Call ("numargs", []) ->
Literal int (Array.length Sys.argv), env
| Call("getarg", [el]) ->
let vl, env = eval env el in
(match vl with
Literal int(vl) -> Literal str(Sys.argv.(vl))

_ —-> raise TypeError), env

(* HTML Library *)

| Call("url", [el]) -—>
let vl, env = eval env el in
(match vl with Literal str(vl) -> Literal array (List.map (fun f-
>Literal html (f)) (Nethtml.parse document (Lexing.from string (http get

v1))))

| _ -> raise TypeError), env

Call ("filterArrayByAttribute", [el;e2;e3]) —->
let vl1l, env = eval env el in
let v2, env = eval env e2 in

let v3, env = eval env e3 in

(match [vl;v2;v3] with
[Literal str(vl);Literal str(v2);Literal array(v3)] ->

let filterByAttribute attr value attributeMap =
if (List.mem assoc attr attributeMap)
then if ((List.assoc attr attributeMap) = value)
then [Literal map (attributeMap)]
else []

else [] in

let strippedMaps (List.map (function Literal map(x) -> x

| _ -> raise TypeError) v3) in

let filteredMaps = (List.fold left

(fun retlList am -> List.append retList
(filterByAttribute (Literal str vl) (Literal str v2) am)) [] strippedMaps) in

Literal array(filteredMaps)

| _ -> raise TypeError), env

| Call ("getArrayByTag", [el;e2]) ->
let vl, env = eval env el in
let v2, env = eval env e2 in

(match [vl;v2] with [Literal str(ll);Literal array(l2)] ->

let rec find tag = (function Nethtml.Element (content,a,c) ->
if (tag=content) then [(List.map (function (x,y) -> Literal str(x),
Literal str(y))a)] else List.concat(List.map (find tag) c)
| Nethtml.Data(e) -> []) in
let getListByTag tag docList = (List.concat (List.map (find

tag) docList)) in

Literal array(List.map (fun a -> Literal map(a)) (getListByTag
11 (List.map (function Literal html(x) -> x | _ -> raise TypeError) 12)))

| _ -> raise TypeError), env

(* End of Libraries *)

| Call("print", [e]) ->
let v, env = eval env e in
(match v with
Literal int (intval) ->

print endline (string of int intval);
Literal int (0)

| Literal bool (boolval) ->
print endline (string of bool boolval);
Literal int (0)

| Literal float(floatval) ->
print endline (string of float floatval);
Literal int (0)

| Literal str(strval) ->

let rec f s

try let x String.index s '\\' in
print string((String.sub s 0 x)"(String.sub s (x+1) 1));
f((String.sub s (x+2) ((String.length s)-(x+2))));
with Not found -> print endline(s); in
f(strval);

Literal int (0)

| _ -> raise TypeError), env

(* Print without ending line *)
| Call ("inprint", [e]) ->
let v, env = eval env e in

(match v with

Literal int (intval) ->

print string (string of int intwval);
Literal int (0)

| Literal bool (boolval) ->
print string (string of bool boolval);
Literal int (0)

| Literal float(floatval) ->
print string (string of float floatval);
Literal int (0)

| Literal str(strval) ->

let rec £ s

try let x String.index s '\\' in

print string((String.sub s 0 x)"(String.sub s

(x+1)

f((String.sub s (x+2) ((String.length s)-(x+2))));

with Not found -> print string(s); in
f(strval);
Literal int (0)

| _ -> raise TypeError), env

Call (func, args) ->
let exp args, body = findfunc env func in
let actuals, env = List.fold left

(fun (actuals, env) arg ->

let v, env = eval env arg in
(v :: actuals, env)) ([], env) args in
let topass = List.combine exp args actuals in
let newenv = {

parent = Some env;

vars = List.fold left
(fun map ((_, argname), argval) ->

StringMap.add argname argval map) StringMap.empty

topass;

funcs = StringMap.empty; } in

let v, newenv = try Literal int(0), (exec newenv body)
with ReturnCall (v,env) -> v, env in
(match newenv.parent with
Some p -> v, p
| -> raise (Fatal "Function call destroyed environment"))
| Noexpr -> Literal int(0), env

(* Execute a statement and return an updated environment *)
and exec env = function

Block (stmts) -> List.fold left exec env stmts

| Expr(e) -> let , env = eval env e in env
| Return(e) -> let v, env = eval env e in raise (ReturnCall (v,env))
| Use(name) -> env

| Break -> raise (BreakStatement env)
| If(e, s1, s2) ->
let v, env = eval env e in
exec env (if v = Literal bool(true) then sl else s2)
| Foreach(idl,id2,e,s) ->
let v, env = eval env e in
(match v with
Literal array(l) ->
let size = List.length 1 in
let rec loop env i = function

hd :: rest ->

let , env setvar env (IdvVar(idl), Literal int(i)) in

let , env setvar env (IdVar(id2), hd) in
if 1 >= size then
env
else
loop (exec env s) (i + 1) rest
| [] -> env in
(try (loop env 0 1) with BreakStatement (env) -> env)
| Literal map(l) ->

let rec loop env = function

(kval, wvval) :: rest ->

let , env setvar env (IdVar (idl), kval) in

let , env setvar env (IdVar (id2), wvval) in
loop (exec env s) rest
| [1 -> env in
(try (loop env 1) with BreakStatement (env) -> env)
| -> raise TypeError)
| While(e, s) ->
let rec loop env =
let v, env = eval env e in
if v = Literal bool(true) then loop (exec env s) else env
in (try (loop env) with BreakStatement (env) -> env)
| Declare (dtype, name) ->
let rec makedefault = function
Type int -> Literal int (0)
| Type bool -> Literal bool (true)
| Type float -> Literal float(0.0)

| Type str -> Literal str("")

| Type Array(dtype) -> Literal array([])
| Type Map (ktype, ltype) ->

(Literal map [])

| Type html -> Literal html (Nethtml.Data("")) in
let nv = (makedefault dtype) in
{parent = env.parent;
vars = StringMap.add name nv env.vars;
funcs = env.funcs;}
| DeclareAssign (dtype, name, e) ->
let v, env = eval env e in

if (check type dtype v) then

{parent = env.parent;
vars = StringMap.add name v env.vars;
funcs = env.funcs;}

else

raise TypeError

| FuncDecl (name, args, rettype, body) ->

{parent = env.parent;
vars = env.vars;
funcs = StringMap.add name (args, body) env.funcs;}

in
try (List.fold left exec empty symbol stmts)
with
TypeError ->
print endline "Error: type mismatch";
empty symbol
| ReturnCall() ->

print endline "Error: return from outside function body";

empty symbol
| Invalid argument() ->
print endline "Invalid arguments";
empty symbol
| Not found ->
print endline "Variable does not exist";

empty symbol

parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE LARRAY RARRAY LMAP RMAP RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE ASSIGN RASSIGN

$token EQ NEQ LT LEQ GT GEOQ

%token NOT AND OR TRUE FALSE MAYBE

%token FUNCTION RETURN IF THEN ELSE FOREACH IN WHILE BREAK END USE BOOL INT
REAL STRING MAP ARRAY HTML

$token <int> LITERAL INT
$token <float> LITERAL REAL
$token <bool> LITERAL BOOL
$token <string> ID

$token <string> LITERAL STR

$token EOF

$nonassoc NOELSE

$nonassoc ELSE

%$left NOT AND OR

$left ASSIGN
sleft EQ NEQ
%left LT GT LEQ GEQ
$left PLUS MINUS
%left TIMES DIVIDE

%start program

Stype <Ast.program> program

o
o

program:
stmt list { List.rev $1 }
stmt_list:
/* nothing */ { [] }

| stmt list stmt { $2 $1 3}
stmt:
LBRACE stmt list RBRACE
| expr SEMI
| RETURN expr SEMI
| USE LITERAL STR SEMI
| BREAK SEMI
| IF LPAREN expr RPAREN THEN stmt %prec NOELSE
| IF LPAREN expr RPAREN THEN stmt ELSE stmt

| FOREACH LPAREN ID ID IN expr RPAREN stmt

{

Block(List.rev $2)
Expr ($1) }

Return($2) }

}

Use ($2) }

Break }

If($3, $6, Block(I[])) }
If($3, $6, $8) }

Foreach ($3, $4, $e6,

$8)

}

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

| vartype ID SEMI { Declare($1,$2) }

| vartype ID ASSIGN expr SEMI { DeclareAssign($1,$2,%4) }
| FUNCTION ID LPAREN formals opt RPAREN RASSIGN vartype stmt

{ FuncDecl ($2, $4, $7, $8) 1}

expr:
LITERAL { Literal($1) }
| varref LARRAY expr RARRAY ASSIGN expr { Arrayassign($1,$3, $6) }
| varref LMAP expr RMAP ASSIGN expr { Mapassign($1, $3, $6) }
| varref LARRAY expr RARRAY { Arrayref ($1,$3) }
| varref LMAP expr RMAP { Mapref ($1, $3) }
| varref { Var(s1l) }
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) 1}
| expr TIMES expr { Binop($1l, Mult, $3) }
| expr DIVIDE expr { Binop($1l, Div, $3) }
| expr EQ expr { Binop($1l, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1l, Less, $3) }
| expr LEQ expr { Binop($1l, Leq, $3) }
| expr GT expr { Binop($1l, Greater, $3) }
| expr GEQ expr { Binop($1l, Geq, $3) }
| expr AND expr { Binop($1, And, $3) }
| expr OR expr { Binop($1, Or, $3) }
| NOT expr { Uniop (Not, $2) }
| varref ASSIGN expr { Assign($1, $3) 1}

| ID LPAREN actuals opt RPAREN { Call($1l, $3) }

| LPAREN expr RPAREN { 82}

LITERAL:
LITERAL INT { Literal int($1) }

| LITERAL REAL { Literal float($1l) }

| LITERAL BOOL { Literal bool($1l) }

| LITERAL STR { Literal str($1) }

| LITERAL array

{ Literal array($1)

| LITERAL map { Literal map(S1)

LITERAL array:
ARRAY LBRACE RBRACE { [] }

| ARRAY LBRACE array list RBRACE {List.rev $3 }

array list:
LITERAL { [S$1] }

| array list COMMA LITERAL { $3 :: S$1}

LITERAL map:
MAP LBRACE RBRACE { [] }

| MAP LBRACE map list RBRACE {List.rev $3 }

map list:
LITERAL RASSIGN LITERAL { [($1, $3)] }

| map list COMMA LITERAL RASSIGN LITERAL { ($3, $5)

primtype:

INT { Type int }

}

}

$1

}

| BOOL { Type bool }
| STRING { Type str }
| REAL { Type float }

| HTML { Type html }

vartype:
vartype LARRAY RARRAY { Type Array(Sl) }
| vartype LMAP vartype RMAP { Type Map($1,S$3) }

| primtype { $1 }

varref:

ID { Idvar(sl) }

formals opt:
/* nothing */ { [] }

| formals list { List.rev $1 }

formals list:
vartype ID { [(81,82)1 }

| formals list COMMA vartype ID { ($3, $4) :: $1 }

actuals opt:
/* nothing */ { [] }

| actuals list { List.rev $1 }

actuals list:
expr { [$1] }

| actuals list COMMA expr { $3 :: $1 }

scanner.mll

{ open Parser }

rule token =

[l] l\tl l\rl

‘ "/*" {

‘ T X0 {

parse

'\n'] { token lexbuf }
comment lexbuf }
LPAREN }
RPAREN }
LBRACE }
RBRACE }
LMAP }
RMAP }
LARRAY }
RARRAY }
SEMI }
COMMA }
PLUS }
MINUS }
TIMES }
DIVIDE }
ASSIGN }
RASSIGN }
EQ }

NEQ }

LT }

GT }

(* Whitespace *)

(* Comments *)

ne—n

ns—n

nign
"then"
"else"
"foreach"
"while"
"return"
"break"
"end"
"use"
"function"
"fun"
"boolean"
"integer"
"real"
"string"
"array"
"map"
"HtmlDoc"

"in"

"TRUE"

"FALSE"

{

LEQ }

GEQ }

AND }

OR }

NOT }

IF }

THEN }
ELSE }
FOREACH }
WHILE }
RETURN }
BREAK }
END }

USE }
FUNCTION }
FUNCTION }
BOOL }
INT }
REAL }
STRING }
ARRAY }
MAP }
HTML }

IN }

LITERAL BOOL (true)

LITERAL BOOL (false)

}

}

[['0'='9']+"."['0"'="9"]* as 1lxm { LITERAL REAL(float of string lxm)

| ['0'=-'9']+ as 1lxm { LITERAL INT (int of string 1lxm) }

| ['a'-'z" '"A'-'Z']['a'-"z" 'A'-'Z"'" '0'-'9"'" ' '1* as lxm { ID(lxm) }
MUo([ta'="z" TA'-'Z' 0TSO ot ot ot gt L@ gt rgr oyt oA

B B L (R R e e Y A A A

v,vv] ‘u\\\uu‘u\\\\u‘u\\\v")*v"v

as lxm { LITERAL STR(String.sub lxm 1

| eof { EOF }

| as

and comment =

char { raise

parse

(Failure("illegal character "

((String.length 1xm)-2))

"k/m { token lexbuf }
| { comment lexbuf }
shil.ml
let =
let lexbuf = Lexing.from channel stdin in

let program =

ignore

Parser.program Scanner.token lexbuf in

(Interpret.run program)

l&l
l?l

}

~ Char.escaped char))

}

L |

}

