
Fast Vector Processing Language

Gowri Kanugovi
Pratap Prabhu
Ravindra Babu

Programming Languages and Translators

Department of Computer Science

Columbia University
Fall 2008

Topics Covered

� Language overview

� Tutorial

� Example program

� Architectural design

� Compiler implementation and features

� Testing

� Results

� Conclusion

Language Overview

� Computation of vectors like primitive types

� C like syntax and semantics

� Easy programming and fast execution

� Transparent and efficient utilization of SIMD
instructions for computing at higher speeds

� SIMD instructions in x86 are called SSE and
operates on 128 bits of data

� Data Parallelism is the goal of FVPL

Tutorial

� Basic data types, language constructs, types of
operators and expressions, scopes are similar to the C
programming language

� Consider the following program to add a vector to itself,
assign the result to another vector and then display the
result

int main()

{

int a[10], b[10];

a = 5;

b = a + a;

print(b);

}

Tutorial (cont..)

� To execute the program, use the command
$ ARGS="add_vector.fvpl" make exec; ./a.out

� The generated output would be:

10
10
10
10
10
10
10
10
10
10

Example Program

� Program demonstrating vector operations

int main(){

int a[10], b[10], c[10];

fread_int(“aFile”, a, 10);

fread_int(“bFile”, b, 10);

c = a&b;

b = c+a;

fwrite_int(“cOut”, c, 10);

fwrite_int(“bOut”, b, 10);

}

Architecture

Architecture (cont..)

� Lexer: Scans the FVPL source code to generate
tokens based on a set of rules

� Parser: Parses input sequence of tokens from
lexer to determine if the program is
syntactically correct. Generates the AST

� Interpreter: Walks the AST and checks if
program is semantically correct. Populates the
symbol table

� Code generation: Translation of vector
operations to function calls. Optimized
functions reside in C++ stub code. Generated
C++ code passed to the g++ compiler

Compiler Implementation

� OCaml Lex

� Ocaml Yacc

� Eclipse (with OCalIDE)

� CVS (cvs.sourceforge.net)

� Shell script for testing

Compiler Features

� Generates C++ code from the source
FVPL code

� Optimized routines to handle vector
operations as part of stub code

� Stub code added as library to the
generated C++ code

� Generated code compiled with g++

� Modular implementation

Testing

� Regression testing one at all stages using a
shell script

� Positive and negative test cases written as part
of the test suite

� Positive tests: Ensures generated C++ code
and output is consistent for any valid input

� Negative tests: Ensures that the compiler
catches all error conditions and provides the
programmer with appropriate error messages

Testing (cont..)

� Shell script testscript.sh automates the testing process
� Runs both the positive and negative test cases when invoked

by the make test command
� Excerpt of the generated output

------------ Testing FVPL success cases ------------
tests/success/test-comments.input --------------- SUCCESS
tests/success/test-continue-break.input --------------- SUCCESS
tests/success/test-fibonacci.input --------------- SUCCESS
tests/success/test-file-input.input --------------- SUCCESS
tests/success/test-for.input --------------- SUCCESS
…
…
------------ Testing FVPL failure cases ------------
Fatal error: exception Failure("Cannot have more than one main function")
tests/failure/test-2mains.input --------------- FAIL
Fatal error: exception Failure("number of params different 2")
tests/failure/test-func1.input --------------- FAIL
Fatal error: exception Failure("Type of arguments not matching defined function3")
tests/failure/test-func2.input --------------- FAIL
…
…

Source Code Statistics

39testscript.sh

1852Total

38Makefile

131stub-print.h

867stub.h

10fvpl.ml

140symbol.ml

358interpret.ml

76ast.mli

156parser.mly

76scanner.mll

Test Case Statistics

123Number of lines in input files

20Number of test cases

Output Test Cases

743Number of lines in output files

505Number of lines in input files

40Number of test cases

Positive Test Cases

Results

� FVPL versus GCC compiler
� Time Taken by C++ code to add brightness to 5 MB image=416.994ms

� Time Taken by FVPL to add brightness to 5 MB image= 212.091ms

� Time Taken by C++ code to mask and multiply pixel(5 MB image)=568.638ms

� Time Taken by FVPL code to mask and multiply pixel(5 MB image)=259.936ms

� FVPL shows 2X speed up in our tests

� Performance limited due to redundant
data copy

Conclusion

� Using FVPL makes vector operations
very simple

� Fast vector processing is important in
Image Processing, Matrix operations,
String matching and Cryptography

� FVPL does not exploit the full
potential of SSE.

Conclusion (cont..)

� Useful enhancements to FVPL

� 16 byte alignment

� In-place and not in-place operations

� Multi-dimensional array support

� Operation on partial array

� Intra-procedural data redundancy check

� FVPL leading the way for future
architectures like Larrabee

